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Abstract
The normalization of the combination of generalized Lommel–Wright function
J

κ3,m
κ1,κ2 (z) (m ∈N, κ3 > 0 and κ1,κ2 ∈C) defined by

J
κ3,m
κ1,κ2 (z) :=�m(κ1 + 1)�(κ1 + κ2 + 1)22κ1+κ2z1–(κ2/2)–κ1J κ3,m

κ1,κ2 (
√
z), where

J κ3,m
κ1,κ2 (z) := (1 – 2κ1 – κ2)J

κ3,m
κ1,κ2 (z) + z(Jκ3,mκ1,κ2 (z))

′ and

Jκ3,mκ1,κ2
(z) =

( z
2

)2κ1+κ2
∞∑
n=0

(–1)n

�m(n + κ1 + 1)�(nκ3 + κ1 + κ2 + 1)

( z
2

)2n
,

was previously introduced and some of its geometric properties have been
considered. In this paper, we report conditions for Jκ3,m

κ1,κ2 (z) to be starlike and convex
of order α, 0≤ α < 1, inside the open unit disk using some technical manipulations of
the gamma and digamma functions, as well as inequality for the digamma function
that has been proved (Guo and Qi in Proc. Am. Math. Soc. 141(3):1007–1015, 2013). In
addition, a method presented by Lorch (J. Approx. Theory 40(2):115–120 1984) and
further developed by Laforgia (Math. Compet. 42(166):597–600 1984) is applied to
establish firstly sharp inequalities for the shifted factorial that will be used to obtain
the order of starlikeness and convexity. We compare then the obtained orders of
starlikeness and convexity with some important consequences in the literature as
well as the results proposed by all techniques to demonstrate the accuracy of our
approach. Ultimately, a lemma by (Fejér in Acta Litt. Sci. 8:89–115 1936) is used to
prove that the modified form of the function J

κ3,m
κ1,κ2 (z) defined by

Iκ3,m
κ1,κ2 (z) = J

κ3,m
κ1,κ2 (z) ∗ z/(1 + z) is in the class of starlike and convex functions,

respectively. Further work regarding the function J
κ3,m
κ1,κ2 (z) is underway and will be

presented in a forthcoming paper.
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Keywords: Analytic; Univalent; Starlike; Convex; Generalized Lommel–Wright
functions

1 Introduction and preliminaries
In the literature, there has been a growing interest in special functions that have appli-
cations in different fields of mathematical analysis, functional analysis, geometry, and
physics. Special functions are an old subject, but due to their essential position in math-
ematics, they continue to play an essential role, for instance, in combinatorics, applied
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mathematics, and engineering. More recently, further progress has been made towards
the geometric properties for the normalized form of some special functions such as uni-
valence, starlikeness, convexity, and close to convexity inside the open unit disk. Regarding
treatises on this investigation, we refer, e.g., to [7–9, 12, 13] for generalized Bessel func-
tion, to [3] for hyper-Bessel functions, to [25, 32, 34] for generalized Struve function, to
[31] for Lommel function, to [24, 28, 29] for hypergeometric function, to [33] for gener-
alized Lommel–Wright function, and [23] for Fox–Wright function. In addition, the radii
of starlikeness and the convexity of Bessel and its q-analog, Struve and Lommel functions,
were investigated by several authors (see [1, 2, 4–6, 10–12]). These results would be fruit-
ful to enrich the understanding of the geometrical properties of such functions as tools in
such applications of geometric function theory.

Over the past few years considerable attention has been given to the role played by gen-
eralized Lommel–Wright function in concrete problems in physics, mechanics, engineer-
ing, and astronomy. In continuation of [33], we report conditions for Jκ3,m

κ1,κ2 (z) to be starlike
and convex of order α, 0 ≤ α < 1, inside the open unit disk using some technical manipula-
tions of the gamma and digamma functions as well as an inequality for the digamma func-
tion that has been proved [18]. In addition, a method presented by Lorch [22], and further
developed by Laforgia [21], is applied to establish firstly sharp inequalities for the shifted
factorial that will be used to obtain the order starlikeness and convexity. We compare then
the obtained orders of starlikeness and convexity with some important consequences in
the literature as well as the results proposed by all techniques to demonstrate the accuracy
of our approach. Ultimately, a lemma by [16] is used to prove that the modified form of
the function Jκ3,m

κ1,κ2 (z) defined by Iκ3,m
κ1,κ2 (z) = Jλ3,m

κ1,κ2 (z) ∗ z/(1 + z) is in the class of starlike and
convex functions, respectively.

Throughout this paper, let H indicate the family of all functions that are analytic in
U := {z ∈C : |z| < 1}. Denote by A the subfamily of H consisting of functions of the form

f (z) =
∞∑

n=1

Anzn, A1 = 1, z ∈U, (1.1)

and by S the subfamily of A which are univalent in U. If g ∈A is given by

g(z) =
∞∑

n=1

Bnzn, B1 = 1, z ∈U,

then the convolution of the functions f and g is given by

(f ∗ g)(z) :=
∞∑

n=1

AnBnzn, A1B1 = 1, z ∈ U. (1.2)

The above definition of convolution arises from the formula (see [15])

(f ∗ g)
(
r2eiθ ) =

1
2π

∫ 2π

0
f
(
rei(θ–t))g

(
reit)dt (r < 1).

Let us recall now the subclasses of the class of analytic functions which are considered
the cornerstone of the univalent function theory such as the subclasses of starlike and
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convex functions. These classes admit geometrical and analytical characteristics, which
do not pass in the status of those functions that are utilized in the ordinary analysis. The
interested reader is referred for further information to [15, 17, 27], whereas general aspects
are found in [19]. Traditionally, a domain D ⊂C is called starlike with respect to an interior
point z0 if the line segment joining z0 to any other point in D lies entirely in D. In particular,
if z0 = 0, then the domain D is called starlike domain. A function f (z) ∈ S is called starlike
with respect to the origin (or starlike), denoted by S∗, if f (U) is a starlike domain. The well-
known analytical characterization of starlikeness is given by the following theorem.

Theorem A Let f ∈ S . Then f is starlike if and only if

Re

(
zf ′(z)
f (z)

)
> 0, z ∈U.

Further, if the line segment joining any two points of D ⊂ C lies entirely in D, then the
domain is convex. A function f (z) ∈ S is called convex, denoted by K, if f (U) is a convex
domain. The following theorem gives an analytic description of the convex functions.

Theorem B Let f ∈ S . Then f is convex if and only if

1 + Re

(
zf ′′(z)
f ′(z)

)
> 0, z ∈U.

For instance, f (z) = z/(1 – z)2 ∈ S∗ because of

Re

(
zf ′(z)
f (z)

)
= Re

(
1 + z
1 – z

)
> 0,

while f (z) = – log(1 – z) ∈K since

1 + Re

(
zf ′′(z)
f ′(z)

)
= 1 + Re

(
z

1 – z

)
> 0.

It is noteworthy to mention that the classes S∗ and K have a particular interest if more
restrictions are enjoined, it gives us various types of classes of functions. Moreover, thanks
to the positivity of Re(zf ′(z)/f (z)) and 1 + Re(zf ′′(z)/f ′(z)) for S∗ and K, respectively, it al-
lows us to study several families of conformal transformation with other motivating geo-
metric properties. On the other hand, f ∈ A is starlike functions of order α, 0 ≤ α ≤ 1, if
and only if

Re

(
zf ′(z)
f (z)

)
> α for all z ∈U,

and is in the class of convex functions of order α, denoted by K(α), if and only if

1 + Re

(
zf ′′(z)
f ′(z)

)
> α for all z ∈U.

