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1 Introduction and preliminaries
Purpose of this paper is to formulate some of the norm matrix inequalities at the con-
cept of von Neumann algebras. The inequalities include forms of the arithmetic-geometric
mean, the Cauchy-Schwarz, the Heinz mean inequality, the Young inequality, and some in-
equalities related to the Bourin question for τ -measurable operators. Among many other
studies, we focus more on the papers [4, 12] devoted to extensions to unitary invariant
norms on spaces of matrices. We also improve and present a new method for obtaining
the inequalities mentioned in [10, 11]. A number of new inequalities based on [20] are
presented. We obtain the case of equality for most of these inequalities by the method
used in [9, 19].

In this section, we set up some notations and certain terminologies and give their basic
properties. Let H be an infinite dimensional Hilbert space, and let L(H) be the algebra of
all bounded operators in H. In what follows, N is a von Neumann algebra on H, that is a
∗-subalgebra of L(H) closed in the weak operator topology. The identity in N is denoted
by 1. A von Neumann algebra is said to be σ -finite if it admits at most countably many
orthogonal projections. We are only interested in semi-finite von Neumann algebras, that
is, those which admit a faithful normal semi-finite trace τ . We fix a couple (M, τ ) for semi-
finite von Neumann algebra M with semi-finite trace τ . The cone of positive operators,
the identity, and the projection lattice inM are denoted by M+, 1 andP(M), respectively.

An (unbounded) operator x with domain D(x) ⊆ H is densely defined if D(x) is dense
in H. The operator x is called closed whenever its graph is a closed subspace of H × H.
If x : D(x) → H is a closed densely defined linear operator, then it can be shown that the
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operator x∗x is self-adjoint and positive. The modulus |x| of x is defined by |x| = (x∗x) 1
2 . It

is well known that for every self-adjoint operator a, there exists a unique spectral measure
ea : B(R) → B(H) such that

a =
∫
R

λdea(λ)

as a spectral decomposition of a.
Now, we are ready to introduce the non-commutative Lp-spaces. A linear operator x :

D(x) → H is called affiliated with M, if ux = xu for all unitary u ∈ M′. Note that if x ∈
B(H), then x is affiliated with M if and only if x ∈M.

A closed and densely defined linear operator x : D(x) →H is said to be τ -measurable if
x affiliated with M, and there exists λ ≥ 0 such that τ (e|x|(λ,∞)) < ∞. In fact, there exists
a sequence {pn}∞n=1 of orthogonal projections in M such that pn(H) ⊆D(x) for all n, pn ↑ 1
and τ (1 – pn) ↓ 0 as n → ∞. The collection of all τ -measurable operators is denoted by
L0(M). The set L0(M) is a complex ∗-algebra with unit element 1. The von Neumann
algebra M is a ∗-subalgebra of L0(M).

The measure topology on L0(M) is defined by fundamental systems of neighborhoods
around zero is given by

v(ε, δ) =
{

x ∈ L0(M) : ∃p ∈P(M) s.t. ‖px‖ < ε and τ (1 – p) < δ
}

,

where ε and δ run over all strictly positive numbers. It is known [8] that M is dense
in L0(M). In fact, if x = u|x| ∈ L0(M) and |x| =

∫ ∞
0 λde|x|(λ), then the sequences

{u ∫ n
0 λde|x|(λ)}∞n=0 in M tends to x as n → ∞ in the measure topology.

Let x be a τ -measurable operator and t > 0. The tth singular value of x (or generalized
s-numbers) is the number denoted by μt(x) and for each t ∈ R

+
0 (set of nonnegative real

numbers) is defined by

μt(x) = inf
{‖xe‖ : e ∈P(M), τ (1 – e) ≤ t

}
.

The notation of generalized s-numbers for τ -measurable operators was carefully devel-
oped by T. Fack and H. Kosaki [8]. For every x ∈ M, μt(x) is nonincreasing and right
continuous. As well as we have

μt
(|x|) = μt

(
x∗) = μt(x).

In the following theorem, we collect some other known [7, 8] facts on s-numbers that
we will use later.

Theorem 1.1 Let x, y be τ -measurable operators and a, b ∈M. Then for t ∈ R
+
0 and α ∈C,

(1) μt(αx) = |α|μt(x).
(2) μt(xr) = μt(x)r , for any positive real number r and positive τ -measurable operator x.
(3) μt(xy) = μt((xy)∗) = μt(y∗x∗) and besides that μt(xy) = μt(yx) for hermitian

operators x and y.
(4) μt(|xy∗|) = μt(|x|.|y|).
(5) μt(axb) ≤ ‖a‖μt(x)‖b‖, if x ≤ y, then μt(x) ≤ μt(y).
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(6) |μt(x) – μt(y)| ≤ ‖x – y‖.
(7) μs+t(x + y) ≤ μs(x) + μt(y), for s ≥ 0.
(8) if p ∈P(M), then μt(xp) = 0 for each t ≥ τ (p).
(9) τ (|x|) =

∫ ∞
0 μt(x) dt.

(10) let f be a bounded continuous increasing function on [0,∞) with f (0) = 0. If
x ∈M+, then

μt
(
f (x)

)
= f

(
μt(x)

)
,

and

τ
(
f (x)

)
=

∫ τ (1)

0
f
(
μt(x)

)
dt. (1)

(11) let f be continuous increasing function on [0,∞) such that f (et) is convex, then

∫ s

0
f
(
μt(xy)

) ≤
∫ s

0
f
(
μt(x)μt(y)

)
dt, for all s > 0.

(12)
∫ s

0 f (μt(x + y)) dt ≤ ∫ s
0 f (μt(x) + μt(y)) dt for any convex continuous increasing

function f on R
+.

(13)
∫ s

0 μt(xy)r dt ≤ ∫ s
0 μt(x)rμt(y)r dt, for all s ∈R

+
0 and positive τ -measurable operator

x, y.
(14) for positive real numbers r, p, q such that 1

r = 1
p + 1

q and x, y be positive
τ -measurable operators, we have

1
r

∫ s

0
μt(xy)r dt ≤ 1

p

∫ s

0
μt(x)p dt +

1
q

∫ s

0
μt(y)q dt.

The next result was stated in [8, Proposition 3.2].

Proposition 1.2 For τ -measurable operator x, the following conditions are equivalent:
1 τ (px(s,∞)) < ∞ for all s > 0,
2 limt→∞ μt(x) = 0,
3 there exists a sequence of bounded operators xn ∈ L1(M) such that xn → x in the

measure topology.

With any of these three characterizations, we say that x is τ -compact operator. These
operators form a complete bilateral ideal in L0(M) that we will denote by K(L0(M)). It is
known that for every positive operator x ∈K(L0(M)),

σ (x) =
{
μt(x) : t > 0

}
.

