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Abstract
This paper aims at proposing an iterative algorithm for finding an element in the
intersection of the solutions set of a system of variational inclusions and the
fixed-points set of a total uniformly L-Lipschitzian mapping. Applying the concepts of
graph convergence and the resolvent operator associated with an̂H-accretive
mapping, a new equivalence relationship between graph convergence and
resolvent-operator convergence of a sequence of̂H-accretive mappings is
established. As an application of the obtained equivalence relationship, the strong
convergence of the sequence generated by our proposed iterative algorithm to a
common point of the above two sets is proved under some suitable hypotheses
imposed on the parameters and mappings. At the same time, the notion of
H(·, ·)-accretive mapping that appeared in the literature, where H(·, ·) is an α,
β-generalized accretive mapping, is also investigated and analyzed. We show that the
notions H(·, ·)-accretive and̂H-accretive operators are actually the same, and point out
some comments on the results concerning them that are available in the literature.
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1 Introduction
During the last six decades, variational inequality theory, originally introduced for the
study of partial differential equations by Hartman and Stampacchia [1], has been recog-
nized as a strong tool in the mathematical study of many nonlinear problems of physics
and mechanics, as the complexity of the boundary conditions and the diversity of the con-
stitutive equations lead to variational formulations of inequality type. As many nonlinear
problems arising in optimization, operations research, structural analysis, and engineering
sciences can be transformed into variational inequality problems (see, e.g., [2, 3]), since the
appearance of this theory, there has been an increasing interest in extending and general-
izing variational inequalities in many different directions using novel and innovative tech-
niques, see, for example, [4, 5] and the references therein. Without doubt, one of the most
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important and well-known generalizations of variational inequalities is variational inclu-
sions and thanks to their wide applications in the optimization and control, economics
and transportation equilibrium, engineering science, etc., the study of different classes of
variational inclusion problems continues to attract the interest of many researchers. For
more related details, we refer the readers to [6–19] and the references therein.

It is important to emphasize that two important problems in the theory of the varia-
tional inequalities/icnlusions are the existence of solutions and approximation of solutions
by the iterative algorithms. This has been one of the main motivations of researchers to
develop alternative methods to study iterative algorithms for approximating solutions of
various kinds of variational inequality/inclusion problems in the setting of Hilbert and
Banach spaces. Among the methods that have appeared in the literature, the resolvent-
operator technique is interesting and important, and plays a crucial role in computing ap-
proximate solutions of different classes of variational inequality/inclusion problems and
their generalizations. More information along with relevant commentaries can be found
in [6, 11–14, 17, 18, 20–29] and the references therein.

Monotone operators and accretive mappings have gained impetus, due to their wide
range of applicability, to resolve diverse problems emanating from the theory of nonlin-
ear differential equations, integral equations, mathematical economics, optimal control,
and so forth. Due to the importance and their many diverse applications in a huge variety
of scientific fields, considerable attention has been paid to the development and general-
ization of monotone and accretive operators in the framework of different spaces. By the
same token, the introduction of the notion of generalized m-accretive mapping as an ex-
tension of maximal monotone operators and m-accretive mapping along with a definition
of its resolvent operator in a Banach space setting was first made by Huang and Fang [16] in
2001. Afterwards, many authors have shown interest in extending maximal monotone op-
erators and generalized m-accretive mappings, and further generalizations of them have
appeared in the literature. For instance, Huang and Fang [15], Ding and Lou [30] and Lee
et al. [21], Fang and Huang [12], Xia and Huang [31], Fang and Huang [11], Fang et al.
[14], Kazmi and Khan [24] and Peng and Zhu [25], Verma [27, 32], Verma [33], and Lan
et al. [17] introduced and studied the notions of η-monotone operators, η-subdifferential
operators, H-monotone operators, general H-monotone operators, H-accretive (to avoid
confusion, throughout the paper we call it ̂H-accretive) mappings, (H ,η)-monotone op-
erators, P-η-accretive (also referred to as (H ,η)-accretive) mappings, A-monotone op-
erators, (A,η)-monotone operators, and (A,η)-accretive (also referred to as A-maximal
m-relaxed η-accretive) mappings, respectively. Motivated by these advances, in 2008, Sun
et al. [34] introduced the class of M-monotone operators as a generalization of maximal
monotone and H-monotone operators. With inspiration and motivation from the work of
Sun et al. [34], in the same year, Zou and Huang [35] succeeded in introducing the notion
of H(·, ·)-accretive mappings in a Banach-space setting as a generalization of generalized
m-accretive, H-monotone, ̂H-accretive, and M-monotone operators.

The notion of graph convergence has attracted many researchers since 1984 after the pi-
oneering work of Attouch [36]. It is worthwhile to stress that the attention of the author in
[36] was limited to maximal monotone operators. In later years, considerable research ef-
forts have been made to generalize and study the concept of graph convergence for gener-
alized monotone operators and generalized accretive mappings available in the literature.
For instance, Li and Huang [22] introduced the notion of graph convergence concerned
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with H(·, ·)-accretive operators in Banach spaces and proved some equivalence theorems
between graph convergence and resolvent-operator convergence of a sequence of H(·, ·)-
accretive mappings. For a detailed description of the concept of graph convergence for
other generalizations of generalized monotone (accretive) operators existing in the liter-
ature, we refer the interested reader to [6, 22, 23, 28, 36] and the references therein. Using
the properties of graph convergence of H(·, ·)-accretive operators introduced by Li and
Huang [22], recently, Tang and Wang [26] constructed a perturbed iterative algorithm for
solving a system of ill-posed variational inclusions involving H(·, ·)-accretive operators. At
the same time, they proved that under some suitable conditions, the sequence generated
by their proposed iterative algorithm is strongly convergent to the unique solution of the
system of variational inclusions considered in [26].

On the other hand, the theory of fixed points that the starting point of its study dates
back to the beginning of the 1920s with the pioneering work of Polish mathematician
Stefan Banach [37], is a very attractive subject, which has recently drawn much atten-
tion from the communities of physics, engineering, mathematics, etc. The existence of a
strong connection between the variational inequality problems and the fixed-point prob-
lems motivated many investigators to study the problem of finding common elements of
the set of solutions of variational inequalities/inclusions and the set of fixed points of given
operators. For more details and information, the reader is referred to [4, 38–46] and the
references therein.

In addition, after the emergence of the notion of nonexpansive mapping in the 1960s, the
number of works dedicated to study fixed-point theory for nonexpansive mappings in the
setting of different spaces has grown rapidly and has influenced several branches of math-
ematics. This is mainly because there is a very close relation between the classes of mono-
tone and accretive operators, which arise naturally in the theory of differential equations,
and the class of nonexpansive mappings. Due to its many diverse applications in the the-
ory of fixed points, the interest in extending and generalizing the notion of nonexpansive
mapping has increased rapidly over the past forty years. One of the first attempts in this
direction was carried out by Goebel and Kirk [47] in 1972 who introduced a class of gen-
eralized nonexpansive mappings, the so-called asymptotically nonexpansive mappings. In
2005, Sahu [48] succeeded in introducing the concept of nearly asymptotically nonexpan-
sive mapping as a generalization of the notion of asymptotically nonexpansive mapping.
One year later, another class of generalized nonexpansive mappings, the so-called total
asymptotically nonexpansive mappings, which is essentially more general than the classes
of nearly asymptotically nonexpansive mappings and asymptotically nonexpansive map-
pings, was introduced and studied by Alber et al. [49]. The efforts in this direction have
continued and in a successfully attempt by Kiziltunc and Purtas [50], the class of total uni-
formly L-Lipschitzian mappings was introduced as a unifying framework for the classes
of generalized nonexpansive mappings existing in the literature. To find more information
about different classes of generalized nonexpansive mappings and relevant commentaries,
we refer the reader to [20, 47–51] and the references therein.

Motivated and inspired by the excellent work mentioned above, this paper pursues two
purposes. The first objective is to prove the existence of a unique solution for a system
of variational inclusions (SVI) involving ̂H-accretive mappings under some suitable mild
conditions. With the goal of finding a common point lying in the solutions set of the SVI

and the set of fixed points of a total uniformly L-Lipschitzian mapping, an iterative algo-
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rithm is constructed. Employing the notions of graph convergence and the resolvent op-
erator associated with an ̂H-accretive mapping, a new equivalence relationship between
the graph convergence of a sequence of ̂H-accretive mappings and their associated resol-
vent operators, respectively, to a given ̂H-accretive mapping and its associated resolvent
operator under some appropriate conditions is established. As an application of the ob-
tained equivalence relationship, we prove the strong convergence of the sequence gener-
ated by our proposed iterative algorithm to a common point of the set of fixed points of
the total uniformly L-Lipschitzian mapping and the set of solutions of the SVI. The sec-
ond goal of this paper is to investigate and analyze the notion of H(·, ·)-accretive mapping
that appeared in [26], where H(·, ·) is an α, β-generalized accretive mapping, and to point
out some comments concerning it. We prove that under the assumptions imposed on the
H(·, ·)-accretive mapping considered in [26], every H(·, ·)-accretive mapping is actually an
̂H-accretive mapping and is not a new one. All the results derived by the authors in [26] are
reviewed and some remarks regarding them are stated. We show that our results improve
and generalize the corresponding results of [26] and recent related works.

2 Notation and preliminaries
In this section, we briefly present the notation and some preliminary material to be used
later in this paper. First, we make clear that all linear spaces used in this paper are assumed
to be real. Unless it is stated otherwise, in this paper we denote by X a real Banach space
with norm ‖ · ‖, we denote by X∗ its topological dual, and 〈·, ·〉 will represent the duality
pairing of X and X∗. We denote by SX and SX∗ , respectively, the unit sphere in X and X∗.
For a given set-valued mapping M : X ⇒ X, the set Graph(M) defined by

Graph(M) :=
{

(u, v) ∈ X × X : v ∈ M(u)
}

,

is called the graph of M.
Let us recall that a normed space X is called strictly convex if SX is strictly convex, that

is, the inequality ‖x + y‖ < 2 holds for all x, y ∈ SX with x �= y. It is said to be smooth if for
every x ∈ SX there is exactly one x∗ ∈ SX∗ such that x∗(x) = 1. Equivalently, a normed space
X is said to be smooth provided limt→0

‖x+ty‖–‖x‖
t exists for all x, y ∈ SX . It is known that if

a Banach space X is reflexive, then X is strictly convex if and only if X∗ is smooth and X is
smooth if and only if X∗ is strictly convex.

With each x ∈ X, we associate the set

J(x) =
{

x∗ ∈ X∗ :
〈

x, x∗〉 = ‖x‖2 =
∥

∥x∗∥
∥

2}.

The operator J : X ⇒ X∗ is called the normalized duality mapping of X. We observe im-
mediately that if X = H, a Hilbert space, then J is the identity mapping on H. At the same
time, from the Hahn–Banach theorem, it follows that J(x) is nonempty for each x ∈ X. In
general, the normalized duality mapping is set-valued. However, it is single-valued in a
smooth Banach space.