It is well-known that S∗(α) ⊂ S∗(0) = S∗, K(α) ⊂K(0) = K, and K ⊂ S∗ ⊂ S .
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In [14], Oteiza et al. defined the generalized Lommel–Wright function Jκ3,m
λ2,κ1

(z) as

Jκ3,m
κ1,κ2 (z) =

∞∑
n=0

(–1)n

�(nκ3 + κ1 + κ2 + 1)�m(n + κ1 + 1)

(
z
2

)2n+2κ1+κ2

=
(

z
2

)2κ1+κ2

1
�m+1

[
(1, 1)

(κ1 + 1, 1), . . . , (κ1 + 1, 1), (κ1 + κ2 + 1,κ3)

∣∣∣∣ –
z2

4

]
, (1.3)

for κ1,κ2 ∈C, m ∈N := {1, 2, . . . }, and κ3 > 0. Noting that p�q stands the Fox–Wright func-
tion which is defined by

p�q

[
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣z
]

=:p �q

[
(ap, Ap)
(bq, Bq)

∣∣∣∣z
]

=
∞∑

n=0

ψn
zn

n!
, (1.4)

with

ψn =
�(a1 + A1n) . . .�(ap + Apn)
�(b1 + B1n) . . .�(bq + Bqn)

,

for Ai, Bj ∈ R
+ (i = 1, . . . , p, j = 1, . . . , q) and ai, bj ∈ C. It is worthy to note that (1.4) con-

verges absolutely in the entire complex z-plane when 
 :=
∑q

j=1 Bj –
∑p

i=1 Ai > –1, while if

 = –1, it is absolutely convergent for |z| < ρ and |z| = ρ under the restriction Re(σ ) > 1/2,
where

ρ =

( p∏
i=1

A–Ai
i

)( q∏
j=1

B–Bj
j

)
, σ =

q∑
j=1

bj –
p∑

i=1

ai +
p – q

2
.

For more details concerning the Fox–Wright functions, we refer to [20] and the references
therein.

We processed to insert some special cases of the generalized Lommel–Wright function.
The Bessel–Maitland function introduced by Pathak [26] as

Jκ3
κ1,κ2 (z) := Jκ3,1

κ1,κ2 (z) =
∞∑

n=0

(–1)n

�(nκ3 + κ1 + κ2 + 1)�(n + κ1 + 1)

(
z
2

)2n+2κ1+κ2

,

is obtained by taking m = 1 in (1.3) for κ3 > 0 and κ1,κ2 ∈C. Putting κ1 = 1/2 and m = κ3 = 1
in (1.3), we obtain the Struve function defined by

Hκ2 (z) := J1,1
1/2,κ2

(z) =
∞∑

n=0

(–1)n

�(n + κ2 + 3/2)�(n + 3/2)

(
z
2

)κ2+2n

, κ2 ∈ C.

For κ1 = 0 and m = κ3 = 1 in (1.3), we have the Bessel function defined by

Jκ2 (z) := J1,1
0,κ2 (z) =

∞∑
n=0

(–1)n

n!�(n + κ2 + 1)

(
z
2

)κ2+2n

,

where z 	= 0, z,κ2 ∈C, and Reκ2 > –1.
We shall need the following definition.
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Definition 1 The normalization of the combination of generalized Lommel–Wright func-
tion is defined by

J
κ3,m
κ1,κ2 (z) := �m(κ1 + 1)�(κ1 + κ2 + 1)22κ1+κ2 z1–(κ2/2)–κ1J κ3,m

κ1,κ2 (
√

z),

where J κ3,m
κ1,κ2 (z) := (1 – 2κ1 – κ2)Jκ3,m

κ1,κ2 (z) + z(Jκ3,m
κ1,κ2 (z))′ with m ∈ N, κ1 ∈ C \ Z

–, Z– :=
{–1, –2, –3, . . . } and κ2,κ3 ∈ N0 := N∪ {0}. Clearly, Jκ3,m

κ1,κ2 (z) can be written as

J
κ3,m
κ1,κ2 (z) = z +

∞∑
n=1

(–1)n(2n + 1)
4n[(κ1 + 1)n]m(κ1 + κ2 + 1)nκ3

zn+1, (1.5)

where (λ)n stands for the Pochhammer symbol given by

(λ)n :=

⎧⎨
⎩

1, if n = 0,

λ(λ + 1)(λ + 2) . . . (λ + n – 1), if n ∈N.

The next technical lemmas will be helpful to obtain the main results.

Lemma 1 ([18]) For x ∈ (0,∞) and k ∈N, the following inequalities hold:

ln x –
1
x

< ψ(x) < ln x –
1

2x
, (1.6)

(k – 1)!
xk +

k!
2xk+1 < (–1)k+1ψ (k)(x) <

(k – 1)!
xk +

k!
xk+1 . (1.7)

Lemma 2 ([16]) Suppose that (An)n∈N is a sequence of nonnegative real numbers such that
A1 = 1. If nAn – (n + 1)An+1 ≥ 0 and nAn – 2(n + 1)An+1 + (n + 2)An+2 ≥ 0 for all n ∈N. Then
f (z) =

∑∞
n=1 Anzn is starlike in U.

Lemma 3 Suppose that a > 0, κ3 ≥ 1, 4κ2
3 ≥ (κ3 – 1)a and γ ≥ max{γ1,γ2}, where γ1 is the

greatest root of the quadratic equation

–κ3γ
2 – γ κ3(2a + 1) + 5(a + 1)κ2

3 = 0,

whilst γ2 is the greatest root of the equation

(1 – 3κ3)γ 2 + γ (1 – 3κ3)(2a + 1) + (a + 1)
(
a – κ3a + 6κ2

3
)

= 0,

then the following inequality

�(a + nκ3)
�(a + 1)

≥ (a + γ )(n–1)κ3 , (1.8)

holds for all n ≥ 3.

Proof We have to start by defining the functions f (a) and g(a) as follows:

f (a) :=
�(a + nκ3)(a + γ )(1–n)κ3

�(a + 1)
,
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and

g(a) :=
f (a + 1)

f (a)
=

(
a + nκ3

a + 1

)(
a + γ + 1

a + γ

)(1–n)κ3

.

Therefore,

∂

∂a
g(a) =

(
a + nκ3

a + 1

)(
a + γ + 1

a + γ

)(1–n)κ3

× (1 – nκ3)(a + γ )(a + 1 + γ ) – (1 – n)κ3(a + nκ3)(a + 1)
(a + nκ3)(a + 1)(a + γ )(a + 1 + γ )

.

Consider the function χ : [3,∞) →R defined by

χ (n) := (1 – nκ3)(a + γ )(a + 1 + γ ) – (1 – n)κ3(a + nκ3)(a + 1).

We proceed to establish for which values of a, γ , and κ3, the function χ (n) is increasing
on [3,∞). This means that χ (n) ≥ χ (3) for all n ≥ 3. On the other hand, if χ (3) ≥ 0, this
implies to χ (n) ≥ 0, which leads to a → g(a) is increasing for n ≥ 3, κ3 ≥ 1, and γ ≥
max{γ1,γ2}. Now,

χ ′(n) = –κ3(a + γ )(a + 1 + γ ) + κ3(a + nκ3)(a + 1) + (n – 1)κ2
3 (a + 1)

≥ –κ3(a + γ )(a + γ + 1) + κ3(a + 3κ3)(a + 1) + 2κ2
3 (a + 1)

= 5(a + 1)κ2
3 + κ3

[
–(a + γ )(a + 1 + γ ) + a(a + 1)

]

= –κ3γ
2 – γ κ3(2a + 1) + 5(a + 1)κ2

3 .

The last expression is positive if

γ ≥ –(2a + 1) +
√

(2a + 1)2 + 20κ3(a + 1)
2

:= γ1, γ1 ≥ 0.

It is worth mentioning that χ (3) ≥ 0 if

(1 – 3κ3)γ 2 + γ (1 – 3κ3)(2a + 1) + (a + 1)
(
a – κ3a + 6κ2

3
) ≥ 0,

which holds if

γ ≥
–(1 – 3κ3)(2a + 1) –

√
(3κ3 – 1)[24κ2

3 + (8a2 + 8a + 3)κ3 – 1]

2(1 – 3κ3)
:= γ2,

where γ2 ≥ 0 if

(3κ3 – 1)
[
24κ2

3 +
(
8a2 + 8a + 3

)
κ3 – 1

]
> (1 – 3κ3)2(2a + 1)2,

which implies that

18κ3
3 + 18aκ3

3 – 3a2κ2
3 – 9aκ2

3 – 6κ2
3 + 4a2κ3 + 4aκ3 – a – a2
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= 18κ2
3 (a + 1) – 3a2κ3(a + 3) + 4aκ3(a + 1) – a(a + 1) – 6κ2

3

= (a + 1)
[
18κ3

3 – 3a2κ3 + 4aκ3 – a – 6κ2
3
]

> 0.