Note that a τ -compact operator is not necessarily bounded.
For 0 < p < ∞, Lp(M, τ ) is defined as the set of all τ -measurable operators x such that

‖x‖p = τ
(|x|p) 1

p < ∞. (2)
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Moreover, we put L∞(M, τ ) = M and denote by ‖ · ‖∞ the usual operator norm [2, 5,
8, 21]. For simplicity from now on Lp(M, τ ) will denoted by Lp(M). In this paper, we
establish an analogue for majorization type of the Young and Heinz inequalities in the
setting of operators affiliated to semi-finite von Neumann algebras. By using these results,
we generalize the ‖ ·‖p type of those inequalities for τ - measurable operators in Theorems
2.25 and 3.3.

2 Young and Cauchy-Schwarz inequalities
The Young inequality is a well-known inequality, valid for p > 1 and 1

p + 1
q = 1 is usually

stated as

αβ ≤ 1
p
αp +

1
q
βq, (3)

for any positive real numbers α and β , equality holds if and only if αp = βq. Several gener-
alisations of the Young inequality where α and β are replaced by Hilbert space operators
or by singular values, norms, or traces of operators are known. For more references and
further discussion on the subject of the Young inequality for matrices and operators, we
refer the reader to [1, 6, 9, 20]. In particular, we remark that it was the fundamental paper
by T. Ando [1], which initiated the study of the Young inequality for the singular values of
n × n matrices. The present paper adds to these results by formulating new Young-type
norm inequalities in Lp(M). Farenick and Manjegani [9] proved the case of equality in the
Young inequality for operators in a semi-finite von Neumann algebra.

Proposition 2.1 ([9]) Let x, y be operators in M.

μt
(∣∣xy∗∣∣) ≤ μt

(
1
p
|x|p +

1
q
|y|q

)
, for all t > 0. (4)

Moreover, if x, y ∈ L1(M) and bounded, then equality holds if and only if

|x|p = |y|q.

In the above proposition, x and y are bounded operators playing important role in the
proof of the equality case in (4). In [19, Theorem 3.3], the authors extended (4) to sin-
gular values of τ -measurable operators. Since τ -measurable operators are not necessarily
bounded with finite trace, the same proof for the case of equality in last proposition does
not work. Still, we do not know for operators in Lp(M): Does μt(|xy∗|) = μt( 1

p |x|p + 1
q |y|q)

for all t > 0 imply that |x|p = |y|q?
Let 1 ≤ p < ∞, an operator x ∈M is said to be locally integrable if there exists δ > 0 such

that
∫ δ

0
μt(x)p dt < ∞.

The set containing all these operators is denoted by L
p
loc(M). Note that, in particular, all

bounded operators a ∈M are of this class. Moreover,

∫ δ

0
μt(x)p dt ≥ μδ(x)p–1

∫ δ

0
μt(x) dt
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implies that Lp
loc(M) ⊂ L1

loc(M) for each p ≥ 1. In [19], Larotonda proved the following
theorem that is answer to the above question for τ -compact operators.

Theorem 2.2 ([19]) Let a, b ∈K(L0(M))+ with ab ∈ L2
loc(M). If

μt
(|ab|) = μt

(
1
p

ap +
1
q

bq
)

for all t > 0,

then ap = bq. If p = q = 2, it suffices to assume that ab ∈ L1
loc(M).

According to part (4) of Theorem 1.1, we have the following corollary.

Corollary 2.3 Let x, y ∈K(L0(M)) with xy ∈ L2
loc(M). If

μt
(∣∣xy∗∣∣) = μt

(
1
p
|x|p +

1
q
|y|q

)
for all t > 0,

then |x|p = |y|q.

This powerful version of the Young inequality for singular values is important in that all
results on τ -measurable operators, such as norms inequalities and majorization, can be
deduced from it. So, it makes sense to find more general cases of this inequality. However,
in considering the young inequality, it is not known whether the above theorem has a
formulation in which it is true that

μt
(|azb|) ≤ μt

(
1
p
|az|p +

1
q
|bz|q

)
,

when a, b are positive τ -measurable operators, and z ∈ L0(M). However, this topic ex-
ceeds the scope of this paper.

As a result of [19, Theorem 3.3], for every x, y ∈ L1(M), we have

∥∥xy∗∥∥
1 ≤

∥∥∥∥1
p
|x|p +

1
q
|y|q

∥∥∥∥
1
≤ 1

p
∥∥|x|p∥∥1 +

1
q
∥∥|y|q∥∥1. (5)

If x and y are bounded operators or xy ∈ L2
loc(M), then equality holds if and only if |x|p =

|y|q using Proposition 2.1 or Theorem 2.2. More general, using similar argument in [20,
Corollary 2.5] and part (4) in Theorem 1.1, we have Hölder and Young inequalities within
the ‖ · ‖1 in L1(M).

Corollary 2.4 If x, y ∈ L1(M), then for all positive real numbers p, q, and r with 1
p + 1

q = 1
r ,

∥∥xy∗∥∥r
1 ≤ (∥∥|x|p∥∥1

) r
p
(∥∥|y|q∥∥1

) r
q ≤ r

p
∥∥|x|p∥∥1 +

r
q
∥∥|y|q∥∥1.

Moreover, if x and y are bounded operators or xy ∈ L2
loc(M), then equality holds if and only

if |x|p = |y|q.

Theorem 2.5 (Cases of Equality in Tracial Hölder and Young Inequalities) Assume that a,
b are positive bounded operators in Lp(M) and p > 1. The following statements are equiv-
alent.



Maleki Khouzani and Manjegani Journal of Inequalities and Applications        (2022) 2022:114 Page 6 of 20

1 ‖ab‖1 = ‖ap‖1/p
1 ‖bq‖1/q

1 ;
2 ‖|ab|‖1 = ‖ap‖1/p

1 ‖bq‖1/q
1 ;

3 ‖ab‖1 = 1
p‖ap‖1 + 1

q‖bq‖1;
4 ‖|ab|‖1 = 1

p‖ap‖1 + 1
q‖bq‖1;

5 bq = ap.

Proof Using similar method used in the proof of [9, Theorem 3.6]. �

In the rest of this section, first, we demonstrate an extension of refinement of the Young
inequality for τ -measurable operators [16, 17]. Kittaneh and Manasrah gave a refinement
of the Young inequality as follows in [17]:

For m = 1, 2, . . . ,

(
aνb1–ν

)m +
(
min{ν, 1 – ν})m(√

am –
√

bm
)2 ≤ (

νa + (1 – ν)b
)m, (6)

where a, b are positive real numbers, and 0 ≤ ν ≤ 1.
We generalize (6) for positive τ -measurable operators in the following theorem.

Theorem 2.6 Let a, b be positive operators in L1(M). Then for m = 1, 2, . . . ,

∥∥aνb1–ν
∥∥m

1 + min{ν, 1 – ν}m(‖a‖ m
2

1 – ‖b‖ m
2

1
)2 ≤ ∥∥νa + (1 – ν)b

∥∥m
1 . (7)

Proof By Corollary 2.4, we have

∥∥aνb1–ν
∥∥

1 ≤ ‖a‖ν
1.‖b‖1–ν

1 .