Definition 2.1 For a given real smooth Banach space X, an operator T : X → X is said to
be
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(i) accretive if

〈

T(x) – T(y), J(x – y)
〉≥ 0, ∀x, y ∈ X;

(ii) strictly accretive if T is accretive and equality holds if and only if x = y;
(iii) r-strongly accretive if there exists a constant r > 0 such that

〈

T(x) – T(y), J(x – y)
〉≥ r‖x – y‖2, ∀x, y ∈ X;

(iv) α-relaxed accretive if there exists a constant α > 0 such that

〈

T(x) – T(y), J(x – y)
〉≥ –α‖x – y‖2, ∀x, y ∈ X;

(v) γ -Lipschitz continuous if there exists a constant γ > 0 such that

∥

∥T(x) – T(y)
∥

∥≤ γ ‖x – y‖, ∀x, y ∈ X.

Definition 2.2 For a given real smooth Banach space X, a set-valued operator M : X ⇒ X
is said to be

(i) accretive if

〈

u – v, J(x – y)
〉≥ 0, ∀(x, u), (y, v) ∈ Graph(M);

(ii) m-accretive if M is accretive and (I + λM)(X) = X , for all λ > 0, where I denotes the
identity mapping on X .

Example 2.3 ([52]) Let � be a bounded domain in R
n with smooth boundary ∂�, and

let for 1 < p < ∞, Lp(�) be the space of all the Lebesgue measurable functions f : � → R

such that
∫

�
|f |p dx < ∞. Suppose further that T is a maximal monotone graph in R. With

appropriate domains,
(i) the operator A1u := –	u + T(u) with homogeneous Neuman boundary condition,

and the operator A2u := –	u, – ∂u
∂n ∈ T(u) on ∂�, where 	 denotes the Laplacian,

are accretive on Lp(�). Meanwhile,
(ii) the operator A3u := –

∑

( ∂
∂xi

)(| ∂u
∂xi

|r–1 ∂
∂xi

) is accretive for r ≥ 1.

Example 2.4 ([52]) The operator –	, where 	 denotes the Laplacian, is an m-accretive
operator.

Remark 2.5 As was pointed out in [52], the interest and importance of the concept of
accretive mappings, which was introduced and studied independently by Browder [53] and
Kato [54], stems from the fact that many physically significant problems can be modeled
in terms of an initial-valued problem of the form

⎧

⎨

⎩

du
dt = –Au,

u(0) = u0,
(2.1)
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where A is either an accretive or strongly accretive mapping on an appropriate Banach
space. Typical examples of such evolution equations are found in models involving the
heat, wave or Schrödinger equation (see, e.g., Browder [53]). An early fundamental result
in the theory of accretive mappings, due to Browder [55], states that the initial-value prob-
lem (2.1) is solvable if A is locally Lipschitzian and accretive on X. Utilizing the existence
result for the equation (2.1), Browder [53] proved that if A is locally Lipschitzian and ac-
cretive on X, then A is m-accretive. Obviously, a consequence of this is that the equation
x + Tx = f , for a given f ∈ X, where T := I – A, has a solution. Martin [56, 57] proved that
the equation (2.1) is solvable if A is continuous and accretive on X, and using this result,
he further established that if A is continuous and accretive, then A is m-accretive. In [52],
the author verified that if A : X → X is a Lipschitz and strongly accretive mapping, then A
is surjective. Consequently, for each f ∈ X, the equation Ax = f has a solution in X.

We note that M is an m-accretive mapping if and only if M is accretive and there is no
other accretive mapping whose graph contains strictly Graph(M). The m-accretivity is to
be understood in terms of inclusion of graphs. If M : X ⇒ X is an m-accretive mapping,
then adding anything to its graph, so as to obtain the graph of a new set-valued mapping,
destroys the accretivity. In fact, the extended mapping is no longer accretive. In other
words, for every pair (x, u) ∈ X × X\Graph(M) there exists (y, v) ∈ Graph(M) such that
〈u – v, J(x – y)〉 < 0. Thanks to the above-mentioned arguments, a necessary and sufficient
condition for set-valued mapping M : X ⇒ X to be m-accretive is that the property

〈

u – v, J(x – y)
〉≥ 0, ∀(y, v) ∈ Graph(M)

is equivalent to u ∈ M(x). The above characterization of m-accretive mappings provides
us with a useful and manageable way for recognizing that an element u belongs to M(x).

Definition 2.6 Given a smooth Banach space X and a mapping ̂H : X → X, the set-valued
mapping M : X ⇒ X is said to be ̂H-accretive if M is accretive and (̂H + λM)(X) = X holds
for all λ > 0.

It should be remarked that Fang and Huang [11] were the first to introduce the class of
̂H-accretive mappings on q-uniformly smooth Banach spaces for some real constant q > 1.
We recall that for a given real constant q > 1, X is called q-uniformly smooth if there exits
a constant C > 0 such that ρX(τ ) ≤ Cτ q, for all τ ∈ R

+, where the function ρX : R+ → R
+

is given by formula

ρX(τ ) = sup

{

1
2

(‖x + τy‖ + ‖x – τy‖ – 1 : x, y ∈ SX

}

.

At the same time, it should be pointed out that if ̂H = I , then Definition 2.6 reduces to the
definition of an m-accretive operator, and if X = H and ̂H = I , then Definition 2.6 becomes
just the definition of a maximal monotone operator.

The following example shows that for a given mapping ̂H : X → X, an m-accretive map-
ping may not be ̂H-accretive.
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Example 2.7 Let M2(C) be the space of all 2 × 2 matrices with complex entries. Then,

M2(C) =

{(

x1 + iy1 x2 + iy2

x3 + iy3 x4 + iy4

)

∣

∣

∣xk , yk ∈R, k = 1, 2, 3, 4

}

is a Hilbert space together with the inner product 〈A, B〉 := tr(AB∗), for all A, B ∈ M2(C),
where tr denotes the trace, that is, the sum of the diagonal entries, and B∗ denotes the
Hermitian conjugate (or adjoint) of the matrix B, that is, B∗ = Bt , the complex conjugate
of the transpose B. The inner product defined above induces a norm on M2(C) as follows:

‖A‖ =

√

√

√

√

4
∑

i=1

(

x2
k + y2

k
)

, for all A =

(

x1 + iy1 x2 + iy2

x3 + iy3 x4 + iy4

)

∈ M2(C).

Thereby, the Hilbert space (M2(C),‖ · ‖) is a 2-uniformly smooth Banach space. For any

A =

(

x1 + iy1 x2 + iy2

x3 + iy3 x4 + iy4

)

∈ M2(C),

we have

A =
y1 + y4 – i(x1 + x4)

2

(

i 0
0 i

)

+
y2 + y3 – i(x2 + x3)

2

(

0 i
i 0

)

+
x3 – x2 + i(y3 – y2)

2

(

0 –1
1 0

)

+
y1 – y4 – i(x1 – x4)

2

(

i 0
0 –i

)

=
y1 + y4 – i(x1 + x4)

2
μ1 +

y2 + y3 – i(x2 + x3)
2

μ2

+
x3 – x2 + i(y3 – y2)

2
μ3 +

y1 + y4 – i(x1 + x4)
2

μ4,

where

μ1 =

(

i 0
0 i

)

, μ2 =

(

0 i
i 0

)

, μ3 =

(

0 –1
1 0

)

, μ4 =

(

i 0
0 –i

)

.

Therefore, the set {μk : k = 1, 2, 3, 4} spans the Hilbert space M2(C). Letting θk := 1√
2μk

for k = 1, 2, 3, 4, it is easy to see that the set B consisting of the rescaled 2 × 2 matrices
θk (k = 1, 2, 3, 4) is also a spanner of M2(C). At the same time, ‖θk‖ = 1, for k = 1, 2, 3, 4
and 〈θk , θj〉 = 0 for 1 ≤ k, j ≤ 4, that is, the set B is orthonormal. Accordingly, the set B =
{θk : k = 1, 2, 3, 4} is an orthonormal basis for the Banach space M2(C). Let the mappings
M,̂H : M2(C) → M2(C) be defined, respectively, by M(A) = γ A + α1θ1 + α3θ3 and ̂H(A) =
–γ A + α2θ2 + α4θ4, for all A ∈ M2(C), where γ is an arbitrary positive real constant and αk

(k = 1, 2, 3, 4) are arbitrary real constants. Then, for all A, B ∈ M2(C), it yields

〈

M(A) – M(B), J(A – B)
〉

=
〈

M(A) – M(B), A – B
〉

= γ 〈A – B, A – B〉
= γ ‖A – B‖2 ≥ 0,
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i.e., M is an accretive mapping. By virtue of the fact that for any A ∈ M2(C) and λ > 0, we
have

(I + λM)(A) = A + γ λA + λα1θ1 + λα3θ3

= (1 + γ λ)A + λ(α1θ1 + α3θ3),

where I is the identity mapping on M2(C), we conclude that (I + λM)(M2(C)) = M2(C), for
every real constant λ > 0, that is, the mapping I + λM is surjective for every positive real
constant λ. Hence, M is an m-accretive mapping. Since for any A ∈ M2(C), we have

(̂H + M)(A) =
4
∑

k=1

αkθk =
√

2
2

(

(α1 + α4)i –α3 + iα2

α3 + iα2 –(α1 + α4)i

)

,

it follows that

∥

∥(̂H + M)(A)
∥

∥ =

∥

∥

∥

∥

∥

4
∑

k=1

αkθk

∥

∥

∥

∥

∥

=
√

2
(

(α1 + α4)2 + α2
3 + α2

4
)

> 0.

This implies that 0 /∈ (̂H + M)(H2(C)), i.e., ̂H + M is not surjective. Thus, the mapping M
is not ̂H-accretive.

Example 2.8 Let H2(C) be the set of all Hermitian matrices with complex entries. We
recall that a square matrix A is said to be Hermitian (or self-adjoint) if it is equal to its own
Hermitian conjugate, i.e., A∗ = At = A. In the light of the definition of a Hermitian 2 × 2
matrix, the condition A∗ = A implies that the 2 × 2 matrix A =

( a b
c d

)

is Hermitian if and
only if a, d ∈R and b = c̄. Therefore,

H2(C) =

{(

z x – iy
x + iy w

)

∣

∣

∣x, y, z, w ∈R

}

.

Then, H2(C) is a subspace of M2(C), the space of all 2 × 2 matrices with complex entries,
with respect to the operations of addition and scalar multiplication defined on M2(C),
when M2(C) is considered as a real vector space. In other words, H2(C) together with the
mentioned operators is a vector space over R. We introduce the scalar product on H2(C)
as 〈A, B〉 := 1

2 tr(AB), for all A, B ∈ H2(C). By an easy check, we observe that (H2(C), 〈·, ·〉)
is an inner product space. The inner product defined above induces a norm on H2(C) as
follows:

‖A‖ =
√〈A, A〉 =

√

1
2

tr(AA)

=

{

1
2

tr

((

x2 + y2 + z2 (z + w)(x – iy)
(z + w)(x + iy) x2 + y2 + w2

))} 1
2

=
√

x2 + y2 +
1
2
(

z2 + w2
)

, ∀A ∈ H2(C).