If κ3 ≥ 1, then the term between the brackets is positive if 4κ2
3 ≥ (κ3 – 1)a. In addition, by

making use of the asymptotic expansion of the ratio of gamma function �(z + α)/�(z + β),
that is,

�(z + α)
�(z + β)

= zα–β

[
1 +

(α – β)(α + β – 1)
z2 + O

(
1
z2

)]
,

we obtain

lim
a→+∞(a + γ )(1–n)κ3

�(a + nκ3)
�(a + 1)

= lim
a→+∞

[
a1–nκ3

�(a + nκ3)
�(a + 1)

][
aκ3–1

(
1 +

γ

a

)(1–n)κ3]

= lim
a→+∞

[
aκ3–1

(
1 +

γ

a

)(1–n)κ3]

=

⎧
⎨
⎩

1, if κ3 = 1,

+∞, if κ3 > 1,

for a > 0, κ3 ≥ 1, 4κ3 ≥ (κ3 – 1)a, and γ ≥ max{γ1,γ2}, where γ1 and γ2 are given above
and lima→∞ g(a) = 1. Bearing in mind that the function g is increasing for all a > 0, κ3 ≥ 1,
4κ3 ≥ (κ3 – 1)a, and γ ≥ max{γ1,γ2}, then g(a) ≤ 1. Moreover, f (a + 1) ≤ f (a), which leads
to (a)nκ3 ≥ a(a + γ )(n–1)κ3 for all a > 0, κ3 ≥ 1, and γ ≥ max{γ1,γ2}. This completes the
proof. �

2 Main results
Our first two theorems of this section contain some interesting and applicable results in-
volving the order of starlikeness and the order of convexity inside U using some technical
manipulations of the gamma and digamma functions which improve slightly the results
given in [33].

Theorem 1 Let κ1,κ2 ≥ 0 such that κ1 + κ2 ≥ 1
2 . Also, assume that κ3, m ∈N and

0 ≤ α ≤ 1 –
3(κ1 + 1)–m�(κ1 + κ2 + 1)e

4�(κ1 + κ2 + κ3 + 1) – 3(e – 1)(κ1 + 1)–m�(κ1 + κ2 + 1)
=: α̃max, (2.1)

then Jκ3,m
κ1,κ2 (z) ∈ S∗(α).

Proof To prove that Jκ3,m
κ1,κ2 (z) ∈ S∗(α) for all z ∈U, it is sufficient to show that

∣∣∣∣
z(Jκ3,m

κ1,κ2 (z))′

J
κ3,m
κ1,κ2 (z)

– 1
∣∣∣∣ < 1 – α,
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for z ∈ U. Using the maximum modulus theorem of an analytic function as well as the
well-known inequality |z1 + z2| ≤ |z1| + |z2|, we get

∣∣∣∣
(
J

κ3,m
κ1,κ2 (z)

)′ –
Jκ3,m

κ1,κ2 (z)
z

∣∣∣∣ =

∣∣∣∣∣
∞∑

n=1

(–1)nn(2n + 1)
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m zn

∣∣∣∣∣

=

∣∣∣∣∣
∞∑

n=1

(–1)n(2n2 + n)
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m einθ

∣∣∣∣∣

<
∞∑

n=1

n(2n + 1)
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m

=
∞∑

n=1

�m(κ1 + 1)�(κ1 + κ2 + 1)�(2n + 2)�(n + 1)
4n�(κ1 + κ2 + nκ3 + 1)�m(κ1 + n + 1)�(2n + 1)�(n)

,

for θ ∈ R and z ∈ U. Using the fact that the gamma function satisfies �(z + 1) = z�(z), we
get

�

(
z +

1
2

)
=

1 · 3 · · · (2n – 1)√
π

,

and so

(2)2n = 4n(1)n

(
3
2

)

n
, n ∈N.

Now,

∣∣∣∣
(
J

κ3,m
κ1,κ2 (z)

)′ –
Jκ3,m

κ1,κ2 (z)
z

∣∣∣∣

<
�m(κ1 + 1)�(κ1 + κ2 + 1)

�(3/2)

×
∞∑

n=1

[�(n + 1)]2�(n + 3/2)
�(κ1 + κ2 + 1 + nκ3)�m(κ1 + n + 1)�(2n + 1)�(n)

. (2.2)

Suppose that

F(n) :=
[�(n + 1)]2�(n + 3/2)

�(κ1 + κ2 + nκ3 + 1)�m(κ1 + n + 1)�(2n + 1)
, n ∈N. (2.3)

Differentiating (2.3) logarithmically with respect to n, we find

F′(n) =
[
2ψ(n + 1) + ψ(n + 3/2) – κ3ψ(κ1 + κ2 + 1 + κ3n)

– mψ(κ1 + n + 1) – 2ψ(2n + 1)
]
F(n)

=
[
2ψ(n + 1) – 2ψ(2n + 1) + ψ(n + 3/2) – κ3ψ(κ1 + κ2 + 1 + κ3n)

– mψ(κ1 + n + 1)
]
F(n), (2.4)
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here, ψ stands for the digamma function defined by

ψ(z) =
∂

∂z
[
log�(z)

]
=

�′(z)
�(z)

.

By using the fact that the digamma function is increasing on (0,∞) and ψ(z) ≥ 0 for all
z ≥ x∗, where x∗ � 1.461632144 . . . is the abscissa of the minimum of the gamma function,
and with the help of (2.4), we deduce that the sequence {F(n)}n≥1 is decreasing. Then we
get

∣∣∣∣
(
J

κ3,m
κ1,κ2 (z)

)′ –
Jκ3,m

κ1,κ2 (z)
z

∣∣∣∣ <
3(κ1 + 1)–m�(κ1 + κ2 + 1)

4�(κ1 + κ2 + κ3 + 1)

∞∑
n=1

1
�(n)

=
3e(κ1 + 1)–m�(κ1 + κ2 + 1)

4�(κ1 + κ2 + κ3 + 1)
.

On the other hand,

∣∣∣∣
Jλ3,m

κ1,κ2 (z)
z

∣∣∣∣ =

∣∣∣∣∣1 +
∞∑

n=1

(–1)n(2n + 1)
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m zn

∣∣∣∣∣

≥ 1 –

∣∣∣∣∣
∞∑

n=1

(–1)n(2n + 1)
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m zn

∣∣∣∣∣

≥ 1 –

∣∣∣∣∣
∞∑

n=1

(–1)n(2n + 1)
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m einθ

∣∣∣∣∣

> 1 –
�m(κ1 + 1)�(κ1 + κ2 + 1)

�(3/2)

×
∞∑

n=1

�(n + 3/2)[�(n + 1)]2

�(κ1 + κ2 + 1 + nκ3)�m(κ1 + n + 1)�(2n + 1)�(n + 1)

≥ 1 –
3(κ1 + 1)–m�(κ1 + κ2 + 1)

4�(κ1 + κ2 + κ3 + 1)

∞∑
n=1

1
�(n + 1)

=
4�(κ1 + κ2 + κ3 + 1) – 3(e – 1)(κ1 + 1)–m�(κ1 + κ2 + 1)

4�(κ1 + κ2 + κ3 + 1)
,

for θ ∈R and z ∈U. Putting everything together, we see that

∣∣∣∣
z(Jκ3,m

κ1,κ2 (z))′

J
κ3,m
κ1,κ2 (z)

– 1
∣∣∣∣ <

3(κ1 + 1)–m�(κ1 + κ2 + 1)e
4�(κ1 + κ2 + κ3 + 1) – 3(e – 1)(κ1 + 1)–m�(κ1 + κ2 + 1)