Thus by (6),

(∥∥aνb1–ν
∥∥

1

)m +
(
min{ν, 1 – ν})m(‖a‖ m

2
1 – ‖b‖ m

2
1

)2

≤ (‖a‖ν
1‖b‖1–ν

1
)m +

(
min{ν, 1 – ν})m(‖a‖ m

2
1 – ‖b‖ m

2
1

)2

≤ (
ν‖a‖1 + (1 – ν)‖b‖1

)m. �

Remark 2.7 A result similar to Theorem 2.6 has been proved in [22, Theorem 3.8].

The following result is another extension of refinement of the Young inequality for τ -
measurable operators. Let us first recall the inequality introduced by Xing-ka in [15].

Lemma 2.8 ([15, Lemma 1.1]) Suppose that a and b are non-negative real numbers.
1. if 0 ≤ ν ≤ 1

2 , then

[
(νa)νb1–ν

]2 + ν2(a – b)2 ≤ ν2a2 + (1 – ν)2b2. (8)

2. if 1
2 ≤ ν ≤ 1, then

[
aν

(
(1 – ν)b

)1–ν]2 + (1 – ν)2(a – b)2 ≤ ν2a2 + (1 – ν)2b2. (9)
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Lemma 2.9 (Cases of Equality in (8) and (9)) Equality holds in (8) if and only if b = νa,
and equality holds in (9) if and only if a = (1 – ν)b.

Proof As we see in the proof of Lemma 2.8,

ν2a2 + (1 – ν)2b2 – ν2(a – b)2 = b
[
2ν(νa) + (1 – 2ν)b

] ≥ b(νa)2νb1–2ν =
[
(νa)νb1–ν

]2.

Thus, equality holds in (8) if and only if

b
[
2ν(νa) + (1 – 2ν)b

]
= b(νa)2νb1–2ν .

This relationship exists if and only if b = νa. Using the similar method, we can prove the
case of equality in (9). �

Theorem 2.10 Let a, b ∈ L2(M) be positive operator.
1. If 0 ≤ ν ≤ 1

2 , then

τ
([

(νa)νb1–ν
]2) + ν2(√τ

(
a2

)
–

√
τ
(
b2

))2 ≤ τ
(
ν2a2 + (1 – ν)2b2), (10)

2. If 1
2 ≤ ν ≤ 1, then

τ
({

aν
[
(1 – ν)b

]1–ν}2) + (1 – ν)2(√τ
(
a2

)
–

√
τ
(
b2

))2

≤ τ
(
ν2a2 + (1 – ν)2b2). (11)

Moreover, if a and b are bounded operators or ab ∈ L2
loc(M), then equality holds in (10) if

and only if b = νa, and equality holds in (11) if and only if a = (1 – ν)b.

Proof According to Lemma 2.8, we have

[(
νμt(a)

)ν
μt(b)1–ν

]2 + ν2(μt(a) – μt(b)
)2 ≤ ν2μt(a)2 + (1 – ν)2μt(b)2, ∀t > 0.

Therefore,

τ
(
ν2a2 + (1 – ν)2b2) = ν2τ

(
a2) + (1 – ν)2τ

(
b2)

=
∫ ∞

0

[
ν2μt

(
a2) + (1 – ν)2μt

(
b2)]dt

≥
∫ ∞

0

[(
νμt(a)

)ν
μt(b)1–ν

]2 dt

+ ν2
∫ ∞

0

[
μt(a)2 + μt(b)2 – 2μt(a)μt(b)

]
dt

=
∫ ∞

0

[(
νμt(a)

)2ν
μt(b)2(1–ν)]dt

+ ν2
[
τ
(
a2) + τ

(
b2) – 2

∫ s

0
μt(a)μt(b) dt

]

= I.
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Now, the combination of Theorem 1.1 part (11) and the Hölder inequality gives us

I ≥
∫ ∞

0
μt

(
(νa)2νb2(1–ν))dt

+ ν2
[
τ
(
a2) + τ

(
b2) – 2

(∫ s

0
μt

(
a2)dt

) 1
2
(∫ s

0
μt

(
b2)dt

) 1
2
]

= τ
([

(νa)νb(1–ν)]2) + ν2[τ(
a2) + τ

(
b2) – 2τ

(
a2) 1

2 τ
(
b2) 1

2
]

= τ
([

(νa)νb(1–ν)]2) + ν2[√τ
(
a2

)
–

√
τ
(
b2

)]2.

Thus,

τ
([

(νa)νb1–ν
]2) + ν2(√τ

(
a2

)
–

√
τ
(
b2

))2 ≤ τ
(
ν2a2 + (1 – ν)2b2).

Now, if 1
2 ≤ ν ≤ 1, using the similar argument, we have the second inequality. The case of

equality follows by the similar argument used in the proof of [9, Theorem 3.4]. �

Corollary 2.11 Let a, b be positive τ -measurable operators. If 0 ≤ ν ≤ 1
2 , then

∥∥(νa)νb1–ν
∥∥2

2 + ν2(‖a‖2 – ‖b‖2
)2 ≤ ν2‖a‖2

2 + (1 – ν)2‖b‖2
2,

and if 1
2 ≤ ν ≤ 1, then

∥∥aν
[
(1 – ν)b

]1–ν∥∥2
2 + (1 – ν)2(‖a‖2 – ‖b‖2

)2 ≤ ν2‖a‖2
2 + (1 – ν)2‖b‖2

2.

The next theorems give a converse of the Young inequality and its refinement for τ -
measurable operators.

Theorem 2.12 ([20, Corollary 3.7]) Let a, b be positive invertible operators in M. Then
for ν > 1,

∥∥νa + (1 – ν)b
∥∥

1 ≤ ∥∥aνb1–ν
∥∥

1. (12)

Moreover, if a and b bounded operators in L1(M) or ab ∈ L2
loc(M), then equality holds if

and only if a = b.

Theorem 2.13 ([20, Theorem 3.20]) Let a, b be positive invertible operator in M and
ν > 1. Then

∥∥νa + (1 – ν)b
∥∥

1 + min{1,ν – 1}
(√‖a‖1 –

√‖b‖1

)2

≤ ∥∥aνb1–ν
∥∥

1 ≤ ∥∥νa + (1 – ν)b
∥∥

1 + max{1,ν – 1}
(√‖a‖1 –

√∥∥a‖1

)2
.

Moreover, if a and b bounded operators in L1(M), then equality holds if and only if μt(a) =
μt(b) for all t > 0.



Maleki Khouzani and Manjegani Journal of Inequalities and Applications        (2022) 2022:114 Page 9 of 20

Concerning all results discussed so far, we can prove the following theorems for τ -
measurable operators.

Theorem 2.14 Let a, b ∈ L1(M) be positive invertible operators. Then for ν > 1,

∥∥νa + (1 – ν)b
∥∥

1 ≤ ∥∥aνb1–ν
∥∥

1. (13)

Moreover, if a and b are bounded operators or ab ∈ L2
loc(M), then equality holds if and

only if a = b.