Taking into account that every finite-dimensional normed space is a Banach space, it fol-
lows that (H2(C),‖ · ‖) is a Hilbert space and so it is a 2-uniformly smooth Banach space.
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Let the mappings ̂H1,̂H2, M : H2(C) → H2(C) be defined, respectively, by

̂H1(A) =

(

|√3 sin z –
√

6 cos z| – αzl –2|x| – xk + 1 – i( 3y–1
3y+1 – yk)

2|x| – xk + 1 + i( 3y–1
3y+1 – yk) ( 1

2 )|w|–2 – βwp

)

,

̂H2(A) =

(

cos(γ z + θ ) ex

ex+1 – 2i
1+y2

ex

ex+1 + 2i
1+y2 sin(ςw + ξ )

)

and M(A) =

(

αzl xk – iyk

xk + iyk βwp

)

,

for all A =
( z x–iy

x+iy w
) ∈ H2(C), where α and β are arbitrary positive real constants, γ and ς

are arbitrary nonzero real constants, θ and ξ are arbitrary real constants, and k, l, and p
are arbitrary but fixed odd natural numbers.

Then, for any A =
( z1 x1–iy1

x1+iy1 w1

)

, B =
( z2 x2–iy2

x2+iy2 w2

) ∈ H2(C), it yields

〈

M(A) – M(B), J(A – B)
〉

=
〈

M(A) – M(B), A – B
〉

=

〈(

α(zl
1 – zl

2) xk
1 – xk

2 – i(yk
1 – yk

2)
xk

1 – xk
2 + i(yk

1 – yk
2) β(wp

1 – wp
2)

)

,

(

z1 – z2 x1 – x2 – i(y1 – y2)
x1 – x2 + i(y1 – y2) w1 – w2

)〉

=
1
2

tr

((

�11(x1, x2, y1, y2, z1, z2) �12(x1, x2, y1, y2, z1, z2)
�21(x1, x2, y1, y2, z1, z2) �22(x1, x2, y1, y2, z1, z2)

))

=
α�

2
|z1z2|(z1 – z2)

(

zk
1 – zk

2
)

+
βς

2
ew1w2 (w1 – w2)

(

n√w1 – n√w2
)

+ (x1 – x2)
(

xm
1 – xm

2
)

+ (y1 – y2)
(

ym
1 – ym

2
)

=
α

2
(

zl
1 – zl

2
)

(z1 – z2) + (x1 – x2)
(

xk
1 – xk

2
)

+ (y1 – y2)
(

yk
1 – yk

2
)

+
β

2
(

wp
1 – wp

2
)

(w1 – w2)

=
α

2
(z1 – z2)l

l
∑

j=1

zl–j
1 zj–1

2 + (x1 – x2)2
k
∑

t=1

xk–t
1 xt–1

2

+ (y1 – y2)2
k
∑

s=1

yk–s
1 ys–1

2 +
β

2
(w1 – w2)2

p
∑

r=1

wp–r
1 wr–1

2 ,

where

�11(x1, x2, y1, y2, z1, z2)

= α
(

zl
1 – zl

2
)

(z1 – z2) + (x1 – x2)
(

xk
1 – xk

2
)

+ (y1 – y2)
(

yk
1 – yk

2
)

+ i
(

xk
1 – xk

2
)

(y1 – y2) – i(x1 – x2)
(

yk
1 – yk

2
)

,

�12(x1, x2, y1, y2, z1, z2)

= α
(

x1 – x2 – i(y1 – y2)
)(

zl
1 – zl

2
)

+
(

xk
1 – xk

2 – i
(

yk
1 – yk

2
))

(w1 – w2),
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�21(x1, x2, y1, y2, z1, z2)

=
(

xk
1 – xk

2 + i
(

yk
1 – yk

2
))

(z1 – z2)

+ β
(

wp
1 – wp

2
)(

x1 – x2 + i(y1 – y2)
)

,

�22(x1, x2, y1, y2, z1, z2)

= (x1 – x2)
(

xk
1 – xk

2
)

+ (y1 – y2)
(

yk
1 – yk

2
)

– i(y1 – y2)
(

xk
1 – xk

2
)

+ i(x1 – x2)
(

yk
1 – yk

2
)

+ β
(

wp
1 – wp

2
)

(w1 – w2).

Taking into account the fact that k, l, and p are odd natural numbers, it can be easily
observed that

∑l
j=1 zl–j

1 zj–1
2 ≥ 0,

∑k
t=1 xk–t

1 xt–1
2 ≥ 0,

∑k
s=1 yk–s

1 ys–1
2 ≥ 0 and

∑p
r=1 wp–r

1 wr–1
2 ≥

0. Since α,β > 0, the preceding relation implies that

〈

M(A) – M(B), J(A – B)
〉 ≥ 0, ∀A, B ∈ H2(C),

that is, M is an accretive mapping. Let us define now the functions f , g, h,ϕ : R → R, for
all ν ∈R, respectively, as

f (ν) := |√3 sinν –
√

6 cosν|,
g(ν) := 2|ν| + 1,

h(ν) :=
3ν – 1
3ν + 1

and ϕ(ν) :=
(

1
2

)|ν|–2

.

Then, for any A =
( z x–iy

x+iy w
) ∈ H2(C), it yields

(̂H1 + M)(A) = (̂H1 + M)

((

z x – iy
x + iy w

))

=

(

|√3 sin z –
√

6 cos z| 2|x| + 1 – 3y–1
3y+1 i

2|x| + 1 + 3y–1
3y+1 i ( 1

2 )|w|–2

)

=

(

f (z) g(x) – ih(y)
g(x) + ih(y) ϕ(w)

)

.

It can be easily seen that f (R) = [0, 3], g(R) = [1, +∞), h(R) = (–1, 1) and ϕ(R) = (0, 4].
These facts imply that (̂H1 + M)(H2(C)) �= H2(C), i.e., ̂H1 + M is not surjective and so M is
not an ̂H1-accretive mapping. Now, let λ > 0 be an arbitrary real constant and assume that
the functionŝf , ĝ,̂h, ϕ̂ : R →R are defined, respectively, by

̂f (ν) := cos(γ ν + θ ) + λαν l, ĝ(ν) :=
eν

eν + 1
+ λνk ,

̂h(ν) :=
2

1 + ν2 + λxνk and ϕ̂(ν) := sin(ςν + ξ ) + λβνp, ∀ν ∈R.



Balooee and Yao Journal of Inequalities and Applications        (2022) 2022:112 Page 11 of 43

Then, for any A =
( z x–iy

x+iy w
) ∈ H2(C), we obtain

(̂H2 + λM)(A) = (̂H2 + λM)

((

z x – iy
x + iy w

))

=

(

cos(γ z + θ ) + λαzl ex

ex+1 + λxk – i( 2
1+y2 + λyk)

ex

ex+1 + λxk + i( 2
1+y2 + λyk) sin(ςw + ξ ) + λβwp

)

=

(

̂f (z) ĝ(x) – îh(y)
ĝ(x) + îh(y) ϕ̂(w)

)

.

Relying on the fact that k, l, and p are odd natural numbers, it is easy to see that̂f (R) =
ĝ(R) =̂h(R) = ϕ̂(R) = R. Consequently, (̂H2 + λM)(H2(C)) = H2(C), that is, ̂H2 + λM is
surjective. Taking into account the arbitrariness in the choice of λ > 0, we conclude that
M is an ̂H2-accretive mapping.

As was pointed out, if ̂H = I , then the definition of I-accretive mappings is that of m-
accretive mappings. In fact, the class of ̂H-accretive mappings has a close relation with
that of m-accretive mappings. In the same way as the proofs of Theorems 2.1 and 2.2 in
[11], we obtain the following assertions in a smooth Banach space setting.

Lemma 2.9 Let X be a real smooth Banach space, ̂H : X → X be a strictly accretive
mapping, M : X ⇒ X be an ̂H-accretive mapping, and let x, u ∈ X be given points. If
〈u – v, J(x – y)〉 ≥ 0 holds, for all (y, v) ∈ Graph(M), then u ∈ M(x), that is, M is an m-
accretive mapping.

Lemma 2.10 Let X be a real smooth Banach space, ̂H : X → X be a strictly accretive map-
ping and M : X ⇒ X be an ̂H-accretive mapping. Then, the mapping (̂H + λM)–1 is single-
valued for every constant λ > 0.

It is worth noting that Lemma 2.10 allows us to define the resolvent operator R̂HM,λ asso-
ciated with ̂H , M and an arbitrary real constant λ > 0 as follows.

Definition 2.11 Let X be a real smooth Banach space, ̂H : X → X be a strictly accretive
mapping and M : X ⇒ X be an ̂H-accretive mapping. The resolvent operator R̂HM,λ : X → X
associated with ̂H , M and an arbitrary positive real constant λ is defined by

R̂HM,λ(u) = (̂H + λM)–1(u), ∀u ∈ X.

By a similar proof as in Theorem 2.3 of [11], we conclude the Lipschitz continuity of
the resolvent operator R̂HM,λ associated with ̂H , M and λ > 0 and calculate its Lipschitz
constant under some appropriate conditions as follows.

Lemma 2.12 Let X be a real smooth Banach space, ̂H : X → X be an r-strongly accretive
mapping and M : X ⇒ X be an ̂H-accretive mapping. Then, the resolvent operator R̂HM,λ :
X → X is Lipschitz continuous with constant 1

r , i.e.,

∥

∥R̂HM,λ(u) – R̂HM,λ(v)
∥

∥≤ 1
r
‖u – v‖, ∀u, v ∈ X. (2.2)
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Remark 2.13 (i) It should be pointed out that Lemmas 2.1–2.3 improve, respectively, The-
orems 2.1–2.3 in [11]. In fact, Theorems 2.1–2.3 in [11] have been presented in the frame-
work of a q-uniformly smooth Banach space, whereas our results are given in a smooth
Banach space setting.

(ii) There is a small mistake in the context of Theorem 2.3 of [11]. In fact, in the context
of [11, Theorem 2.3], the inequality

∥

∥R̂HM,λ(u) – R̂HM,λ(v)
∥

∥≤ 1
r‖u – v‖ , ∀u, v ∈ X,

must be replaced by (2.2), as we have done in the context of Lemma 2.12.