, z ∈U,

and then we conclude that Jκ3,m
κ1,κ2 (z) ∈ S∗(α). �

Theorem 2 Suppose that κ1 ≥ 0, κ2 ≥ 0,κ3, m ∈N, and

0 ≤ α ≤ 1 –
3(κ1 + 1)–m�(κ1 + κ2 + 1)e

2�(κ1 + κ2 + κ3 + 1) – 3(e – 1)(κ1 + 1)–m�(κ1 + κ2 + 1)
=: α̂max, (2.5)

then Jκ3,m
κ1,κ2 (z) ∈K(α).
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Proof To prove that Jκ3,m
κ1,κ2 (z) ∈K(α) for all z ∈ U, it is sufficient to show that

∣∣∣∣
z(Jκ3,m

κ1,κ2 (z))′′

(Jκ3,m
κ1,κ2 (z))′

– 1
∣∣∣∣ < 1 – α,

for z ∈U. As in Theorem 1, we shall base the proof on the maximum modulus theorem of
an analytic function to get

∣∣z(Jκ3,m
κ1,κ2 (z)

)′′∣∣ =

∣∣∣∣∣
∞∑

n=1

(–1)nn(n + 1)(2n + 1)
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m zn

∣∣∣∣∣

<
∞∑

n=1

n(n + 1)(2n + 1)
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m

=
∞∑

n=1

n(n + 1)(2n + 1)�(κ1 + κ2 + 1)�m(κ1 + 1)
4n�(κ1 + κ2 + nκ3 + 1)�m(κ1 + n + 1)

(2)n(2)2n(1)n

(2)n(2)2n(1)n

=
�(κ1 + κ2 + 1)�m(κ1 + 1)

�(3/2)

×
∞∑

n=1

�(n + 1)�(n + 2)�(n + 3/2)
�(κ1 + κ2 + 1 + nκ3)�m(κ1 + n + 1)�(2n + 1)�(n)

,

for z ∈ U. Using the increasing property of the digamma functions, it is easy to observe
that

G(n) =
�(n + 1)�(n + 2)�(n + 3/2)

�(κ1 + κ2 + 1 + nκ3)�m(κ1 + n + 1)�(2n + 1)
, n ∈N,

is a strictly decreasing function of n. Thus, we get

∣∣z(Jκ3,m
κ1,κ2 (z)

)′′∣∣ <
3(κ1 + 1)–me�(κ1 + κ2 + 1)

2�(κ1 + κ2 + κ3 + 1)
.

Further computations yield

∣∣(Jκ3,m
κ1,κ2 (z)

)′∣∣ ≥ 1 –

∣∣∣∣∣
∞∑

n=1

(–1)n(n + 1)(2n + 1)
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m zn

∣∣∣∣∣

> 1 –
∞∑

n=1

(n + 1)(2n + 1)
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m

= 1 –
�(κ1 + κ2 + 1)�m(κ1 + 1)

�(3/2)

×
∞∑

n=1

�(n + 2)�(n + 3/2)�(n + 1)
�(κ1 + κ2 + 1 + nκ3)�m(κ1 + n + 1)�(2n + 1)�(n + 1)

≥ 1 –
3(κ1 + 2)–m�(κ1 + κ2 + 1)

2�(κ1 + κ2 + κ3 + 1)

∞∑
n=1

1
�(n + 1)

=
2�(κ1 + κ2 + κ3 + 1) – 3(e – 1)(κ1 + 1)–m�(κ1 + κ2 + 1)

2�(κ1 + κ2 + κ3 + 1)
.
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Combining everything together to get

∣∣∣∣
z(Jκ3,m

κ1,κ2 (z))′′

(Jκ3,m
κ1,κ2 (z))′

– 1
∣∣∣∣ <

3(κ1 + 1)–m�(κ1 + κ2 + 1)e
2�(κ1 + κ2 + κ3 + 1) – 3(e – 1)(κ1 + 1)–m�(κ1 + κ2 + 1)

, z ∈ U,

and from the above inequality, we conclude that Jκ3,m
κ1,κ2 (z) ∈K(α). �

Remark 1 It is worth noting that special cases will follow if we set κ1 = 0, κ3 = m = 1, and
κ1 = 1/2, κ3 = m = 1, respectively, in Theorems 1 and 2.

In the following results, that is, Theorems 3 and 4, the starlikeness and convexity with its
order have been evaluated where the leading concept of the proofs comes from Lemma 1.

Theorem 3 Assume that κ1, κ2, κ3 are positive numbers, m ∈N such that

m ln(κ1 + 2) + κ3 ln(κ1 + κ2 + 1 + κ3) –
m

κ1 + 2
–

κ3

κ1 + κ2 + 1 + κ3
≥ 5

3
,

and

0 ≤ α ≤ 1 –
�(κ1 + κ2 + 1)

(κ1 + 1)m�(κ1 + κ2 + 1 + κ3) – �(κ1 + κ2 + 1)
=: δ̃max, (2.6)

then Jκ3,m
κ1,κ2 (z) ∈ S∗(α).

Proof From Theorem 1, we have

∣∣∣∣
(
J

κ3,m
κ1,κ2 (z)

)′ –
Jκ3,m

κ1,κ2 (z)
z

∣∣∣∣ <
�m(κ1 + 1)�(κ1 + κ2 + 1)

4

×
∞∑

n=1

n(2n + 1)
4n–1�m(κ1 + n + 1)�(κ1 + κ2 + 1 + nκ3)

,

for z ∈U. Letting

D1(x) =
x(2x + 1)

�m(κ1 + x + 1)�(κ1 + κ2 + 1 + κ3x)
, x ≥ 1. (2.7)

Hence,

D′
1(x)

D1(x)
=

1
x

+
2

2x + 1
– mψ(κ1 + x + 1) – κ3ψ(κ1 + κ2 + 1 + κ3x) := D2(x)

and

D′
2(x) = –

1
x2 –

4
(2x + 1)2 – m

∂

∂x
ψ(κ1 + x + 1) – κ2

3
∂

∂x
ψ(κ1 + κ2 + 1 + κ3x).

From Lemma 1, we have

D′
2(x) < –

1
x2 –

4
(2x + 1)2 – m

(
1

κ1 + x + 1
+

1
2(κ1 + x + 1)2

)
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– κ2
3

(
1

κ1 + κ2 + 1 + κ3x
+

1
2(κ1 + κ2 + 1 + κ3x)2

)
< 0,

under the given hypotheses, which leads to D2(x) is a strictly decreasing function on [1,∞)
with D2(1) < 0 to conclude that D2(x) < 0 for all x ≥ 1. Consequently, D′

1(x) < 0 under the
given hypotheses, that is, D1(x) is a strictly decreasing function on [1,∞) and

∣∣∣∣
(
J

κ3,m
κ1,κ2 (z)

)′ –
Jκ3,m

κ1,κ2 (z)
z

∣∣∣∣ <
3�m(κ1 + 1)�(κ1 + κ2 + 1)

4�m(κ1 + 2)�(κ1 + κ2 + 1 + κ3)

∞∑
n=1

1
4n–1

=
�(κ1 + κ2 + 1)

(κ1 + 1)m�(κ1 + κ2 + 1 + κ3)
.

Similarly, we can show that

∣∣∣∣
Jκ3,m

κ1,κ2 (z)
z

∣∣∣∣ ≥ 1 –
3�(κ1 + κ2 + 1)

4(κ1 + 1)m�(κ1 + κ2 + κ3 + 1)

∞∑
n=1

1
4n–1

=
(κ1 + 1)m�(κ1 + κ2 + κ3 + 1) – �(κ1 + κ2 + 1)

(κ1 + 1)m�(κ1 + κ2 + 1 + κ3)
,

for z ∈U, which ultimates our proof. �

Using arguments similar to Theorem 3, we get the following result regarding the order
of convexity by using (1.6) and (1.7).

Theorem 4 Assume that κ1, κ2, κ3 are positive numbers, m ∈N such that

m ln(κ1 + 2) + κ3 ln(κ1 + κ2 + 1 + κ3) –
m

κ1 + 2
–

κ3

κ1 + κ2 + 1 + κ3
≥ 13

6
,

and

0 ≤ α ≤ 1 –
2�(κ1 + κ2 + 1)

(κ1 + 1)m�(κ1 + κ2 + 1 + κ3) – 2�(κ1 + κ2 + 1)
=: δ̂max, (2.8)

then Jκ3,m
κ1,κ2 (z) ∈K(α).