Theorem 2.15 Let a, b ∈ L1(M) be positive invertible operators. Then for ν > 1,

∥∥νa + (1 – ν)b
∥∥

1 + min{1,ν – 1}
(√‖a‖1 –

√‖b‖1

)2

≤ ∥∥aνb1–ν
∥∥

1 ≤ ∥∥νa + (1 – ν)b
∥∥

1 + max{1,ν – 1}
(√‖a‖1 –

√‖a‖1

)2
.

Moreover, if a and b are bounded operators or ab ∈ L2
loc(M), then equality holds if and

only if μt(a) = μt(b) for all t > 0.

Hu and Xue [14] obtained another improvement of reverses of the scalar Young type
inequalities for non-negative real numbers a and b in the following form.

If 0 ≤ ν ≤ 1
2 , then

ν2a2 + (1 – ν)2b2 + r0a
(√

(1 – ν)b –
√

a
)2 ≤ (1 – ν)2(a – b)2 + a2ν

[
(1 – ν)b

]2, (14)

where r0 = min{2ν, 1 – 2ν}.
If 1

2 ≤ ν ≤ 1, then

ν2a2 + (1 – ν)2b2 + r0b(
√

b –
√

νa)2 ≤ ν2(a – b)2 + (νa)2νb2–2ν , (15)

where r0 = min{2ν – 1, 2 – 2ν}.
Let a, b be positive τ -measurable operators. Then, we have the same inequalities for

singular values if we replace the positive real numbers a and b in the above equation with
μt(a) and μt(b), respectively. We are interested in proving some versions of those inequali-
ties and the case of equality for trace and norm of τ -measurable operators, but it is unclear
for us.

In the following, we use the method of Bhatia and Davis [4] to extend some inequalities
for τ -measurable operators. Zhou, Wang, and Wu established the Schwarz inequality for
τ -measurable operators [24]. Using the similar argument in the proof of [24, Theorem 1],
we prove the following theorem that is an important key feature in the next results.

Theorem 2.16 Let x, y are bounded τ -measurable operators such that xy is self-adjoint.
Then for every s > 0,

∫ s

0
μt(xy) dt ≤

∫ s

0
μt(yx) dt.
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Proof This theorem is a special case of [23, Lemma 3.1] when put p = 1. Since xy is a
self-adjoint τ -measurable operator, for every positive integer n and t > 0, part (2) of The-
orem 1.1 implies that

μt(xy)2n = μt
(|xy|)2n = μt

(|xy|2)n.

Let f be an increasing function on [0,∞) with f (0) = 0 and t → f (et) is convex. Then,

∫ s

0
f
(
μt

(
(xy)2n))dt =

∫ s

0
f
(
μt

((
(xy)∗(xy)

)n))dt

≤
∫ s

0
f
(
μt(yx)2n–1‖x‖ · ‖y‖)dt, [Theorem 1.1(11)]

particularly if f (t) = t
1

2n–1 , then

∫ s

0
μt(xy)

2n
2n–1 dt ≤

∫ s

0
μt(yx)

(‖x‖ · ‖y‖) 1
2n–1 dt =

(‖x‖ · ‖y‖) 1
2n–1

∫ s

0
μt(yx) dt.

Taking the limn→∞ inf of both sides, by the Fatou lemma, we get

∫ s

0
μt(xy) dt =

∫ s

0
lim infμt(xy)

2n
2n–1 dt

≤ lim inf
∫ s

0
μt(xy)

2n
2n–1 dt

≤ lim inf
∫ s

0
μt(yx)

(‖x‖ · ‖y‖) 1
2n–1 dt

= lim inf
(‖x‖ · ‖y‖) 1

2n–1

∫ s

0
μt(yx) dt

=
∫ s

0
μt(yx) dt,

which proves the result. �

Corollary 2.17 Let x, y are bounded τ -measurable operators such that xy is self-adjoint.
Then, for every r > 0,

∥∥|xy|r∥∥p ≤ ∥∥|yx|r∥∥p, for every p > 0.

Proof By taking f (t) = pr
2n–1 in the proof of Theorem 2.16. �

Corollary 2.18 ([24]) Let x, y, z be bounded τ -measurable operators and r > 0. Then

∥∥∣∣x∗zy
∣∣r∥∥2

1 ≤ ∥∥∣∣xx∗z
∣∣r∥∥

1 · ∥∥∣∣zyy∗∣∣r∥∥
1. (16)

Corollary 2.19 ([24]) Let a, b, z are bounded τ -measurable operators such that a and b
are positive. Then for 0 ≤ ν ≤ 1,

∥∥aνzb1–ν
∥∥

1 ≤ ‖az‖ν
1‖zb‖1–ν

1 .
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In the following, we are going to present some new versions of majorization and norm
type Young’s inequality.

Let a, b be positive τ -measureable operators. We say that a is submajorized (weakly ma-
jorized) by b in symbol a ≺w b [13], if

∫ s
0 μt(a) dt ≤ ∫ s

0 μt(b) dt for all s > 0. Moreover, a is
said to be majorized by b and is indicated by a ≺ b, if a ≺w y and

∫ ∞
0 μt(a) dt =

∫ ∞
0 μt(b) dt.

Proposition 2.20 ([18]) Let f be a continuous increasing function on R
+ such that f (0) = 0

and t −→ f (et) is convex, then for positive operators a and b in L0(M) and for s ∈R
+
0 ,

∫ s

0
f
(
μt

(|ab|r))dt ≤
∫ s

0
f
(
μt

(
arbr))dt.

Theorem 2.21 Let a, b, z are bounded τ -measurable operators such that a and b are pos-
itive. Then for p > 0,

∣∣a 1
2 zb

1
2
∣∣p ≺w

1
2
(∣∣z∗a

∣∣p +
∣∣bz∗∣∣p). (17)

Proof Suppose that s ∈R
+
0 , we have for all t > 0,

∫ s

0
μt

(∣∣a 1
2 zb

1
2
∣∣p)dt =

∫ s

0
μt

((
a

1
2 zb

1
2
)∗(a

1
2 zb

1
2
)) p

2 dt [Theorem 1.1(2)]

=
∫ s

0
μt

(
b

1
2 z∗a

1
2 a

1
2 zb

1
2
) p

2 dt

≤
∫ s

0
μt

(
bz∗az

) p
2 dt [Theorem 2.16]

=
∫ s

0
μt

(
bz∗(z∗a

)∗) p
2 dt

=
∫ s

0
μt

(∣∣bz∗∣∣ · ∣∣z∗a
∣∣) p

2 dt [Theorem 1.1(4)]

≤
∫ s

0
μt

(∣∣bz∗∣∣ p
2 · ∣∣z∗a

∣∣ p
2
)

dt [Proposition 2.20]

≤ 1
2

∫ s

0
μt

(∣∣bz∗∣∣p +
∣∣z∗a

∣∣p)dt, [Proposition 2.1]

which proves the result. �

Corollary 2.22 Let a, b be positive bounded operators in Lp(M), and z be a bounded op-
erator in L0(M). Then

∥∥(
a

1
2 zb

1
2
)p∥∥

1 ≤ 1
2
(∥∥∣∣z∗a

∣∣p +
∣∣bz∗∣∣p∥∥

1

)
, (18)

and

∥∥a
1
2 zb

1
2
∥∥p

p ≤ 1
2
(∥∥|z∗a|∥∥p

p +
∥∥|bz∗|∥∥p

p

)
. (19)

Moreover, the equality holds if |bz∗| = |z∗a|.
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Proof From the argument in the proof of the above theorem, for all s ∈ R
+
0 and t > 0, we

have
∫ s

0
μt

(∣∣a 1
2 zb

1
2
∣∣p)dt ≤

∫ s

0
μt

(
bz∗az

) p
2 dt.