3 System of variational inclusions: existence and uniqueness of solution and
iterative algorithm

For given real Banach spaces X1 and X2, and the mappings F : X1 ×X2 → X1, G : X1 ×X2 →
X2, ̂H1 : X1 → X1, ̂H2 : X2 → X2, M : X1 ⇒ X1, and N : X2 ⇒ X2, we consider the problem
of finding (a, b) ∈ X1 × X2 such that

⎧

⎨

⎩

0 ∈ F(a, b) + M(a),

0 ∈ G(a, b) + N(b),
(3.1)

which is called a system of variational inclusions (SVI) involving ̂H-accretive mappings.
It is important to emphasize that by taking different choices of the operators F , G, ̂Hi,

M, N and the underlying spaces Xi (i = 1, 2) in the SVI (3.1), one can easily obtain the
problems studied in [12–14, 22, 29, 58] and the references therein.

The following conclusion, which tells us that SVI (3.1) is equivalent to a fixed-point
problem, provides us with a characterization of the solution of the SVI (3.1).

Lemma 3.1 Let X1 and X2 be two real smooth Banach spaces, and ̂H1 : X1 → X1 and
̂H2 : X2 → X2 be strictly accretive mappings. Suppose further that M : X1 ⇒ X1 is an ̂H1-
accretive operator and N : X2 ⇒ X2 is an ̂H2-accretive operator. Then, the following state-
ments are equivalent:

(i) (a, b) ∈ X1 × X2 is a solution of the SVI (3.1);
(ii) For any λ,ρ > 0, (a, b) satisfies

⎧

⎨

⎩

a = R̂H1
M,λ[̂H1(a) – λF(a, b)],

b = R̂H2
N ,ρ[̂H2(b) – ρG(a, b)];

(iii) For some λ0,ρ0 > 0, (a, b) satisfies

⎧

⎨

⎩

a = R̂H1
M,λ0

[̂H1(a) – λ0F(a, b)],

b = R̂H2
N ,ρ0

[̂H2(b) – ρ0G(a, b)].
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Proof “(i) ⇒ (ii)” Let us first assume that (a, b) ∈ X1 × X2 is a solution of the SVI (3.1).
Then, using Definition 2.11, it yields

⎧

⎨

⎩

0 ∈ F(a, b) + M(a),

0 ∈ G(a, b) + N(b),

⇒
⎧

⎨

⎩

̂H1(a) – λF(a, b) ∈ ̂H1(a) + λM(a) = (̂H1 + λM)(a),
̂H2(b) – ρG(a, b) ∈ ̂H2(b) + ρN(b) = (̂H2 + ρN)(b),

⇒
⎧

⎨

⎩

a = (̂H1 + λM)–1(̂H1(a) – λF(a, b)),

b = (̂H2 + ρN)–1(̂H2(b) – ρG(a, b)),

⇒
⎧

⎨

⎩

a = R̂H1
M,λ[̂H1(a) – λF(a, b)],

b = R̂H2
N ,ρ[̂H2(b) – ρG(a, b)],

where R̂H1
M,λ = (̂H1 + λM)–1 and R̂H2

N ,ρ = (̂H2 + ρN)–1.
The proof of “(ii) ⇒ (iii)” is obvious.
“(iii) ⇒ (i)” Suppose that for some λ0,ρ0 > 0, (a, b) satisfies

⎧

⎨

⎩

a = R̂H1
M,λ0

[̂H1(a) – λ0F(a, b)],

b = R̂H2
N ,ρ0

[̂H2(b) – ρ0G(a, b)].

Then, in the light of Definition 2.11, we obtain

⎧

⎨

⎩

a = (̂H1 + λ0M)–1(̂H1(a) – λ0F(a, b)],

b = (̂H2 + ρ0N)–1(̂H2(b) – ρ0G(a, b)],

which implies that

⎧

⎨

⎩

̂H1(a) – λ0F(a, b) ∈ ̂H1(a) + λ0M(a),
̂H2(b) – ρ0G(a, b) ∈ ̂H2(b) + ρ0N(b),

and hence,
⎧

⎨

⎩

0 ∈ F(a, b) + M(a),

0 ∈ G(a, b) + N(b),

i.e., (a, b) ∈ X1 × X2 is a solution of the SVI (3.1). The proof is completed. �

Before proceeding to the main result of this section, we need to recall the following
notion that will be used efficiently in its proof.
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Definition 3.2 A mapping F : X × X → X is said to be
(i) ς -Lipschitz continuous with respect to its first argument if there exists a constant

ς > 0 such that

∥

∥F(x1, y) – F(x2, y)
∥

∥≤ ς‖x1 – x2‖, ∀x1, x2, y ∈ X;

(ii) ξ -Lipschitz continuous with respect to its second argument if there exists a
constant ξ > 0 such that

∥

∥F(x, y1) – F(x, y2)
∥

∥≤ ξ‖y1 – y2‖, ∀x, y1, y2 ∈ X.

Theorem 3.3 Let X1 and X2 be two real smooth Banach spaces with norms ‖ ·‖1 and ‖ ·‖2,
respectively, ̂H1 : X1 → X1 be a �1-strongly accretive and r-Lipschitz continuous mapping,
̂H2 : X2 → X2 be a �2-strongly accretive and k-Lipschitz continuous mapping, M : X1 ⇒ X1

be an ̂H1-accretive set-valued mapping, and N : X2 ⇒ X2 be an ̂H2-accretive set-valued
mapping. Suppose further that the mapping F : X1 × X2 → X1 is τ1-Lipschitz continuous
with respect to its first argument and τ2-Lipschitz continuous with respect to its second
argument, and the mapping G : X1 × X2 → X2 is θ1-Lipschitz continuous with respect to
its first argument and θ2-Lipschitz continuous with respect to its second argument. If r < �1

and k < �2 then, the SVI (3.1) admits a unique solution.

Proof For any given λ,ρ > 0, define Tλ : X1 ×X2 → X1 and Sρ : X1 ×X2 → X2 for all (x, y) ∈
X1 × X2, by

Tλ(x, y) = R̂H1
M,λ
[

̂H1(x) – λF(x, y)
]

(3.2)

and

Sρ(x, y) = R̂H2
N ,ρ
[

̂H2(y) – ρG(x, y)
]

, (3.3)

respectively. At the same time, for any given λ,ρ > 0, define Qλ,ρ : X1 × X2 → X1 × X2 by

Qλ,ρ(x, y) =
(

Tλ(x, y), Sρ(x, y)
)

, ∀(x, y) ∈ X1 × X2. (3.4)

Making use of (3.2) and Lemma 2.12, it follows that for all (x1, y1), (x2, y2) ∈ X1 × X2,

∥

∥Tλ(x1, y1) – Tλ(x2, y2)
∥

∥

1

=
∥

∥R̂H1
M,λ
[

̂H1(x1) – λF(x1, y1)
]

– R̂H1
M,λ
[

̂H1(x2) – λF(x2, y2)
]∥

∥

1

≤ 1
�1

∥

∥̂H1(x1) – ̂H1(x2) – λ
(

F(x1, y1) – F(x2, y2)
)∥

∥

1

≤ 1
�1

(∥

∥̂H1(x1) – ̂H1(x2)
∥

∥

1 + λ
∥

∥F(x1, y1) – F(x2, y2)
∥

∥

1

)

.

(3.5)

Taking into account that ̂H1 is r-Lipschitz continuous, and F is τ1-Lipschitz continuous
with respect to its first argument and τ2-Lipschitz continuous with respect to its second
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argument, we obtain

∥

∥̂H1(x1) – ̂H1(x2)
∥

∥

1 ≤ r‖x1 – x2‖1 (3.6)

and

∥

∥F(x1, y1) – F(x2, y2)
∥

∥

1 ≤ ∥

∥F(x1, y1) – F(x2, y1)
∥

∥

1

+
∥

∥F(x2, y1) – F(x2, y2)
∥

∥

1

≤ τ1‖x1 – x2‖1 + τ2‖y1 – y2‖2.

(3.7)

Combining (3.5)–(3.7), we deduce that for all (x1, y1), (x2, y2) ∈ X1 × X2,

∥

∥Tλ(x1, y1) – Tλ(x2, y2)
∥

∥

1 ≤ r + λτ1

�1
‖x1 – x2‖1 +

λτ2

�1
‖y1 – y2‖2. (3.8)

By arguments analogous to the previous inequalities (3.5)–(3.8), employing the assump-
tions, for all (x1, y1), (x2, y2) ∈ X1 × X2, we obtain

∥

∥Sρ(x1, y1) – Sρ(x2, y2)
∥

∥

2 ≤ k + ρθ2

�2
‖y1 – y2‖2 +

ρθ1

�2
‖x1 – x2‖1. (3.9)

Define the function ‖ · ‖∗ on X1 × X2 by

∥

∥(x1, x2)
∥

∥∗ = ‖x1‖1 + ‖x2‖2, ∀(x1, x2) ∈ X1 × X2. (3.10)

It can be easily seen that (X1 × X2,‖ · ‖∗) is a Banach space. Then, applying (3.4), (3.8), and
(3.9), yields

∥

∥Qλ,ρ(x1, y1) – Qλ,ρ(x2, y2)
∥

∥∗

=
∥

∥

(

Tλ(x1, y1), Sρ(x1, y1)
)

–
(

Tλ(x2, y2), Sρ(x2, y2)
)∥

∥∗

=
∥

∥

(

Tλ(x1, y1) – Tλ(x2, y2), Sρ(x1, y1) – Sρ(x2, y2)
)∥

∥∗

=
∥

∥Tλ(x1, y1) – Tλ(x2, y2)
∥

∥

1 +
∥

∥Sρ(x1, y1) – Sρ(x2, y2)
∥

∥

2

≤
(

r + λτ1

�1
+

ρθ1

�2

)

‖x1 – x2‖1 +
(

k + ρθ2

�2
+

λτ2

�1

)

‖y1 – y2‖2

= ϑλ,ρ
(‖x1 – x2‖1 + ‖y1 – y2‖2

)

= ϑλ,ρ
∥

∥(x1, y1) – (x2, y2)
∥

∥∗,

(3.11)

where

ϑλ,ρ = max

{

r + λτ1

�1
+

ρθ1

�2
,

k + ρθ2

�2
+

λτ2

�1

}

.

Since r < �1 and k < �2, we can choose λ0,ρ0 > 0 small enough such that

r + λ0τ1

�1
+

ρ0θ1

�2
< 1 and

k + ρ0θ2

�2
+

λ0τ2

�1
< 1. (3.12)
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From (3.12) it follows that

ϑλ0,ρ0 = max

{

r + λ0τ1

�1
+

ρ0θ1

�2
,

k + ρ0θ2

�2
+

λ0τ2

�1

}

∈ (0, 1) (3.13)

and so Qλ0,ρ0 is a contraction mapping. Then, the Banach Fixed-Point Theorem ensures
the existence of a unique (a, b) ∈ X1 × X2 such that Qλ,ρ(a, b) = (a, b). Thereby, making use
of (3.2)–(3.4) we conclude that for some λ0,ρ0 > 0,

⎧

⎨

⎩

a = R̂H1
M,λ0

[̂H1(a) – λ0F(a, b)],

b = R̂H2
N ,ρ0

[̂H2(b) – ρ0G(a, b)].