In the next two theorems, we are going with other results including the order of star-
likeness and the order of convexity that are evaluated using the sharp inequalities for the
shifted factorial, which improve slightly the results given in [33].

Theorem 5 Suppose that

0 ≤ α ≤ 1 –
R1

R2
=: ζ̃max,

where

R1 = 48(κ1 + 2)m�(κ1 + κ2 + 2)�(κ1 + κ2 + 1 + 2κ3)

× [
(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

]
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+ 40�(κ1 + κ2 + 2)�(κ1 + κ2 + 1 + κ3)
[
(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

]

+ 21(κ1 + 2)m(κ1 + κ2 + 1 + γ )–κ3 (κ1 + 1 + γ )–m
2∏

�=1

�(κ1 + κ2 + 1 + �κ3),

and

R2 = 64(κ1 + κ2 + 1)
2∏

�=1

�(κ1 + κ2 + 1 + �κ3)
2∏

�=1

(κ1 + �)m

× [
(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

]
– 48(κ1 + 2)m�(κ1 + κ2 + 1 + 2κ3)

× �(κ1 + κ2 + 2)
[
(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

]

– 20�(κ1 + κ2 + 2)�(κ1 + κ2 + 1 + κ3)
[
(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

]

– 7(κ1 + 2)m(κ1 + κ2 + 1 + γ )–κ3 (κ1 + 1 + γ )–m
2∏

�=1

�(κ1 + κ2 + 1 + �κ3),

with κ1 > –1, κ2 ≥ 0, κ3 ≥ 1, γ ≥ max{γ1,γ2}, where γ1 and γ2 are given in Lemma 3 and
R2 > 0, then Jκ3,m

κ1,κ2 ∈ S∗(α).

Proof To begin with, we note that if f ∈A satisfies
∑∞

n=2(n –α)|An| ≤ 1 –α, then f ∈ S∗(α)
(see [30, Theorem 1]). Therefore, according to (1.5), it is sufficient to show that

H1 :=
∞∑

n=2

(n – α)
∣∣∣∣

(–1)n–1(2n – 1)
4n–1(κ1 + κ2 + 1)(n–1)κ3 [(κ1 + 1)n–1]m

∣∣∣∣ ≤ 1 – α.

Since κ1 > –1, κ2 ≥ 0, and κ3 ≥ 1, we have

H1 =
∞∑

n=1

(2n + 1)(n + 1 – α)
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m

=
3(1 – α)

4(κ1 + κ2 + 1)κ3 (κ1 + 1)m +
5(3 – α)

16(κ1 + κ2 + 1)2κ3 (κ1 + 1)m(κ1 + 2)m

+
∞∑

n=3

n(2n + 1)
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m

+ (1 – α)
∞∑

n=3

2n + 1
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m .

Using the fact that

n(2n + 1) ≤ (21/64) · 4n, 2n + 1 ≤ (7/64) · 4n, n ≥ 3,

which can be verified using the concept of mathematical induction and

(κ1 + κ2 + 1)(κ1 + κ2 + 1 + γ )(n–1)κ3 ≤ (κ1 + κ2 + 1)nκ3 ,
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for all κ1 > –1, κ2 ≥ 0, κ3 ≥ 1, and γ ≥ max{γ1,γ2} that follows from Lemma 3, we obtain

H1 ≤ 3(1 – α)
4(κ1 + κ2 + 1)κ3 (κ1 + 1)m +

5(3 – α)
16(κ1 + κ2 + 1)2κ3 (κ1 + 1)m(κ1 + 2)m

+
21

64(κ1 + κ2 + 1)(κ1 + 1)m

∞∑
n=3

1
(κ1 + κ2 + 1 + γ )κ3(n–1)(κ1 + 1 + γ )m(n–1)

+
7(1 – α)

64(κ1 + κ2 + 1)(κ1 + 1)m

∞∑
n=3

1
(κ1 + κ2 + 1 + γ )κ3(n–1)(κ1 + 1 + γ )m(n–1)

=
3(1 – α)

4(κ1 + κ2 + 1)κ3 (κ1 + 1)m +
5(3 – α)

16(κ1 + κ2 + 1)2κ3 (κ1 + 1)m(κ1 + 2)m

+
21

64(κ1 + κ2 + 1)(κ1 + 1)m · (κ1 + κ2 + 1 + γ )–κ3 (κ1 + 1 + γ )–m

(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

+
7(1 – α)

64(κ1 + κ2 + 1)(κ1 + 1)m · (κ1 + κ2 + 1 + γ )–κ3 (κ1 + 1 + γ )–m

(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

≤ 1 – α.

Thus, we conclude that Jκ3,m
κ1,κ2 ∈ S∗(α), as required. �

Theorem 6 Suppose that

0 ≤ α ≤ 1 –
T1

T2
=: ζ̂max,

where

T1 = 96(κ1 + 2)m�(κ1 + κ2 + 2)�(κ1 + κ2 + 1 + 2κ3)

×
2∏

�=1

[
�(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

]

+ 120�(κ1 + κ2 + 2)�(κ1 + κ2 + 1 + κ3)
2∏

�=1

[
�(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

]

+ 84(κ1 + 2)m(κ1 + κ2 + 1 + γ )–κ3 (κ1 + 1 + γ )–m
2∏

�=1

�(κ1 + κ2 + 1 + �κ3)

× [
2(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

]
,

and

T2 = 64(κ1 + κ2 + 1)
2∏

�=1

�(κ1 + κ2 + 1 + �κ3)
2∏

�=1

(κ1 + �)m

×
2∏

�=1

[
�(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

]

– 96(κ1 + 2)m�(κ1 + κ2 + 1 + 2κ3)�(κ1 + κ2 + 2)
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×
2∏

�=1

[
�(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

]

– 60�(κ1 + κ2 + 1 + κ3)�(κ1 + κ2 + 2)
2∏

�=1

[
�(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

]

– 21(κ1 + 2)m(κ1 + κ2 + 1 + γ )–κ3 (κ1 + 1 + γ )–m
2∏

�=1

�(κ1 + κ2 + 1 + �κ3)

× [
2(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

]

– 14(κ1 + 2)m(κ1 + κ2 + 1 + γ )–κ3 (κ1 + 1 + γ )–m

× [
(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

] 2∏
�=1

�(κ1 + κ2 + 1 + �κ3),

with κ1 > –1, κ2 ≥ 0, κ3 ≥ 1, γ ≥ max{γ1,γ2}, where γ1 and γ2 are given in Lemma 3 and
T2 > 0, then Jκ3,m

κ1,κ2 ∈K(α).

Proof Using the Alexander duality relation and according to [30, Corollary on p. 110], it
suffices to show that

H2 :=
∞∑

n=2

n(n – α)
∣∣∣∣

(–1)n–1(2n – 1)
4n–1(κ1 + κ2 + 1)(n–1)κ3 [(κ1 + 1)n–1]m

∣∣∣∣ ≤ 1 – α. (2.9)

Since κ1 > –1, κ2 ≥ 0, and κ3 ≥ 1, we have

H2 =
6(2 – α)

4(κ1 + κ2 + 1)κ3 (κ1 + 1)m +
15(3 – α)

16(κ1 + κ2 + 1)2κ3 (κ1 + 1)m(κ1 + 2)m

+
∞∑

n=3

n2(2n + 1)
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m + (2 – α)

∞∑
n=3

n(2n + 1)
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m

+ (1 – α)
∞∑

n=3

(2n + 1)
4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m .