Setting f (t) = t
p
2 in Proposition 2.20 implies

∫ s

0
μt

(∣∣a 1
2 zb

1
2
∣∣p)dt ≤

∫ s

0
μt

(∣∣bz∗∣∣ p
2 · ∣∣z∗a

∣∣ p
2
)

dt

≤ 1
2

∫ s

0
μt

(∣∣bz∗∣∣p +
∣∣z∗a

∣∣p)dt,

≤ 1
2

(∫ s

0
μt

(∣∣bz∗∣∣)p dt +
∫ s

0
μt

(∣∣z∗a
∣∣)p dt

)

=
1
2

(∫ s

0
μt

(|zb|)p dt +
∫ s

0
μt

(|az|)p dt
)

by [19, Theorem 3.3] and parts (2) and (12) of Theorem 1.1. Letting s → ∞, then we obtain
the first and second inequalities.

If the equality holds, then from the above argument, we have

∫ ∞

0
μt

(∣∣bz∗∣∣ p
2 · ∣∣z∗a

∣∣ p
2
)

dt =
∫ ∞

0

1
2
μt

(∣∣bz∗∣∣p +
∣∣z∗a

∣∣p)dt. (20)

By the Young inequality for singular values,

μt
(∣∣bz∗∣∣ p

2 · ∣∣z∗a
∣∣ p

2
) ≤ 1

2
μt

(∣∣bz∗∣∣p +
∣∣z∗a

∣∣p), (21)

for every t > 0. Therefore, (20) shows, when coupled with (21), that

μt
(∣∣bz∗∣∣ p

2 · ∣∣z∗a
∣∣ p

2
)

=
1
2
μt

(∣∣bz∗∣∣p +
∣∣z∗a

∣∣p),

for almost all t > 0. However, for x ∈ L0(M) as the nonincreasing function μt(x) are right
continuous, μt(|bz∗| p

2 · |z∗a| p
2 ) = 1

2μt(|bz∗|p + |z∗a|p) for all t > 0 which implies |bz∗| = |z∗a|
by Corollary 2.3. �

Corollary 2.23 Let a, b be positive bounded operators in Lp(M), and z be bounded oper-
ator in L0(M). Then, for p > 0,

∣∣a 1
2 zb

1
2
∣∣p ≺ 1

2
(∣∣z∗a

∣∣p +
∣∣bz∗∣∣p), (22)

if |z∗a| = |bz∗|.

Theorem 2.24 Let a, b be positive bounded operators in Lp(M), and z be a bounded op-
erator in L0(M). Then, for p > 0,

∥∥a
1
2 zb

1
2
∥∥

p ≤ ‖az‖ 1
2
p ‖zb‖ 1

2
p ≤ 1

2
(‖az‖p + ‖zb‖p

)
. (23)



Maleki Khouzani and Manjegani Journal of Inequalities and Applications        (2022) 2022:114 Page 13 of 20

Proof Suppose that s ∈R
+
0 , we have for all t > 0

∫ s

0
μt

(∣∣a 1
2 zb

1
2
∣∣p)dt =

∫ s

0
μt

((
a

1
2 zb

1
2
)∗(a

1
2 zb

1
2
)) p

2 dt [Theorem 1.1(2)]

=
∫ s

0
μt

(
b

1
2 z∗a

1
2 a

1
2 zb

1
2
) p

2 dt

=
∫ s

0
μt

(
bz∗az

) p
2 dt [Theorem 2.16]

=
∫ s

0
μt

(
bz∗(z∗a

)∗) p
2 dt

=
∫ s

0
μt

(∣∣bz∗∣∣ · ∣∣z∗a
∣∣) p

2 dt [Theorem 1.1(4)]

≤
∫ s

0
μt

(∣∣bz∗∣∣ p
2 · ∣∣z∗a

∣∣ p
2
)

dt [Proposition 2.20]

≤
∫ s

0
μt

(∣∣bz∗∣∣ p
2
) · μt

(∣∣z∗a
∣∣ p

2
)

dt [Theorem 1.1(13)]

=
∫ s

0
μt

(|zb|) p
2 · μt

(|az|) p
2 dt

≤
(∫ s

0
μt

(|zb|p)dt
) 1

2 ·
(∫ s

0
μt

(|az|p)dt
) 1

2
.

Letting s → ∞, we obtain

∥∥a
1
2 zb

1
2
∥∥

p ≤ ‖zb‖ 1
2
p .‖az‖ 1

2
p ≤ 1

2
(‖az‖p + ‖zb‖p

)
. �

Theorem 2.25 Let a, b be positive bounded operators in Lp(M), and z be a bounded op-
erator in L0(M). Then, for 0 ≤ ν ≤ 1,

∥∥aνzb1–ν
∥∥

p ≤ ‖az‖ν
p · ‖zb‖1–ν

p ≤ ν‖az‖p + (1 – ν)‖zb‖p. (24)

Moreover, ‖aνzb1–ν‖p = ν‖az‖p + (1 – ν)‖zb‖p if ‖az‖p = ‖zb‖p.