Accordingly, Lemma 3.1 guarantees that (a, b) ∈ X1 × X2 is the unique solution of the SVI

(3.1). This completes the proof. �

Given a real normed space X with a norm ‖ · ‖, we recall that a nonlinear mapping
T : X → X is called nonexpansive if ‖T(x) – T(y)‖ ≤ ‖x – y‖ for all x, y ∈ X. It is well
known that the class of nonexpansive mappings has a deep and close relation with the
classes of monotone and accretive operators that arise naturally in the theory of differen-
tial equations. On the other hand, the fixed-point theory is an attractive and interesting
subject with a large number of applications in various fields of mathematics and other
branches of science. At the same time, the study of nonexpansive mappings is a very inter-
esting research area in fixed-point theory. These facts have motivated many researchers
to extend the notion of nonexpansive mapping and several interesting generalized non-
expansive mappings in the framework of different spaces have appeared in the literature.
For example, two classes of generalized nonexpansive mappings are recalled in the next
definition.

Definition 3.4 A nonlinear mapping T : X → X is said to be
(i) L-Lipschitzian if there exists a constant L > 0 such that

∥

∥T(x) – T(y)
∥

∥≤ L‖x – y‖, ∀x, y ∈ X;

(ii) uniformly L-Lipschitzian if there exists a constant L > 0 such that for each n ∈N,

∥

∥Tn(x) – Tn(y)
∥

∥≤ L‖x – y‖, ∀x, y ∈ X.

It is significant to emphasize that every uniformly L-Lipschitzian mapping is L-
Lipschitzian but the converse need not be true. The following example illustrates that the
class of L-Lipschitzian mappings contains properly the class of uniformly L-Lipschitzian
mappings.

Example 3.5 Consider X = R with the Euclidean norm ‖ · ‖ = | · | and let the self-mapping
T of X be defined by T(x) = kx for all x ∈ X, where k > 1 is an arbitrary real constant.
Taking into account that for all x, y ∈ X, |T(x) – T(y)| = k|x – y|, it follows that T is a k-
Lipschitzian mapping. However, thanks to the fact that k > 1, for any x, y ∈ X and n ∈
N\{1}, we obtain |Tn(x) – Tn(y)| = kn|x – y| > k|x – y|. This fact ensures that T is not a
uniformly k-Lipschitzian mapping.
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The introduction and study of the notion of asymptotically nonexpansive mapping as
a generalization of the concept of nonexpansive mapping was first made by Goebel and
Kirk [47].

Definition 3.6 ([47]) A nonlinear mapping T : X → X is said to be asymptotically non-
expansive if, there exists a sequence {an} ⊂ (0, +∞) with limn→∞ an = 0 such that for each
n ∈N,

∥

∥Tn(x) – Tn(y)
∥

∥≤ (1 + an)‖x – y‖, ∀x, y ∈ X.

Equivalently, we say that the mapping T is asymptotically nonexpansive if there exists a
sequence {kn} ⊂ [1, +∞) with limn→∞ kn = 1 such that for each n ∈N,

∥

∥Tn(x) – Tn(y)
∥

∥≤ kn‖x – y‖, ∀x, y ∈ X.

In recent decades, successful attempts in this direction have continued and several other
interesting generalizations of nonexpansive mappings and asymptotically nonexpansive
mappings are presented. For instance, in 2006, Alber et al. [49] succeeded in introducing
a class of generalized nonexpansive mappings, the so-called total asymptotically nonex-
pansive mappings, which are more general than the classes of asymptotically nonexpansive
mappings and nearly asymptotically nonexpansive mappings.

Definition 3.7 ([49]) A nonlinear mapping T : X → X is said to be total asymptotically
nonexpansive (also referred to as ({an}, {bn},φ)-total asymptotically nonexpansive) if there
exist nonnegative real sequences {an} and {bn} with an, bn → 0 as n → ∞ and a strictly
increasing continuous function φ : R+ →R

+ with φ(0) = 0 such that for all x, y ∈ X,

∥

∥Tn(x) – Tn(y)
∥

∥≤ ‖x – y‖ + anφ
(‖x – y‖) + bn, ∀n ∈ N.

Using a modified Mann iteration process, they also studied the iterative approximation
of the fixed point of total asymptotically nonexpansive mappings under some appropriate
conditions. Note, in particular, that every asymptotically nonexpansive mapping is total
asymptotically nonexpansive with bn = 0 (or equivalently bn = 0 and an = kn – 1) for all
n ∈N and φ(t) = t for all t ≥ 0, but the converse need not be true. In other words, the class
of total asymptotically nonexpansive mappings is more general than the class of asymp-
totically nonexpansive mappings. This fact is shown in the next example.

Example 3.8 For 1 ≤ p < ∞, consider

lp =

{

x = {xn}n∈N :
∞
∑

n=1

|xn|p < ∞, xn ∈ F = R or C

}

,

the classical space consisting of all p-power summable sequences, with the p-norm ‖ · ‖p

defined on it by

‖x‖p =

( ∞
∑

n=1

|xn|p
) 1

p

, x = {xn}n∈N ∈ lp.
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Furthermore, let B denote the closed unit ball in the Banach space lp and consider X :=
R× B with the norm ‖ · ‖X = | · |R + ‖ · ‖p and define the self-mapping T of X by

T(u, x) =

⎧

⎨

⎩

1
β

(1, x†), if u ∈ [0,β],

(0, x†

β
), if u ∈ (–∞, 0) ∪ (β , +∞),

where

x† =
(

0, 0, . . . , 0
︸ ︷︷ ︸

λ times

,γ sink1 |x1|, 0,γ |x2|s1 , 0,γ sink2 |x3|, 0,γ |x4|s2 ,

. . . , 0,γ sin
k m+1

2 |xm|, 0,γ |xm+1|s m+1
2 , 0,γ xm+2, . . .

)

,

γ ∈ (0, 1) and β > 1 are arbitrary real constants, λ ∈ N is an arbitrary constant, m is an
arbitrary but fixed odd natural number, λ ≥ m + 1 is an arbitrary but fixed natural number
and ki, si ∈N\{1} (i = 1, 2, . . . , m+1

2 ) are arbitrary constants. Indeed, the element x† of lp can
be written as x† = {x†

n}∞n=1, where x†
i = 0 for all 1 ≤ i ≤ λ, x†

λ+2i = 0 for all i ∈N,

x†
λ+2i–1 =

⎧

⎨

⎩

γ sin
k i+1

2 |xi|, if i ∈ {2t – 1|t = 1, 2, . . . , m+1
2 },

γ |xi|s i
2 , if i ∈ {2σ |σ = 1, 2, . . . , m+1

2 },

and x†
λ+2m+j = γ xm+ j+1

2
for all j ∈ {2l + 1|l ∈ N}. Taking into account that the mapping T is

not continuous at the points (β , x) for all x ∈ B, we conclude that T is not Lipschitzian and
so it is not an asymptotically nonexpansive mapping. For all (u, x), (v, y) ∈ [0,β] × B and
(u, x), (v, y) ∈ ((–∞, 0) ∪ (β , +∞)) × B, one can show that

∥

∥T(u, x) – T(v, y)
∥

∥

X

=
∥

∥

∥

∥

(0,
1
β

((

0, 0, . . . , 0
︸ ︷︷ ︸

λ times

,γ
(

sink1 |x1| – sink1 |y1|
)

, 0,

γ
(|x2|s1 – |y2|s1

)

, 0,γ
(

sink2 |x3| – sink2 |y3|
)

, 0,

γ
(|x4|s2 – |y4|s2

)

, . . . , 0,γ
(

sin
k m+1

2 |xm| – sin
k m+1

2 |ym|), 0,

γ
(|xm+1|s m+1

2 – |ym+1|s m+1
2
)

, 0,γ (xm+2 – ym+2), . . .
))

∥

∥

∥

∥

X

=
1
β

(

γ p

m+1
2
∑

i=1

∣

∣sinki
∣

∣x2i–1
∣

∣– sinki |y2i–1|
∣

∣

p

+ γ p

m+1
2
∑

i=1

∣

∣|x2i|si – |y2i|si
∣

∣

p + γ p
∞
∑

i=m+2

|xi – yi|p
) 1

p

≤ γ

(m+1
2
∑

i=1

( ki
∑

j=1

|x2i–1|ki–j|y2i–1|j–1

)p

|x2i–1 – y2i–1|p

+

m+1
2
∑

i=1

( si
∑

r=1

|x2i|si–r|y2i|r–1

)p

|x2i – y2i|p +
∞
∑

i=m+2

|xi – yi|p
) 1

p

.

(3.14)
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The fact that x, y ∈ B implies that 0 ≤ |x2i–1|ki–j, |y2i–1|j–1 ≤ 1 for each j ∈ {1, 2, . . . , ki} and
0 ≤ |x2i|si–r , |y2i|r–1 ≤ 1 for each r ∈ {1, 2, . . . , si} and i ∈ {1, 2, . . . , m+1

2 }. Relying on these
facts, we conclude that 0 ≤ ∑ki

j=1 |x2i–1|ki–j|y2i–1|j–1 ≤ ki and 0 ≤ ∑si
r=1 |x2i|si–r|y2i|r–1 ≤ si

for each i ∈ {1, 2, . . . , m+1
2 }. Thereby, making use of (3.14) it follows that for all (u, x), (v, y) ∈

[0,β] × B and (u, x), (v, y) ∈ ((–∞, 0) ∪ (β , +∞)) × B,

∥

∥T(u, x) – T(v, y)
∥

∥

X

≤ γ

(

max

{( ki
∑

j=1

|x2i–1|ki–j|y2i–1|j–1

)p

,

( si
∑

r=1

|x2i|si–r|y2i|r–1

)p

, 1 :

i = 1, 2, . . . ,
m + 1

2

} ∞
∑

i=1

|xi – yi|p
) 1

p

= γ max

{ ki
∑

j=1

|x2i–1|ki–j|y2i–1|j–1,
si
∑

r=1

|x2i|si–r|y2i|r–1, 1 :

i = 1, 2, . . . ,
m + 1

2

}

‖x – y‖p.

(3.15)

If u ∈ [0,β] and v ∈ (–∞, 0) ∪ (β , +∞), then in a similar fashion to the preceding analysis,
one can prove that for all x, y ∈ B,

∥

∥T(u, x) – T(v, y)
∥

∥

X

=
∥

∥

∥

∥

1
β

(

1, x†
)

–
(

0,
1
β

y†

)∥

∥

∥

∥

X
=

1
β

∥

∥

(

1, x† – y†
)∥

∥

X

=
1
β

(

1 + γ max

{ ki
∑

j=1

|x2i–1|ki–j|y2i–1|j–1,

si
∑

r=1

|x2i|si–r|y2i|r–1, 1 : i = 1, 2, . . . ,
m + 1

2

}

‖x – y‖p

)

< |u – v| + γ max

{ ki
∑

j=1

|x2i–1|ki–j|y2i–1|j–1,

si
∑

r=1

|x2i|si–r|y2i|r–1, 1 : i = 1, 2, . . . ,
m + 1

2

}

‖x – y‖p +
1
β

.