Recalling the fact that

n2(2n + 1) ≤ (63/64) · 4n, n(2n + 1) ≤ (21/64) · 4n,

2n + 1 ≤ (7/8) · 2n, n ≥ 3,

and Lemma 3, it follows that

H2 ≤ 6(2 – α)
4(κ1 + κ2 + 1)κ3 (κ1 + 1)m +

15(3 – α)
16(κ1 + κ2 + 1)2κ3 (κ1 + 1)m(κ1 + 2)m

+
63

64(κ1 + κ2 + 1)(κ1 + 1)m

∞∑
n=3

1
(κ1 + κ2 + 1 + γ )κ3(n–1)(κ1 + 1 + γ )m(n–1)

+
21(2 – α)

64(κ1 + κ2 + 1)(κ1 + 1)m

∞∑
n=3

1
(κ1 + κ2 + 1 + γ )κ3(n–1)(κ1 + 1 + γ )m(n–1)



Zayed and Mehrez Journal of Inequalities and Applications        (2022) 2022:115 Page 16 of 24

+
7(1 – α)

16(κ1 + κ2 + 1)(κ1 + 1)m

∞∑
n=3

1
2n–1(κ1 + κ2 + 1 + γ )κ3(n–1)(κ1 + 1 + γ )m(n–1)

=
6(2 – α)

4(κ1 + κ2 + 1)κ3 (κ1 + 1)m +
15(3 – α)

16(κ1 + κ2 + 1)2κ3 (κ1 + 1)m(κ1 + 2)m

+
63

64(κ1 + κ2 + 1)(κ1 + 1)m · (κ1 + κ2 + 1 + γ )–κ3 (κ1 + 1 + γ )–m

(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

+
21(2 – α)

64(κ1 + κ2 + 1)(κ1 + 1)m · (κ1 + κ2 + 1 + γ )–κ3 (κ1 + 1 + γ )–m

(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

+
7(1 – α)

32(κ1 + κ2 + 1)(κ1 + 1)m · (κ1 + κ2 + 1 + γ )–κ3 (κ1 + 1 + γ )–m

2(κ1 + κ2 + 1 + γ )κ3 (κ1 + 1 + γ )m – 1

≤ 1 – α.

This proves the claim that Jκ3,m
κ1,κ2 ∈K(α). �

Remark 2 1. Theorem 1, Theorem 3, and Theorem 5 assign sufficient conditions for star-
likeness of Jκ3,m

κ1,κ2 . As it appears in Table 1, the first one gives better result than the second
and the third ones for suitable choices of the parameters.

2. Due to Theorem 2, Theorem 4, and Theorem 6, which assign sufficient conditions for
convexity of Jκ3,m

κ1,κ2 , it is important to observe as that Theorem 2 sometimes gives a better
estimation than the others, while occasionally Theorem 4 is the best. See Table 2.

In the remainder of this section, we shall use Lemma 2 to prove Iκ3,m
κ1,κ2 (z) = Jκ3,m

κ1,κ2 (z) ∗
z/(1 + z) is in the class of starlike and convex functions, respectively.

Theorem 7 If κ1 ≥ (
√

13 – 3)/2 � 0.302776 . . . and κ2,κ3, m ∈ N, then Jκ3,m
κ1,κ2 (z) ∗ z/(1 + z)

is starlike in U.

Table 1 Comparison of the order of starlikeness given by Theorems 1, 3 and 5

κ1 κ2 κ3 m α̃max Theorem 1 δ̃max Theorem 3 ζ̃max Theorem 5 with minγ

3 2 1 2 0.97847446275028873123 0.98947368421052631578 0.99208830838480806639
7 3 1 2 0.99709879234283707259 0.998577524893314366999 0.99998335359501052005
4 3 2 2 0.99886657109218533610 0.99944413563090605892 0.99958307190258777911
9 6 3 2 0.99999583595437582265 0.99999795751216812126 0.99999846813358621261
5 5 3 4 0.99999908328632086372 0.99999955034657038088 0.99999966275993086008
12 10 5 3 0.99999999990421235635 0.99999999995301559358 0.99999999996476169518
14 13 8 5 0.99999999999999999717 0.99999999999999999861 0.99999999999999999896

Table 2 Comparison of the order of convexity given by Theorems 2, 4 and 6

κ1 κ2 κ3 m α̂max Theorem 2 δ̂max Theorem 4 ζ̂max Theorem 6 with minγ

3 2 1 3 0.98930995964631139740 0.99476439790575916230 0.99607281772648946631
7 3 1 4 0.99990949804677554452 0.99995560882496559684 0.99996670645961244179
4 3 2 3 0.99954682324769373114 0.99977772838408535230 0.99983329678044753707
9 6 3 2 0.99999167188683056198 0.999995915015992712389 0.99999969362732106008
5 5 3 4 0.99999816657157930414 0.99999910069273638516 0.9999993255195994225
12 10 5 3 0.99999999980842471269 0.99999999990603118715 0.99999999995364882391
14 13 8 5 0.99999999999999999434 0.99999999999999999722 0.99999999999999999792
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Proof From (1.5) and bearing in mind that z/(1 + z) can be expressed as

z
1 + z

= z +
∞∑

n=1

(–1)nzn+1,

we have

J
κ3,m
κ1,κ2 (z) ∗ z

1 + z
=

∞∑
n=1

Anzn, z ∈U, (2.10)

where

An =
2n – 1

4n–1[(κ1 + 1)n–1]m(κ1 + κ2 + 1)(n–1)κ3
for all n ∈N,

Thanks to Lemma 2, we shall prove that nAn ≥ (n + 1)An+1 and nAn – 2(n + 1)An+1 + (n +
2)An+2 ≥ 0 for all n ∈N, where A1 = 1, An > 0 for all n ≥ 2. Bearing in mind that

(
κ1 + κ2 + 1 + (n – 1)κ3

)
(κ1 + κ2 + 1)(n–1)κ3 ≤ (κ1 + κ2 + 1)nκ3 , (2.11)

for κ1 ≥ (
√

13 – 3)/2 and κ2,κ3, m ∈ N, it is easy to observe that

nAn – (n + 1)An+1

=
n(2n – 1)

4n–1(κ1 + κ2 + 1)(n–1)κ3 [(κ1 + 1)n–1]m –
(n + 1)(2n + 1)

4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m

≥ 1
4n(κ1 + κ2 + 1)(n–1)κ3 [(κ1 + 1)n–1]m

×
[

4n(2n – 1) –
(n + 1)(2n + 1)(κ1 + n)–m

κ1 + κ2 + 1 + (n – 1)κ3

]
, (2.12)

that is,

nAn – (n + 1)An+1 ≥ U(n)
4n(κ1 + κ2 + 1)(n–1)κ3 [(κ1 + 1)n]m(κ1 + κ2 + 1 + (n – 1)κ3)

,

where

U(n) := 4n(2n – 1)
(
κ1 + κ2 + 1 + (n – 1)κ3

)
(κ1 + n)m – (n + 1)(2n + 1).

Since κ1 ≥ (
√

13 – 3)/2 and κ2,κ3, m ∈N, we have

U(n) := 4n(2n – 1)
(
κ1 + κ2 + 1 + (n – 1)κ3

)
(κ1 + n)m – (n + 1)(2n + 1)

≥ 4n(2n – 1)
(
κ1 + κ2 + 1 + (n – 1)κ3

)
(κ1 + n) – (n + 1)(2n + 1)

= 8κ3n4 + (8κ1κ3 + 8κ1 + 8κ2 + 8 – 12κ3)n3

+
(
8κ2

1 + 4κ1 + 8κ1κ2 – 12κ1κ3 – 4κ2 + 4κ3 – 6
)
n2

+
(
–4κ2

1 – 4κ1κ2 – 4κ1 + 4κ1κ3 – 3
)
n – 1 = :Ũ(n).
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It is worth mentioning that (n + 1)An+1 ≤ nAn if Ũ(n) ≥ 0 for all n ∈N. Noting that

1 – 4κ2
1 – 8κ1 – 4κ2 – 4κ1κ2 ≤ –1,

which holds for κ1 ≥ (
√

13 – 3)/2 and κ2,κ3, m ∈N, it follows that

Ũ(n) ≥ 8κ3n4 + (8κ1κ3 + 8κ1 + 8κ2 + 8 – 12κ3)n3

+
(
8κ2

1 + 4κ1 + 8κ1κ2 – 12κ1κ3 – 4κ2 + 4κ3 – 6
)
n2

+
(
–4κ2

1 – 4κ1κ2 – 4κ1 + 4κ1κ3 – 3
)
n + 1 – 4κ2

1 – 8κ1 – 4κ2 – 4κ1κ2

= (n – 1)
[
8κ3n3 + (8 + 8κ1 – 4κ3 + 8κ1κ3 + 8κ2)n2

+
(
2 + 12κ1 + 8κ2

1 – 4κ1κ3 + 4κ2 + 8κ1κ2
)
n

– 1 + 8κ1 + 4κ2
1 + 4κ2 + 4κ1κ2

]
.