Proof The first part is [22, Lemma 2.1], and the second part of inequality is obtained from
the classical Young inequality. Since some partial proof are needed for the case of equality,
we write the proof with our notations. The inequality is trivial statement for ν = 0, 1. We
will use induction, for all indices ν = k

2n , k = 0, 1, . . . , 2n. The general case then followed
by continuity. Theorem 2.24 shows the result for ν = 1

2 . Suppose that inequality (24) is
valid for all dyadic rational numbers with denominator k

2n–1 . Let ν = 2k+1
2n be any dyadic

rational. Then ν = η + ω, where ω = 1
2n and η = 2k

2n . Two such rational numbers are η and
λ = η + 2ω = ν + ω. Let s ∈R

+
0 , then for all t > 0, we have

∫ s

0
μt

(∣∣aνzb1–ν
∣∣)p dt =

∫ s

0
μt

(∣∣aη+ωzb1–λ+ω
∣∣p)dt

=
∫ s

0
μt

(∣∣aω
(
aηzb1–λ

)
bω

∣∣p)dt

=
∫ s

0
μt

(∣∣aω
(
aηzb1–λ

)
bω

∣∣2) p
2 dt
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=
∫ s

0
μt

((
bωb1–λz∗aηaω

)(
aωaηzb1–λbω

)) p
2 dt

=
∫ s

0
μt

((
aωaωaηzb1–λ

)(
bωbωb1–λz∗aη

)) p
2 dt [Theorem 2.16]

=
∫ s

0
μt

((
aλzb1–λ

)(
b1–ηz∗aη

)) p
2 dt

=
∫ s

0
μt

((
aλzb1–λ

)(
aηzb1–η

)∗) p
2 dt

≤
∫ s

0
μt

(∣∣aλzb1–λ
∣∣ p

2
∣∣aηzb1–η

∣∣ p
2
)

dt, [Proposition 2.20]

where it has been obtained using (16) and replacing λ = η + 2ω. Now, using induction
hypothesis and the Hölder inequality implies

∫ s

0
μt

(∣∣aνzb1–ν
∣∣)p dt ≤

(∫ s

0
μt

(∣∣aλzb1–λ
∣∣p)dt

) 1
2

×
(∫ s

0
μt

(∣∣aηzb1–η
∣∣p)dt

) 1
2

dt

≤
(∫ s

0
μt

(|az|p)dt
) λ

2
(∫ ∞

0
μt

(|zb|p)dt
) 1–λ

2

×
(∫ s

0
μt

(|az|p)dt
) η

2
(∫ s

0
μt

(|zb|p)dt
) 1–η

2

=
(∫ s

0
μt

(|az|p)dt
)ν(∫ s

0
μt

(|zb|p)dt
)1–ν

.

The general case then followed by continuity, and the proof is complete. s → ∞ implies
the first part of inequality in (24). If the equality holds, then the above argument gives us
case of equality in the Hölder inequality, which implies ‖az‖p = ‖zb‖p. �

Corollary 2.26 Let a, b be non-negative bounded operators in Lp(M), and z be a bounded
operator in Lp(M). Then, for 0 ≤ ν ≤ 1, we have

∥∥aνzbν
∥∥

p ≤ ‖z‖1–ν
p ‖azb‖ν

p.

Proof It suffices to prove this when a is strictly positive (invertible); the general case fol-
lows from this by continuity. Using (24), we obtain

∥∥aνzbν
∥∥

p =
∥∥(

a–1)1–νazb1–(1–ν)∥∥
p ≤ ‖z‖1–ν

p ‖azb‖ν
p. �

Here are some other types of the Young inequality. Note that these inequalities can also
be expressed for the generalized s-numbers.

Theorem 2.27 Let x, y be operators in L0(M). Then for p, q, r ∈R
+ that 1

p + 1
q = 1

r ,

1
r
∣∣xy∗∣∣r ≺w

1
p
|x|p +

1
q
|y|q. (25)
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Moreover, if x, y ∈ L1(M) are bounded operators or xy ∈ L2
loc(M), then

1
r
∣∣xy∗∣∣r ≺ 1

p
|x|p +

1
q
|y|q, (26)

if and only if |x|p = |y|q.

Proof For all s ∈R
+
0 and t > 0, we have

∫ s

0
μt

(∣∣xy∗∣∣r)dt =
∫ s

0
μt

(∣∣xy∗∣∣2) r
2 dt

=
∫ s

0
μt

(
yx∗xy∗) r

2 dt

=
∫ s

0
μt

(|x|2|y|2) r
2 dt [24, Theorem 1]

≤
∫ s

0
μt

(|x|r|y|r)dt [Proposition 2.20]

≤
∫ s

0
μt

(
r
p
|x|p +

r
q
|y|q

)
dt, [Proposition 2.1]

which proves (25). If x, y in L1(M), then (26) holds if

τ
(∣∣xy∗∣∣r) = τ

(
r
p
|x|p +

r
q
|y|q

)
.

As we see in the proof of Corollary 2.22, this equality holds if and only if

μt
(|x|r|y|r) = μt

(
r
p
|x|p +

r
q
|y|q

)
,

which implies the result by applying Corollary 2.3. �

Theorem 2.28 Let a, b be positive bounded operators, and z be a bounded operator in
L0(M). Then for p, q, r ∈R

+ that 1
p + 1

q = 1,

|azb|r ≺w
1
p
∣∣b2z∗∣∣ pr

2 +
1
q
∣∣z∗a2∣∣ qr

2 (27)

Moreover, |azb|r ≺ 1
p |b2z∗| pr

2 + 1
q |z∗a2| qr

2 if

∣∣zb2∣∣p =
∣∣a2z

∣∣q.

Proof For all s ∈R
+
0 , in accordance with the previous proof process, we have

∫ s

0
μt

(|azb|r)dt =
∫ s

0
μt

(
(azb)∗(azb)

) r
2 dt

=
∫ s

0
μt

(
bz∗aazb

) r
2 dt
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=
∫ s

0
μt

(
bbz∗aaz

) r
2 dt [Theorem 2.16]

=
∫ s

0
μt

(∣∣b2z∗∣∣ · ∣∣z∗a2∣∣) r
2 dt [Theorem 1.1(4)]

≤
∫ s

0
μt

(∣∣b2z∗∣∣ r
2 · ∣∣z∗a2∣∣ r

2
)

dt [Proposition 2.20]

≤
∫ s

0
μt

(
1
p
∣∣b2z∗∣∣ pr

2 +
1
q
∣∣z∗a2∣∣ qr

2

)
dt.

The similar argument used in the proof of Theorem 2.27 implies the majorization
case. �

Corollary 2.29 Let a, b be positive bounded operators in L1(M), and z be a bounded op-
erator in L0(M). Then for p, q, r ∈R

+ that 1
p + 1

q = 1,
1 ‖(azb)r‖1 ≤ ‖ 1

p |z∗a2| pr
2 + 1

q |b2z∗| qr
2 ‖1.

2 ‖(azb)r‖2
1 ≤ ‖(a2z∗)r‖1‖(z∗b2)r‖1 ≤ 1

p‖(a2z∗)r‖p
1 + 1

q ‖(z∗b2)r‖q
1 .

3 ‖(azb)r‖1 ≤ ‖(a2z∗) r
2 ‖p‖(z∗b2) r

2 ‖q ≤ 1
p‖(a2z∗) r

2 ‖p
p + 1

q ‖(z∗b2) r
2 ‖q

q .
Moreover, the equality holds if |a2z∗|p = |z∗b2|q.

Theorem 2.30 Let a, b be positive bounded operators, and z be a bounded operator in
L0(M). Then for p, q, r ∈R

+ that 1
p + 1

q = 1
r ,

1
r
∣∣az2b

∣∣r ≺w
1
p
∣∣bz∗∣∣p +

1
q
|az|q. (28)

Moreover, 1
r |az2b|r ≺ 1

p |bz∗|p + 1
q |az|q if

∣∣bz∗∣∣p = |az|q.