(3.16)

Now, applying (3.15) and (3.16), for all (u, x), (v, y) ∈ X, we obtain

∥

∥T(u, x) – T(v, y)
∥

∥

X

≤ |u – v| + γ max

{ ki
∑

j=1

|x2i–1|ki–j|y2i–1|j–1,

si
∑

r=1

|x2i|si–r|y2i|r–1, 1 : i = 1, 2, . . . ,
m + 1

2

}

‖x – y‖p +
1
β
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≤ |u – v| + ‖x – y‖p + γ max

{ ki
∑

j=1

|x2i–1|ki–j|y2i–1|j–1,

si
∑

r=1

|x2i|si–r|y2i|r–1, 1 : i = 1, 2, . . . ,
m + 1

2

}

(|u – v| + ‖x – y‖p
)

+
1
β

. (3.17)

For all n ≥ 2 and (u, x) ∈ X, we have

Tn(u, x) =
1
β

(

1,
(

0, 0, . . . , 0
︸ ︷︷ ︸

(2n–1)λ times

,γ n sink1 |x1|, 0, 0, . . . , 0
︸ ︷︷ ︸

(2n–1) times

,γ n|x2|s1 , 0, 0, . . . , 0
︸ ︷︷ ︸

(2n–1) times

,

γ n sink2 |x3|, 0, 0, . . . , 0
︸ ︷︷ ︸

(2n–1) times

,γ n|x4|s2 , . . . , 0, 0, . . . , 0
︸ ︷︷ ︸

(2n–1) times

,γ n sin
k m+1

2 |xm|,

0, 0, . . . , 0
︸ ︷︷ ︸

(2n–1) times

,γ n|xm+1|s m+1
2 , 0, 0, . . . , 0
︸ ︷︷ ︸

(2n–1) times

,γ nxm+2, . . .
))

.

Then, by an argument analogous to those of (3.14) and (3.15), for all (u, x), (v, y) ∈ X and
n ≥ 2, one can deduce that

∥

∥Tn(u, x) – Tn(v, y)
∥

∥

X =
1
β

∥

∥

(

0,
(

0, 0, . . . , 0
︸ ︷︷ ︸

(2n–1)λ times

,γ n(sink1 |x1| – sink1 |y1|
)

,

0, 0, . . . , 0
︸ ︷︷ ︸

(2n–1) times

,γ n(|x2|s1 – |y2|s1
)

, 0, 0, . . . , 0
︸ ︷︷ ︸

(2n–1) times

,

γ n(sink2 |x3| – sink2 |y3|
)

, 0, 0, . . . , 0
︸ ︷︷ ︸

(2n–1) times

,γ n(|x4|s2 – |y4|s2
)

,

. . . , 0, 0, . . . , 0
︸ ︷︷ ︸

(2n–1) times

,γ n(sin
k m+1

2 |xm| – sin
k m+1

2 |ym|),

0, 0, . . . , 0
︸ ︷︷ ︸

(2n–1) times

,γ n(|xm+1|s m+1
2 – |ym+1|s m+1

2
)

,

0, 0, . . . , 0
︸ ︷︷ ︸

(2n–1) times

,γ n(xm+2 – ym+2), . . .
))∥

∥

X

≤ γ n max

{ ki
∑

j=1

|x2i–1|ki–j|y2i–1|j–1,

si
∑

r=1

|x2i|si–r|y2i|r–1, 1 : i = 1, 2, . . . ,
m + 1

2

}

‖x – y‖p

≤ |u – v| + ‖x – y‖p + γ n max

{ ki
∑

j=1

|x2i–1|ki–j|y2i–1|j–1,

si
∑

r=1

|x2i|si–r|y2i|r–1, 1 : i = 1, 2, . . . ,
m + 1

2

}

(|u – v|

+ ‖x – y‖p
)

+
1
βn .

(3.18)
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Employing (3.17) and (3.18) and by virtue of the fact that for each i ∈ {1, 2, . . . , m+1
2 },

0 ≤∑ki
j=1 |x2i–1|ki–j|y2i–1|j–1 ≤ ki and 0 ≤∑si

r=1 |x2i|si–r|y2i|r–1 ≤ si, we conclude that for all
(u, x), (v, y) ∈ X and n ∈ N,

∥

∥Tn(u, x) – Tn(v, y)
∥

∥

X ≤ |u – v| + ‖x – y‖p + γ n max

{ ki
∑

j=1

|x2i–1|ki–j|y2i–1|j–1,

si
∑

r=1

|x2i|si–r|y2i|r–1, 1 : i = 1, 2, . . . ,
m + 1

2

}

(|u – v|

+ ‖x – y‖p
)

+
1
βn

≤ ∥

∥(u, x) – (v, y)
∥

∥

X + γ nξ
∥

∥(u, x) – (v, y)
∥

∥

X +
1
βn ,

where ξ = max{ki, si : i = 1, 2, . . . , m+1
2 }. Taking an = γ n and bn = 1

βn for all n ∈N, the fact that
0 < γ < 1 < β implies that an, bn → 0 as n → ∞. Now, define the function φ : [0, +∞) →
[0, +∞) by φ(t) = ξ t for all t ∈ [0, +∞). Then, for all (u, x), (v, y) ∈ X and n ∈N, we obtain

∥

∥Tn(u, x) – Tn(v, y)
∥

∥

X ≤ ∥

∥(u, x) – (v, y)
∥

∥

X + anφ
(∥

∥(u, x) – (v, y)
∥

∥

X

)

+ bn,

that is, T is a ({γ n}, { 1
βn },φ)-total asymptotically nonexpansive mapping.

With the aim of presenting a unifying framework for generalized nonexpansive map-
pings available in the literature and verifying a general convergence theorem applicable to
all these classes of nonlinear mappings, very recently, Kiziltunc and Purtas [50] introduced
a new class of generalized nonexpansive mappings as follows.

Definition 3.9 ([50]) A nonlinear mapping T : X → X is said to be total uniformly L-
Lipschitzian (or ({an}, {bn},φ)-total uniformly L-Lipschitzian) if there exist a constant
L > 0, nonnegative real sequences {an} and {bn} with an, bn → 0 as n → ∞ and a strictly
increasing continuous function φ : R+ →R

+ with φ(0) = 0 such that for each n ∈N,

∥

∥Tn(x) – Tn(y)
∥

∥≤ L
[‖x – y‖ + anφ

(‖x – y‖) + bn
]

, ∀x, y ∈ X.

It is essential to note that, for given nonnegative real sequences {an} and {bn} and a
strictly increasing continuous function φ : R+ →R

+, an ({an}, {bn},φ)-total asymptotically
nonexpansive mapping is ({an}, {bn},φ)-total uniformly L-Lipschitzian with L = 1, but the
converse may not be true. In the following example, the fact that the class of total uniformly
L-Lipschitzian mappings contains properly the class of total asymptotically nonexpansive
mappings is illustrated.

Example 3.10 Let X = R endowed with the Euclidean norm ‖ · ‖ = | · | and let the self-
mapping T of X be defined by

T(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if x ∈ (–∞, 0),

β , if x ∈ (0, 1
β

) ∪ ( 1
β

,α),
1
β

, if x ∈ [α, +∞) ∪ {0, 1
β
},
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where α > 0 and β > α+
√

α2+4
2 are arbitrary real constants such that αβ > 1. Since the map-

ping T is discontinuous at the points x = 0,α, 1
β

, it follows that T is not Lipschitzian and
so it is not an asymptotically nonexpansive mapping. Take an = γ

n and bn = α
kn for each

n ∈ N, where γ > 0 and k > 1 are arbitrary constants such that k �= αβ . Let us now define
the function φ : R+ →R

+ by φ(t) = θ tm for all t ∈R
+, where m ∈N and θ ∈ (0, km(β2–αβ–1)

βγ (k–1)mαm )
are arbitrary constants. Selecting x = α and y = α

k , we have T(x) = 1
β

and T(y) = β . With

the help of the fact that 0 < θ < km(β2–αβ–1)
βγ (k–1)mαm , it follows that

∣

∣T(x) – T(y)
∣

∣ = β –
1
β

> α +
γ θ (k – 1)mαm

km

=
(k – 1)α

k
+

γ θ (k – 1)mαm

km +
α

k

= |x – y| + γ θ |x – y|m +
α

k

= |x – y| + a1φ
(|x – y|) + b1,

which implies that T is not a ({ γ

n }, { α
kn },φ)-total asymptotically nonexpansive mapping.

However, for all x, y ∈ X, we obtain

∣

∣T(x) – T(y)
∣

∣≤ β

≤ kβ

α

(

|x – y| + γ θ |x – y|m +
α

k

)

=
kβ

α

(|x – y| + a1φ
(|x – y|) + b1

)

(3.19)

and for all n ≥ 2,

∣

∣Tn(x) – Tn(y)
∣

∣ <
kβ

α

(

|x – y| +
γ θ

n
|x – y|m +

α

kn

)

=
kβ

α

(|x – y| + anφ
(|x – y|) + bn

)

,
(3.20)

due to the fact that Tn(z) = 1
β

for all z ∈ X and n ≥ 2. Making use of (3.19) and (3.20), we
deduce that T is a ({ γ

n }, { α
kn },φ)-total uniformly kβ

α
-Lipschitzian mapping.

Lemma 3.11 Let X1 and X2 be two real Banach spaces with norms ‖ · ‖1 and ‖ · ‖2, re-
spectively, and let S1 : X1 → X1 and S2 : X2 → X2 be ({ai}∞i=1, {bi}∞i=1,φ1)-total uniformly
L1-Lipschitzian and ({ci}∞i=1, {di}∞i=1,φ2)-total uniformly L2-Lipschitzian mappings, respec-
tively. Moreover, let Q and φ be self-mappings of X1 × X2 and R

+, respectively, defined
by

Q(x1, x2) = (S1x1, S2x2), ∀(x1, x2) ∈ X1 × X2 (3.21)

and

φ(t) = max
{

φj(t) : j = 1, 2
}

, ∀t ∈R
+. (3.22)
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Then, Q is an ({ai + ci}∞i=1, {bi + di}∞i=1, φ)-total uniformly max{L1, L2}-Lipschitzian map-
ping.