Furthermore, since κ1 ≥ (
√

13 – 3)/2 and κ2,κ3, m ∈N, we have

–1 + 8κ1 + 4κ2
1 + 4κ2 + 4κ1κ2 ≥ –10 – 20κ1 – 8κ2

1 – 12κ2 – 8κ1κ2 – 4κ3 – 4κ1κ3,

and so

Ũ(n) ≥ (n – 1)
[
8κ3n3 + (8 + 8κ1 – 4κ3 + 8κ3 + 8κ2)n2

+
(
2 + 12κ1 + 8κ2

1 – 4κ1κ3 + 4κ2 + 8κ1κ2
)
n

– 10 – 20κ1 – 8κ2
1 – 12κ2 – 8κ1κ2 – 4κ3 – 4κ1κ3

]

= (n – 1)2[8κ3n2 + (8 + 4κ3 + 8κ1 + 8κ1κ3 + 8κ2)n

+ 10 + 20κ1 + 8κ2
1 + 4κ3 + 4κ1κ3 + 12κ2 + 8κ1κ2

]
.

Continuing in this manner we get

Ũ(n) ≥ (n – 1)3[8κ3n + 8 + 8κ1 + 12κ3 + 8κ1κ3 + 8κ2]

≥ 8κ3(n – 1)3 ≥ 0, κ3, n ∈N.

It remains to show that nAn + (n + 2)An+2 ≥ 2(n + 1)An+1 for all n ∈ N. Since An+2 > 0 for
all n ∈N, we easily get

nAn – 2(n + 1)An+1 + (n + 2)An+2

> nAn – 2(n + 1)An+1

=
1

4n–1

[
n(2n – 1)

(κ1 + κ2 + 1)(n–1)κ3 [(κ1 + 1)n–1]m –
2(n + 1)(2n + 1)

4(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m

]
.

Using (2.11), we have

nAn – 2(n + 1)An+1 + (n + 2)An+2
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≥ 1
4n–1(κ1 + κ2 + 1)(n–1)κ3 [(κ1 + 1)n–1]m

×
[

4n(2n – 1) –
2(n + 1)(2n + 1)(κ1 + n)–m

κ1 + κ2 + 1 + (n – 1)κ3

]
, (2.13)

and so,

nAn – 2(n + 1)An+1 + (n + 2)An+2

≥ V(n)
4n(κ1 + κ2 + 1)(n–1)κ3 [(κ1 + 1)n]m(κ1 + κ2 + 1 + (n – 1)κ3)

,

where

V(n) := 4n(2n – 1)
(
κ1 + κ2 + 1 + (n – 1)κ3

)
(κ1 + n)m – 2(n + 1)(2n + 1).

Since κ1 ≥ (
√

13 – 3)/2 and κ2,κ3, m ∈N, we have

V(n) ≥ 4n(2n – 1)(κ1 + n)
(
κ1 + κ2 + 1 + (n – 1)κ3

)
– 2(n + 1)(2n + 1)

= 8κ3n4 + (8κ1κ3 + 8κ1 + 8κ2 + 8 – 12κ3)n3

+
(
8κ2

1 + 4κ1 + 8κ1κ2 – 12κ1κ3 – 4κ2 + 4κ3 – 8
)
n2

+
(
–4κ2

1 – 4κ1κ2 – 4κ1 + 4κ1κ3 – 6
)
n – 2 =: Ṽ(n).

Again, since κ1 ≥ (
√

13 – 3)/2 and κ2,κ3, m ∈N, we have

Ṽ(n) ≥ (n – 1)
[
8κ3n3 + (8 + 8κ1 – 4κ3 + 8κ1κ3 + 8κ2)n2

+
(
12κ1 + 8κ2

1 – 4κ1κ3 + 4κ2 + 8κ1κ2
)
n

– 6 + 8κ1 + 4κ2
1 + 4κ2 + 4κ1κ2

]

≥ (n – 1)2[8κ3n2 + (8 + 8κ1 + 4κ3 + 8κ1κ3 + 8κ2)n + 8 + 20κ1 + 8κ2
1

+ 4κ3 + 4κ1κ3 + 12κ2 + 8κ1κ2
]

≥ (n – 1)3[8κ3n + 8 + 8κ1 + 12κ3 + 8κ1κ3 + 8κ2]

≥ 8κ3(n – 1)4 ≥ 0 for κ3, n ∈N,

which ends the proof. �

Theorem 8 Suppose that κ1 ≥ 0 and κ2,κ3, m ∈N. Then Jκ3,m
κ1,κ2 (z)∗ z/(1 + z) is starlike in U.

Proof Under the hypotheses κ1 ≥ 0 and κ2,κ3, m ∈ N, Lemma 2 and Theorem 7, we pro-
ceed to showing that (n + 1)An+1 ≤ nAn and nAn + (n + 2)An+2 ≥ 2(n + 1)An+1 for all n ∈N.
At first, for n = 1, U(1) = 4(κ1 + 1)m(κ1 + κ2 + 1) – 6 ≥ 4(κ1 + 1)(κ1 + 2) – 6 > 0 for κ1 ≥ 0,
whilst for n ≥ 2, we find

(n + 1)(2n + 1)
4

< n(2n – 1), n ≥ 2. (2.14)
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Further, it can be shown that

�(n) =
�(κ1 + κ2 + 1)�m(κ1 + 1)

�(κ1 + κ2 + 1 + (n – 1)κ3)�m(κ1 + n)
,

is a decreasing function with respect to n as follows:

�′(n)
�(n)

= –mψ(κ1 + n) – κ3ψ
(
κ1 + κ2 + 1 + (n – 1)κ3

)
.

Since κ1 ≥ 0 and κ2,κ3, m ∈ N, we get ψ(κ1 + n) ≥ 0 and ψ(κ1 + κ2 + 1 + (n – 1)κ3) ≥ 0,
these together with (2.12) lead to nAn ≥ (n + 1)An+1, n ≥ 2. A similar argument may be
used to prove that nAn + (n + 2)An+2 ≥ 2(n + 1)An+1. For n = 1, 2, it is easy to prove nAn +
(n + 2)An+2 ≥ 2(n + 1)An+1, whereas for n ≥ 3, we have

(n + 1)(2n + 1)
2

< n(2n – 1), n ≥ 3, (2.15)

and since V(n) is a decreasing function with respect to n, n ≥ 3, this would lead to nAn +
(n + 2)An+2 ≥ 2(n + 1)An+1 for n ∈N, which asserts our claim. �

Remark 3 It is important to note that Theorem 8 extends the range of validity for param-
eter κ1 to κ1 ≥ 0.

Theorem 9 If κ1,κ2,κ3, m ∈N, then, Jκ3,m
κ1,κ2 (z) ∗ z/(1 + z) is convex in U.

Proof Using the classical Alexander theorem between the classes of starlike and convex
functions, which asserts that f (z) ∈K if and only if zf ′(z) ∈ S∗, it is sufficient to prove that
z(Jκ3,m

κ1,κ2 (z))′ ∗ z/(1 + z) is starlike in U. We then have

z
(
J

κ3,m
κ1,κ2 (z)

)′ ∗ z
1 + z

=
∞∑

n=1

Bnzn, z ∈U,

where

Bn =
n(2n – 1)

4n–1[(κ1 + 1)n–1]m(κ1 + κ2 + 1)(n–1)κ3
for all n ≥ 1.

To obtain the required result, we will use Lemma 2. It suffices to show that

(n + 1)Bn+1 ≤ nBn and nBn + (n + 2)Bn+2 ≥ 2(n + 1)Bn+1 for all n ∈ N.