Proof For all s ∈R
+
0 and t > 0, we have

∫ s

0
μt

(∣∣az2b
∣∣r)dt =

∫ s

0
μt

((
az2b

)∗(az2b
)) r

2 dt

=
∫ s

0
μt

(
b
(
z2)∗aaz2b

) r
2 dt

=
∫ s

0
μt

(
zbbz∗z∗aaz

) r
2 dt [Theorem 2.16]

=
∫ s

0
μt

(∣∣bz∗∣∣2 · |az|2) r
2 dt [Theorem 1.1(4)]

≤
∫ s

0
μt

(∣∣bz∗∣∣r · |az|r)dt [Proposition 2.20]

≤
∫ s

0
μt

(
r
p
∣∣bz∗∣∣p +

r
q
|az|q

)
dt,

which implies the result. The similar argument in the proof of Theorem 2.27 implies the
majorization case. �
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Corollary 2.31 Let a, b be positive bounded τ -measurable operators, and z be a bounded
operator in L0(M). Then for p, q, r ∈R

+ that 1
p + 1

q = 1
r ,

1 1
r ‖(az2b)r‖1 ≤ ‖ 1

p |bz∗|p + 1
q |az|q‖1.

2 ‖(az2b)r‖2
1 ≤ ‖(zb)r‖1‖(az)r‖1 ≤ 1

p‖(zb)r‖p
1 + 1

q‖(az)r‖q
1 .

3 ‖(az2b)r‖r
r ≤ ‖zb‖r

p‖az‖r
q ≤ r

p‖zb‖p
p + r

q‖az‖q
q.

Moreover, equality holds if |az|q = |zb|p.

3 Heinz mean
The purpose of this section is to prove the Heinz means inequality for τ -measurable op-
erators and generalizations of that results. Heinz means, introduced in [3], are means that
interpolate in a certain way between the arithmetic and geometric mean. For every posi-
tive real numbers a, b and 0 ≤ ν ≤ 1, the Heinz mean is defined as

Hν(a, b) =
aνb1–ν + a1–νbν

2
. (29)

The function Hν is symmetric about the point ν = 1
2 . It is easy to see that

H 1
2

(a, b) =
√

ab ≤ Hν(a, b) ≤ a + b
2

= H1(a, b). (30)

Let A, B, X ∈ Mn(C) such that A and B are positive. It was shown in [4, 12] that

∥∥∣∣AνXB1–ν + A1–νXBν
∣∣∥∥ ≤ ∥∥∣∣AX + XB

∣∣∥∥,

and

∥∥∣∣AνXB1–ν + BνX∗A1–ν
∣∣∥∥ ≤ ∥∥|AX|∥∥ +

∥∥|XB|∥∥,

for ν ∈ [0, 1] and for every invariant norm. Now, we present the Heinz mean inequalities
for τ -measurable operators.

Theorem 3.1 Let a, b be positive operators in L1(M) and let 0 ≤ ν ≤ 1, then

2
∣∣a 1

2 b
1
2
∣∣ ≺w

∣∣a ν
2 b

1–ν
2

∣∣2 +
∣∣a 1–ν

2 b
ν
2
∣∣2, (31)

and

2
∥∥a

1
2 b

1
2
∥∥

1 ≤ ∥∥aνb1–ν + a1–νbν
∥∥

1 ≤ ‖a + b‖1. (32)

Moreover, if a and b are bounded or ab ∈ L2
loc(M), then equality holds in (32), and, there-

fore, we have majorization relation (≺) in (31) if and only if a = b.

Proof Using the same method used in lemma 3.1 of [20], we get for every s ∈R
+
0

∫ s

0
μt

∣∣a 1
2 b

1
2
∣∣dt =

∫ s

0
μt

(
a

1
2 b

1
2
)

dt

≤
∫ s

0
μt

(∣∣a ν
2 b

1–ν
2

∣∣ · ∣∣a 1–ν
2 b

ν
2
∣∣)dt [20, Lemma 3.1]
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≤
∫ s

0
μt

(
1
2
∣∣a ν

2 b
1–ν

2
∣∣2 +

1
2
∣∣a 1–ν

2 b
ν
2
∣∣2

)
dt, [Prop. 2.1]

which proves (31). According to the above argument, we have

∥∥a
1
2 b

1
2
∥∥ =

∫ ∞

0
μt

(
a

1
2 b

1
2
)

dt

=
1
2

∫ ∞

0
μt

(
b

1–ν
2 a

ν
2 a

ν
2 b

1–ν
2 + b

ν
2 a

1–ν
2 a

1–ν
2 b

ν
2
)

dt

≤ 1
2

∫ ∞

0

(
μt

(
b

1–ν
2 a

ν
2 a

ν
2 b

1–ν
2

)
+ μ

(
b

ν
2 a

1–ν
2 a

1–ν
2 b

ν
2
))

dt

[By part (6) of Theorem 1.1]

≤ 1
2

∫ ∞

0

(
μt

(
aνb1–ν

)
+ μ

(
a1–νbν

))
dt [Theorem 2.16]

≤ 1
2

∫ ∞

0

(
μt

(
νa + (1 – ν)b

)
+ μ

(
νb + (1 – ν)a

))
dt [Prop. 2.1]

≤ 1
2

∫ ∞

0

(
μt(a) + μ(b)

)
dt. [By part (6) of Theorem 1.1]

Thus, (32) is proved. The case of equality will be derived by the same method applied in
[20, Theorem 3.3]. �

The following lemma provides another version of inequality (32) when ν > 1.

Lemma 3.2 ([20]) Let a, b be positive invertible operators in L1(M). Then for ν > 1,

∥∥a
1
2 b

1
2
∥∥

1 ≤ 1
2
‖a + b‖1 ≤ 1

2
∥∥aνb1–ν + a1–νbν

∥∥
1. (33)

Moreover, if a and b are bounded or ab ∈ L2
loc(M), then equality holds in each part if and

only if a = b.

In the following, we present another general form of the Heinz mean inequality. Note
that Han and Shao [11], proved that if x, y be τ -measurable operators and 0 ≤ ν ≤ 1, then

μt
(
xνy1–ν + x1–νyν

) ≤ μt(x + y).

So by definition of ‖.‖p, for a, b be positive τ -measurable operators in Lp(M), we have

∥∥aνb1–ν + a1–νbν
∥∥

p ≤ ‖a + b‖p.

Using Theorem 2.25, the following inequalities can also be obtained.