Proof In view of the fact that for each j ∈ {1, 2}, φj : R+ → R
+ is a strictly increasing func-

tion, for all (x1, x2), (y1, y2) ∈ X1 × X2 and i ∈N, yields

∥

∥Qi(x1, x2) – Qi(y1, y2)
∥

∥∗ =
∥

∥

(

Si
1x1, Si

2x2
)

–
(

Si
1y1, Si

2y2
)∥

∥∗

=
∥

∥

(

Si
1x1 – Si

1y1, Si
2x2 – Si

2y2
)∥

∥∗

=
∥

∥Si
1x1 – Si

1y1
∥

∥

1 +
∥

∥Si
2x2 – Si

2y2
∥

∥

2

≤ L1
(‖x1 – y1‖1 + aiφ1

(‖x1 – y1‖1
)

+ bi
)

+ L2
(‖x2 – y2‖2 + ciφ2

(‖x2 – y2‖2
)

+ di
)

≤ max{L1, L2}
(‖x1 – y1‖1 + ‖x2 – y2‖2

+ aiφ1
(‖x1 – y1‖1

)

+ ciφ2
(‖x2 – y2‖2

)

+ bi + di
)

≤ max{L1, L2}
(‖x1 – y1‖1 + ‖x2 – y2‖2

+ aiφ1
(‖x1 – y1‖1 + ‖x2 – y2‖2

)

+ ciφ2
(‖x1 – y1‖1 + ‖x2 – y2‖2

)

+ bi + di
)

≤ max{L1, L2}
(∥

∥(x1, x2) – (y1, y2)
∥

∥∗

+ (ai + ci)φ
(∥

∥(x1, x2) – (y1, y2)
∥

∥∗
)

+ bi + di
)

,

where ‖ · ‖∗ is a norm on X1 × X2 defined by (3.10). This fact ensures that Q is an
({ai + ci}∞i=1, {bi + di}∞i=1, φ)-total uniformly max{L1, L2}-Lipschitzian mapping. The proof
is completed. �

Assume that X1 and X2 are two real smooth Banach spaces with norms ‖ · ‖1 and ‖ · ‖2,
respectively, S1 : X1 → X1 is an ({ai}∞i=1, {bi}∞i=1,φ1)-total uniformly L1-Lipschitzian map-
ping and S2 : X2 → X2 is a ({ci}∞i=1, {di}∞i=1,φ2)-total uniformly L2-Lipschitzian mapping.
Furthermore, let Q be a self-mapping of X1 × X2 defined as (3.21). Denote by Fix(Sj)
(j = 1, 2) and Fix(Q) the sets of all the fixed points of Sj (j = 1, 2) and Q, respectively. At
the same time, denote by SVI(Xj,̂Hj, M, N , F , G : j = 1, 2) the set of all the solutions of
the SVI (3.1), where for j = 1, 2, the nonlinear mappings ̂Hj : Xj → Xj are strictly accre-
tive, and the set-valued mappings M : X ⇒ X1 and N : X2 ⇒ X2 are ̂H1-accretive and ̂H2-
accretive, respectively. Using (3.21), we infer that for any (x1, x2) ∈ X1 ×X2, (x1, x2) ∈ Fix(Q)
if and only if for j = 1, 2, xj ∈ Fix(Sj), that is, Fix(Q) = Fix(S1, S2) = Fix(S1) × Fix(S2). If
(a, b) ∈ Fix(Q) ∩ SVI(Xj, Aj, M, N , F , G : j = 1, 2), then with the help of Lemma 3.1 it can be
easily observed that for each i ∈N,

⎧

⎨

⎩

a = Si
1a = R̂H1

M,λ[̂H1(a) – λF(a, b)] = Si
1R̂H1

M,λ[̂H1(a) – λF(a, b)],

b = Si
2b = R̂H2

N ,ρ[̂H2(b) – ρG(a, b)] = Si
2R̂H2

N ,ρ[̂H2(b) – ρG(a, b)].
(3.23)

Using the fixed-point formulation (3.23) we now are able to construct the following it-
erative algorithm for finding a common element of the two sets of SVI(Xj,̂Hj, M, N , F , G :
j = 1, 2) and Fix(Q) = Fix(S1, S2).
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Algorithm 3.12 Assume that Xj (j = 1, 2), F and G are the same as in the SVI (3.1). Let
for i ≥ 0 and j = 1, 2, ̂Hi,j : Xj → Xj be strictly accretive, Mi : X1 ⇒ X1 be an ̂Hi,1-accretive
set-valued mapping and Ni : X2 ⇒ X2 be an ̂Hi,2-accretive set-valued mapping. Suppose
further that for j = 1, 2, Sj : Xj → Xj is a ({ci,j}∞i=0, {di,j}∞i=0,φj)-total uniformly Lj-Lipschitzian
mapping. For an arbitrarily chosen initial point (a0, b0) ∈ X1 × X2, compute the iterative
sequence {(ai, bi)}∞i=0 in X1 × X2 by the iterative schemes

⎧

⎨

⎩

ai+1 = αiai + (1 – αi)Si
1R

̂Hi,1
Mi ,λi

[̂Hi,1(ai) – λiF(ai, bi)],

bi+1 = αibi + (1 – αi)Si
2R

̂Hi,2
Ni ,ρi

[̂Hi,2(bi) – ρiG(ai, bi)],
(3.24)

where i ∈N∪{0}; λi,ρi > 0 are real constants; and {αi}∞i=0 is a sequence in the interval [0, 1]
such that lim supi αi < 1.

If Sj ≡ Ij (j = 1, 2), the identity mapping on Xj, then Algorithm 3.12 reduces to the fol-
lowing algorithm.

Algorithm 3.13 Let Xj, ̂Hi,j, Mi, Ni, F , G (j = 1, 2; i ∈ N ∪ {0}) be the same as in Algo-
rithm 3.12. For any given (a0, b0) ∈ X1 × X2, define the iterative sequence {(ai, bi)}∞i=0 in
X1 × X2 by the iterative processes

⎧

⎨

⎩

ai+1 = αiai + (1 – αi)R
̂Hi,1
Mi ,λi

[̂Hi,1(ai) – λiF(ai, bi)],

bi+1 = αibi + (1 – αi)R
̂Hi,2
Ni ,ρi

[̂Hi,2(bi) – ρiG(ai, bi)],

where i ∈ N ∪ {0}; the constants λi,ρi > 0 and the sequence {αi}∞i=0 are the same as in Al-
gorithm 3.12.

If ̂Hi,j = ̂Hj, λi = λ and ρi = ρ for each i ≥ 0 and j ∈ {1, 2}, then Algorithm 3.13 collapses
to the following algorithm.

Algorithm 3.14 Suppose that Xj (j = 1, 2), F and G are the same as in Algorithm 3.12. Let
for j = 1, 2, ̂Hj : Xj → Xj be strictly accretive mappings and let for each i ≥ 0, Mi : X1 ⇒ X1

be an ̂H1-accretive set-valued mapping and Ni : X2 ⇒ X2 be an ̂H2-accretive set-valued
mapping. For any given (a0, b0) ∈ X1 × X2, compute the iterative sequence {(ai, bi)}∞i=0 in
X1 × X2 by the iterative schemes

⎧

⎨

⎩

ai+1 = αiai + (1 – αi)R
̂H1
Mi ,λ[̂H1(ai) – λF(ai, bi)],

bi+1 = αibi + (1 – αi)R
̂H2
Ni ,ρ[̂H2(bi) – ρG(ai, bi)],

where i ∈ N ∪ {0}; λ,ρ > 0 are two constants; and the sequence {αi}∞i=0 is the same as in
Algorithm 3.12.

4 Graph convergence and an application
Before turning to the main results of this paper, we need to recall the following definition.

Definition 4.1 ([6, 20]) Given set-valued mappings Mi, M : X ⇒ X (i ≥ 0), the sequence

{Mi}∞i=0 is said to be graph-convergent to M, denoted by Mi
G−→ M, if for every point (x, u) ∈
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Graph(M), there exists a sequence of points (xi, ui) ∈ Graph(Mi) such that xi → x and ui →
u as i → ∞.

We now establish a new equivalence relationship between the graph convergence of a
sequence of ̂H-accretive mappings and their associated resolvent operators, respectively,
to a given ̂H-accretive mapping and its associated resolvent operator under some appro-
priate conditions.

Theorem 4.2 Let X be a real smooth Banach space, and ̂H ,̂Hi : X → X (i ≥ 0) be �-
strongly accretive and �i-strongly accretive mappings, respectively, such that for each i ≥ 0
the mapping ̂Hi is ri-Lipschitz continuous. Suppose that M, Mi : X ⇒ X (i ≥ 0) are ̂H-
accretive and ̂Hi-accretive mappings, respectively. Let the sequence {ri}∞i=0 be bounded and
limi→∞ ̂Hi(x) = ̂H(x) for any x ∈ X. Assume further that {λi}∞i=0 is a sequence of real positive
constants convergent to a positive real constant λ, and let the sequence { 1

�i
}∞i=0 be bounded.

Then, the following statements are equivalent:

(i) Mi
G−→ M;

(ii) For each sequence {λi}∞i=0 of real positive constants convergent to a positive real
constant λ,

R̂Hi
Mi ,λi

(z) → R̂HM,λ(z), ∀z ∈ X,

where R̂Hi
Mi ,λi

= (̂Hi + λiMi)–1 (i ≥ 0) and R̂HM,λ = (̂H + λM)–1;
(iii) For some sequence {λi,0}∞i=0 of real positive constants convergent to some positive real

constant λ0,

R̂Hi
Mi ,λi,0

(z) → R̂HM,λ0 (z), ∀z ∈ X.

Proof “(i) ⇒ (ii)” Suppose that Mi
G−→ M and let {λi}∞i=0 be a sequence of real positive con-

stants convergent to a constant λ > 0. Choose z ∈ X arbitrarily but fixed. The fact that M
is an ̂H-accretive mapping implies that (̂H + λM)(X) = X, which guarantees the existence
of a point (x, u) ∈ Graph(M) such that z = ̂H(x) + λu. Then, thanks to Definition 4.1 there
exists a sequence {(xi, ui)}∞i=0 ⊂ Graph(Mi) such that xi → x and ui → u as i → ∞. Taking
into account that (x, u) ∈ Graph(M) and (xi, ui) ∈ Graph(Mi), it follows that

x = R̂HM,λ
[

̂H(x) + λu
]

and xi = R̂Hi
Mi ,λi

[

̂Hi(xi) + λiui
]

. (4.1)

Picking zi = Hi(xi) + λiui for each i ≥ 0 and making use of Lemma 2.12, (4.1), and the
assumptions, we derive that for all i ≥ 0,

∥

∥R̂Hi
Mi ,λi

(z) – R̂HM,λ(z)
∥

∥

≤ ∥

∥R̂Hi
Mi ,λi

(z) – R̂Hi
Mi ,λi

(zi)
∥

∥ +
∥

∥R̂Hi
Mi ,λi

(zi) – R̂HM,λ(z)
∥

∥

≤ 1
�i

‖zi – z‖ +
∥

∥R̂Hi
Mi ,λi

[

̂Hi(xi) + λiui
]

– R̂HM,λ
[

̂H(x) + λu
]∥

∥

≤ 1
�i

‖zi – z‖ + ‖xi – x‖
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≤ 1
�i

∥

∥̂Hi(xi) + λiui – ̂H(x) – λu
∥

∥ + ‖xi – x‖

≤ 1
�i

(∥

∥̂Hi(xi) – ̂Hi(x)
∥

∥ +
∥

∥̂Hi(x) – ̂H(x)
∥

∥ (4.2)

+ ‖λiui – λiu‖ + ‖λiu – λu‖) + ‖xi – x‖

≤
(

1 +
ri

�i

)

‖xi – x‖ +
1
�i

∥

∥̂Hi(x) – ̂H(x)
∥

∥

+
λi

�i
‖ui – u‖ +

|λi – λ|
�i

‖u‖.