We shall show that (n + 1)Bn+1 ≤ nBn for all n ∈N as follows:

nBn – (n + 1)Bn+1

=
n2(2n – 1)

4n–1(κ1 + κ2 + 1)(n–1)κ3 [(κ1 + 1)n–1]m –
(n + 1)2(2n + 1)

4n(κ1 + κ2 + 1)nκ3 [(κ1 + 1)n]m

≥ W(n)
4n(κ1 + κ2 + 1)(n–1)κ3 [(κ1 + 1)n]m(κ1 + κ2 + 1 + (n – 1)κ3)

,
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where

W(n) := 4n2(2n – 1)
(
κ1 + κ2 + 1 + (n – 1)κ3

)
(κ1 + n)m – (n + 1)2(2n + 1).

Since κ1,κ2,κ3, m ∈N, we have

W(n) ≥ 4n2(2n – 1)(κ1 + n)
(
κ1 + κ2 + 1 + (n – 1)κ3

)
– (n + 1)2(2n + 1)

= 8κ3n5 + (8 + 8κ1 – 12κ3 + 8κ1κ3 + 8κ2)n4

+
(
–6 + 4κ1 + 8κ2

1 + 4κ3 – 12κ1κ3 – 4κ2 + 8κ1κ2
)
n3

+
(
–5 – 4κ1 – 4κ2

1 + 4κ1κ3 – 4κ1κ2
)
n2 – 4n – 1 = W̃(n).

Obviously, nBn ≥ (n + 1)Bn+1 if W̃(n) ≥ 0 for all n ∈ N. Bearing in mind that κ1,κ3,κ2 ∈N,
it follows that

W̃(n) ≥ 8κ3n5 + (8 + 8κ1 – 12κ3 + 8κ1κ3 + 8κ2)n4

+
(
–6 + 4κ1 + 8κ2

1 + 4κ3 – 12κ1κ3 – 4κ2 + 8κ1κ2
)
n3

+
(
–5 – 4κ1 + 8κ2

1 + 4κ3 – 12κ1κ3 – 4κ2 + 8κ1κ2
)
n2

– 4n + 7 – 8κ1 – 4κ2
1 – 4κ2 – 4κ1κ2

≥ (n – 1)
[
8κ3n4 + (8 + 8κ1 – 4κ3 + 8κ1κ3 + 8κ2)n3

+
(
2 + 12κ1 + 8κ2

1 – 4κ1κ3 + 4κ2 + 8κ1κ2
)
n2

+
(
–3 + 8κ1 + 4κ2

1 + 4κ2 + 4κ1κ2
)
n – 7 + 8κ1 + 4κ2

1 + 4κ2 + 4κ1κ2
]

≥ (n – 1)2[8κ3n3 + (8 + 8κ1 + 4κ3 + 8κ1κ3 + 8κ2)n2

+
(
2 + 12κ1 + 8κ2

1 – 4κ1κ3 + 4κ2 + 8κ1κ2
)
n

+ 7 + 28κ1 + 12κ2
1 + 4κ3 + 4κ1κ3 + 16κ2 + 12κ1κ2

]

≥ (n – 1)3[8κ3n2 + (8 + 8κ1 + 12κ3 + 8κ1κ3 + 8κ2)n

+ 18 + 28κ1 + 8κ2
1 + 16κ3 + 12κ1κ3 + 20κ2 + 8κ1κ2

]

≥ (n – 1)4[8κ3n + 8 + 8κ1 + 20κ3 + 8κ1κ3 + 8κ2]

≥ 8κ3(n – 1)5 ≥ 0.

On the other hand, we prove that nBn + (n + 2)Bn+2 ≥ 2(n + 1)Bn+1 for all n ∈N. We have

nBn – 2(n + 1)Bn+1 + (n + 2)Bn+2

≥ Y(n)
4n[(κ1 + 1)n]m(κ1 + κ2 + 1)(n–1)κ3 (κ1 + κ2 + 1 + (n – 1)κ3)

,

where

Y(n) := 4n2(2n – 1)(κ1 + n)m(
κ1 + κ2 + 1 + (n – 1)κ3

)
– 2(n + 1)2(2n + 1)

≥ 4n2(2n – 1)(κ1 + n)
(
κ1 + κ2 + 1 + (n – 1)λ3

)
– 2(n + 1)2(2n + 1)
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= 8κ3n5 + (8 + 8κ1 – 12κ3 + 8κ1κ3 + 8κ2)n4 +
(
–8 + 4κ1

+ 8κ2
1 + 4κ3 – 12κ1κ3 – 4κ2 + 8κ1κ2

)
n3

+
(
–10 – 4κ1 – 4κ2

1 + 4κ1κ3 – 4κ1κ2
)
n2 – 8n – 2 = Ỹ(n).

For κ1,κ3,κ2 ∈N, we find

Ỹ(n) ≥ (n – 1)
[
8κ3n4 + (8 + 8κ1 – 4κ3 + 8κ1κ3 + 8κ2)n3

+
(
12κ1 + 8κ2

1 – 4κ1κ3 + 4κ2 + 8κ1κ2
)
n2

+
(
–10 + 8κ1 + 4κ2

1 + 4κ2 + 4κ1κ2
)
n – 18 + 8κ1 + 4κ2

1 + 4κ2 + 4κ1κ2
]

≥ (n – 1)2[8κ3n3 + (8 + 8κ1 + 4κ3 + 8κ1κ3 + 8κ2)n2

+
(
8 + 20κ1 + 8κ2

1 + 4κ3 + 4κ1κ3 + 12κ2 + 8κ1κ2
)
n

– 2 + 28κ1 + 12κ2
1 + 4κ3 + 4κ1κ3 + 16κ2 + 12κ1κ2

]

≥ (n – 1)3[8κ3n2 + (8 + 8κ1 + 12κ3 + 8κ1κ3 + 8κ2)n

+ 16 + 28κ1 + 8κ2
1 + 16κ3 + 12κ1κ3 + 20κ2 + 8κ1κ2

]

≥ (n – 1)4[8κ3n + 8 + 8κ1 + 20κ3 + 8κ1κ3 + 8κ2]

≥ 8κ3(n – 1)5 ≥ 0,

which completes the proof. We can propose another proof for the same result as outlined
below. For n = 1, W(1) = 4(κ1 + 1)m(κ1 + κ2 + 1) – 12 ≥ 4(κ1 + 1)(κ1 + 2) – 12 > 0 for κ1 ≥ 1,
whilst for n ≥ 2, we find

(n + 1)2(2n + 1)
4

< n2(2n – 1), n ≥ 2,

and since W(n) is a decreasing function with respect to n, n ≥ 2, we get nBn – (n + 1)Bn+1 ≥
0, n ∈ N. Secondly, it is easy to prove that nBn + (n + 2)Bn+2 ≥ 2(n + 1)Bn+1 for n = 1, 2,
whereas for n ≥ 3, we have

(n + 1)2(2n + 1)
2

< n2(2n – 1), n ≥ 3,

and since Y(n) is a decreasing function with respect to n, n ≥ 3, it follows that nBn + (n +
2)Bn+2 ≥ 2(n + 1)Bn+1 for n ∈N, and according to Lemma 2, we end the proof of the theo-
rem. �

3 Conclusions
In the current paper, we have reported conditions for Jκ3,m

κ1,κ2 (z) to be starlike and convex
of order α, 0 ≤ α < 1, inside the open unit disk using some technical manipulations of the
gamma and digamma functions as well as an inequality for the digamma function that
has been proved in [18]. In addition, a method presented by Lorch [22] and further devel-
oped by Laforgia [21] has been applied to establish firstly sharp inequalities for the shifted
factorial that would be used to obtain the order starlikeness and convexity. We then have



Zayed and Mehrez Journal of Inequalities and Applications        (2022) 2022:115 Page 23 of 24

compared the obtained orders of starlikeness and convexity with some important conse-
quences in the literature as well as the results proposed by all techniques to demonstrate
the accuracy of our approach. We conclude the paper showing that the modified form of
the function Jκ3,m

κ1,κ2 (z) is in the class of starlike and convex functions. Further investigations
on this topic are now underway and will be reported in forthcoming papers.
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