Theorem 3.3 Let a, b be positive bounded operators in Lp(M) and z ∈ L0(M) bounded.
Then for 0 ≤ ν ≤ 1,

∥∥aνzb1–ν + bνz∗a1–ν
∥∥

p ≤ ‖az‖p + ‖zb‖p. (34)

If a and b are bounded operators, then equality holds if ‖az‖p = ‖zb‖p.
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Proof By the Minkowski inequality and Theorem 2.25, we have

∥∥aνzb1–ν + bνz∗a1–ν
∥∥

p ≤ ∥∥aνzb1–ν
∥∥

p +
∥∥bνz∗a1–ν

∥∥
p

≤ ‖az‖ν
p‖zb‖1–ν

p +
∥∥bz∗∥∥ν

p

∥∥z∗a
∥∥1–ν

p

= ‖az‖ν
p‖zb‖1–ν

p + ‖zb‖ν
p‖az‖1–ν

p(
since

∥∥x∗∥∥ = ‖x‖ for every x ∈ L0(M)
)

≤ ‖az‖p + ‖zb‖p.

If equality holds in (34), then we have

∥∥aνzb1–ν
∥∥

p = ‖az‖ν
p‖zb‖1–ν

p = ν‖az‖p + (1 – ν)‖zb‖p

and

∥∥bνz∗a1–ν
∥∥

p =
∥∥bz∗∥∥ν

p‖za‖1–ν
p = ν

∥∥bz∗∥∥
p + (1 – ν)‖az‖p.

Theorem 2.25 now shows that ‖az‖p = ‖zb‖p. �

Corollary 3.4 Let a, b be positive operators in Lp(M). Then for 0 ≤ ν ≤ 1,

∥∥aνb1–ν + bνa1–ν
∥∥

p ≤ ‖a‖p + ‖b‖p.

If a and b are bounded operators or ab ∈ L2
loc(M), then equality holds if a = b.

Corollary 3.5 Let a, b be positive bounded operators in L1(M), z ∈ L0(M) bounded and
0 ≤ ν ≤ 1. Then

∥∥aνzb1–ν + bνza1–ν
∥∥

1 ≤ ‖a + b‖1‖z‖.

Proof We have

∥∥aνzb1–ν + bνza1–ν
∥∥

1 ≤ ‖az‖1 + ‖zb‖1

≤ ‖a‖1‖z‖ + ‖b‖1‖z‖
=

(‖a‖1 + ‖b‖1
)‖z‖

= ‖a + b‖1‖z‖. �

It is not clear to us as to whether or not the following inequality for singular values of
τ -measurable operators is true

μt
(
aνzb1–ν + bνza1–ν

) ≤ μt(az + zb), ∀t > 0.

Acknowledgements
This work was supported by the Department of Mathematical Sciences at Isfahan University of Technology, Iran.



Maleki Khouzani and Manjegani Journal of Inequalities and Applications        (2022) 2022:114 Page 20 of 20

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The main idea of this paper was proposed by corresponding author SMM, and ZM prepared the manuscripts initially and
preformed all the steps and proofs in this research. All authors read and approved the final manuscripts.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 23 September 2021 Accepted: 8 August 2022

References
1. Ando, T.: Matrix Young inequalities. Oper. Theory, Adv. Appl. 75, 33–38 (1988)
2. Bannett, C., Sharpley, R.C.: Interpolation of Operators. Pure and Applied Mathematics, vol. 129. Academic Press,

Boston (1988)
3. Bhatia, R.: Matrix Analysis. Springer, New York (1997)
4. Bhatia, R., Davis, C.: A Cauchy-Schwarz inequality for operators with applications. Linear Algebra Appl. 224, 119–129

(1995)
5. Dodds, P.G., Dodds, T.K.Y., De Pagter, B.: Non-commutative Banach function spaces. Mat. Ž. 201, 583–597 (1989).

https://doi.org/10.1007/BF01215160
6. Erlijman, J., Farenick, D.R., Zeng, R.: Young’s inequality in compact operators. Oper. Theory, Adv. Appl. 130, 171–184

(2001)
7. Fack, T.: On the notion of characteristic value [sur la notion de valeur caracteristique]. Oper Theory 7, 307–333 (1982)
8. Fack, T., Kosaki, H.: Generalized s-numbers of τ -measurable operators. Pac. J. Math. 123, 269–300 (1986)
9. Farenick, D.R., Manjegani, S.M.: Young’s inequalities in operator algebras. J. Ramanujan Math. Soc. 20(2), 107–124

(2005)
10. Han, Y.: On the Araki-Lieb-Thirring inequality in the semifinite von Neumann algebra. Ann. Funct. Anal. 7, 622–635

(2016)
11. Han, Y., Shao, J.: More results on generalized singular number inequalities of τ -measurable operators. J. Inequal. Appl.

2016, 144 (2016)
12. Hayajneh, M., Hayajneh, S., Kittaneh, F.: Norm inequalities for positive semidefinite matrices and a question of bourin.

Int. J. Math. 28(14), 1750102 (2017)
13. Hiai, F., Nakamura, Y.: Majorization for generalized s-numbers in semifinite von Neumann algebras. Math. Z. 195,

17–27 (1987)
14. Hu, X., Xue, J.: A note on reverses of Young type inequalities. J. Inequal. Appl. 2015, 98 (2015).

https://doi.org/10.1186/s13660-015-0622-7
15. Kai, H.: Young type inequalities for matrices. J. East China Norm. Univ. 4, 12–17 (2012)
16. Kittaneh, F., Manasrah, Y.: Improved Young and Heinz inequalities for matrices. J. Math. Anal. Appl. 361, 262–269 (2010)
17. Kittaneh, F., Manasrah, Y.: A generalization of two refined Young inequalities. Positivity 19, 757–768 (2015)
18. Kosaki, H.: An inequality of Araki-Lieb-Thirring (von Neumann algebra case. Proc. Am. Math. Soc. 114(2), 477–481

(1992)
19. Larotonda, G.: The case of equality in Young’s inequality for the s-numbers in semi-finite von Neumann algebras.

J. Oper. Theory 81, 157–173 (2019)
20. Manjegani, S.M.: On Young and Heinz inequalities for faithful tracial states. Linear Multilinear Algebra 65, 2432–2456

(2017)
21. Pisier, G., Xu, Q.: Noncommutative Lp-spaces. In: Handbook of Banach Spaces, vol. 2, pp. 1459–1517 (2003)
22. Shao, J.: On young and Heinz inequalities for τ -measurable operators. J. Math. Anal. Appl. 414, 814–821 (2013)
23. Shao, J., Han, Y.: Some convexity inequalities in noncommutative Lp-spaces. J. Inequal. Appl. 2014, 385 (2014).

https://doi.org/10.1186/1029-242X-2014-385
24. Zhou, J., Wang, Y., Wu, T.: A Schwarz inequality for τ -measurable operator A∗XB∗ . J. Xinjiang Univ. Natur. Sci. 26, 69–73

(2009)

https://doi.org/10.1007/BF01215160
https://doi.org/10.1186/s13660-015-0622-7
https://doi.org/10.1186/1029-242X-2014-385

	Some inequalities and majorization for products of tau-measurable operators
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Young and Cauchy-Schwarz inequalities
	Heinz mean
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Authors' contributions
	Publisher's Note
	References