Since λi → λ as i → ∞ and the sequences {ri}∞i=0, { 1
�i

}∞i=0 are bounded, it follows that the
sequences { ri

�i
}∞i=0 and { λi

�i
}∞i=0 are also bounded. By virtue of the facts that xi → x, ui → u

and λi → λ as i → ∞, we conclude that the right-hand side of (4.2) tends to zero as i → ∞,
which implies that R̂Hi

Mi ,λi
(z) → R̂HM,λ(z), as i → ∞.

The proof of “(ii) ⇒ (iii)” is obvious.
“(iii) ⇒ (i)” Assume that for some sequence {λi,0}∞i=0 of real positive constants convergent

to some positive real constant λ0, R̂Hi
Mi ,λi,0

(z) → R̂HM,λ0
(z), as i → ∞, for all z ∈ X. Then,

for any (x, u) ∈ Graph(M), we have x = R̂HM,λ0
[̂H(x) + λ0u] and so R̂Hi

Mi ,λi,0
[̂H(x) + λ0u] → x,

as i → ∞. Taking xi = R̂Hi
Mi ,λi,0

[̂H(x) + λ0u] for each i ≥ 0, we infer that for each i ≥ 0,
̂H(x) + λ0u ∈ (̂Hi + λi,0Mi)(xi). Thus, for each i ≥ 0, we can choose ui ∈ Mi(xi) such that
̂H(x) + λ0u = ̂Hi(x) + λi,0ui. Since xi → x as i → ∞, it follows that λi,0ui → λ0u, as i → ∞.
Meanwhile, for all i ≥ 0, it yields

λ0‖ui – u‖ = ‖λ0ui – λ0u‖
≤ ‖λi,0ui – λ0ui‖ + ‖λi,0ui – λ0u‖
= |λi,0 – λ0|‖ui‖ + ‖λi,0ui – λ0u‖.

(4.3)

Taking into account that λi,0 → λ0 and λi,0ui → λ0u, as i → ∞, we deduce that the right-
hand side of (4.3) approaches zero, as i → ∞, which ensures that ui → u as i → ∞. The
proof is finished. �

We obtain the following corollary as a direct consequence of the above theorem imme-
diately.

Corollary 4.3 Suppose that X is a real smooth Banach space, and ̂H : X → X is a �-
strongly accretive and γ -Lipschitz continuous mapping. Furthermore, let Mi, M : X ⇒ X
be ̂H-accretive mappings for i = 1, 2, . . . . Then, the following statements are equivalent:

(i) Mi
G−→ M;

(ii) For each λ > 0, R̂Hi
Mi ,λ(z) → R̂HM,λ(z), ∀z ∈ X ;

(iii) For some λ0 > 0, R̂Hi
Mi ,λ0

(z) → R̂HM,λ0
(z), ∀z ∈ X .

Lemma 4.4 ([59]) Let {δi}∞i=0 be a sequence of real numbers and let there exist θ ∈ [0, 1)
and ξ > 0 such that

δi+1 ≤ θδi + ξ , ∀i ≥ 0.
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Then,

δi ≤ ξ

1 – θ
+
(

δ0 –
ξ

1 – θ

)

θn.

The following lemma plays a prominent role in studying the convergence analysis of our
iterative algorithms proposed in the previous section.

Lemma 4.5 Suppose that {σi}∞i=0, {γi}∞i=0 and {ti}∞i=0 are three real sequences of nonnegative
numbers that satisfy the following conditions:

(i) 0 ≤ γi < 1 for all i ≥ 0 and lim supi γi < 1;
(ii) σi+1 ≤ γiσi + ti, for all i ≥ 0;

(iii) limi→∞ ti = 0.
Then, limi→∞ σi = 0.

Proof Let ε > 0 be chosen arbitrarily but fixed. Taking into account that lim supi γi < 1 and
limi→∞ ti = 0, one can choose i0 ∈ N such that we have lim supi γi < 1 – ε and ti < ε2 for all
i ≥ i0. In the light of (ii), we deduce that

σi+1 ≤ (1 – ε)σi + ε2, ∀i ≥ i0.

Then, by taking θ = 1 – ε and ξ = ε2, from Lemma 4.4, it follows that

σi ≤ ε + (σi0 – ε)(1 – ε)i, ∀i ≥ i0,

which implies that lim supi σi ≤ ε. This completes the proof. �

Remark 4.6 (i) It should be pointed out that the condition lim supi σi < 1 imposed on the
sequence {σi} in Lemma 4.5 is essential and cannot be dropped. To illustrate this fact, let
us take σi = β , ti = β

i , and γi = 1 – 1
i for all i ∈ N, where β > 0 is an arbitrary but fixed real

number. Then, we have σi+1 ≤ γiσi + ti for all i ∈ N, limi→∞ ti = 0 and lim supi γi = 1, but
limi→∞ σi = β �= 0.

(ii) It is important to emphasize that Lemma 4.5 extends and unifies Lemma 5.1 in [13,
14] and Lemma 2.2 in [60].

We are now ready, as an application of the notion of graph convergence for ̂H-accretive
mappings, to present the most important result of this paper in which the strong conver-
gence of the iterative sequence generated by Algorithm 3.12 to a common element of the
two sets SVI(Xj,̂Hj, M, N , F , G : j = 1, 2) and Fix(Q), where Q is a self-mapping of X1 × X2

defined by (3.23), is proved.

Theorem 4.7 Suppose that Xj, ̂Hj, F , G, M, N (j = 1, 2) are the same as in Theorem 3.3
and let all the conditions of Theorem 3.3 hold. Assume that ̂Hi,j, Mi, Ni, Sj, λi, and ρi

(i ≥ 0; j = 1, 2) are the same as in Algorithm 3.12 such that for each i ≥ 0, ̂Hi,1 is a �i,1-
strongly accretive and ri-Lipschitz continuous and ̂Hi,2 is a �i,2-strongly accretive and ki-
Lipschitz continuous mapping. Let Q be a self-mapping of X1 × X2 defined by (3.21) such
that Fix(Q) ∩ SVI(Xj,̂Hj, M, N , F , G : j = 1, 2) �= ∅. Suppose that limi→∞ ̂Hi,j(xj) = ̂Hj(xj),
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Mi
G−→ M, Ni

G−→ N , ri → r, ki → k, �i,j → �i, as i → ∞, and Li(ϑλ0,ρ0 + 1) < 2, where
ϑλ0,ρ0 is the same as in (3.13). Assume further that r < �1 and k < �2 and let there ex-
ist constants λ,ρ > 0 such that λi → λ and ρi → ρ , as i → ∞. Then, the iterative se-
quence {(ai, bi)}∞i=0 generated by Algorithm 3.12 converges strongly to the only element
(a, b) ∈ Fix(Q) ∩ SVI(Xj,̂Hj, M, N , F , G : j = 1, 2).

Proof Since all the conditions of Theorem 3.3 hold, invoking Theorem 3.3, the SVI (3.1)
admits the unique solution (a, b) ∈ X1 × X2. Then, from Lemma 3.1(ii) we infer that

⎧

⎨

⎩

a = R̂H1
M,λ[̂H1(a) – λF(a, b)],

b = R̂H2
N ,ρ[̂H2(b) – ρG(a, b)],

which can be written, for each i ≥ 0, as follows:

⎧

⎨

⎩

a = αia + (1 – αi)Si
1R̂H1

M,λ[̂H1(a) – λF(a, b)],

b = αib + (1 – αi)Si
2R̂H2

N ,ρ[̂H2(b) – ρG(a, b)],
(4.4)

where the sequence {αi}∞i=0 is the same as in Algorithm 3.12. Applying (3.24), (4.4),
Lemma 2.12, and considering the fact that S1 is a ({ci,1}∞i=0, {di,1}∞i=0,φ1)-total uniformly L1-
Lipschitzian mapping, we derive that for each i ≥ 0,

‖ai+1 – ai‖1 ≤ αi‖ai – a‖1 + (1 – αi)
∥

∥Si
1R

̂Hi,1
Mi ,λi

[

̂Hi,1(ai) – λiF(ai, bi)
]

– Si
1R̂H1

M,λ
[

̂H1(a) – λF(a, b)
]∥

∥

1

≤ αi‖ai – a‖1 + (1 – αi)L1
(∥

∥R
̂Hi,1
Mi ,λi

[

̂Hi,1(ai) – λiF(ai, bi)
]

– R̂H1
M,λ
[

̂H1(a) – λF(a, b)
]∥

∥

1 + ci,1φ1
(∥

∥R
̂Hi,1
Mi ,λi

[

̂Hi,1(ai) – λiF(ai, bi)
]

– R̂H1
M,λ
[

̂H1(a) – λF(a, b)
]∥

∥

1

)

+ di,1
)

≤ αi‖ai – a‖1 + (1 – αi)L1
(∥

∥R
̂Hi,1
Mi ,λi

[

̂Hi,1(ai) – λiF(ai, bi)
]

– R
̂Hi,1
Mi ,λi

[

̂H1(a) – λF(a, b)
]∥

∥

1 +
∥

∥R
̂Hi,1
Mi ,λi

[

̂H1(a) – λF(a, b)
]

– R̂H1
M,λ
[

̂H1(a) – λF(a, b)
]∥

∥

1 + ci,1φ1
(∥

∥R
̂Hi,1
Mi ,λi

[

̂Hi,1(ai) – λiF(ai, bi)
]

– R
̂Hi,1
Mi ,λi

[

̂H1(a) – λF(a, b)
]∥

∥

1 +
∥

∥R
̂Hi,1
Mi ,λi

[

̂H1(a) – λF(a, b)
]

– R̂H1
M,λ
[

̂H1(a) – λF(a, b)
]∥

∥

1

)

+ di,1
)

≤ αi‖ai – a‖1 + (1 – αi)L1

(

1
�i

∥

∥̂Hi,1(ai) – λiF(ai, bi)

–
(

̂H1(a) – λF(a, b)
)∥

∥

1 + ‖ϕi,1‖1 + ci,1φ1

(

1
�i,1

‖̂Hi,1(ai) – λiF(ai, bi)

–
(

̂H1(a) – λF(a, b)
)‖1 + ‖ϕi,1‖1

)

+ di,1

)

≤ αi‖ai – a‖1 + (1 – αi)L1

(

1
�i,1

∥

∥̂Hi,1(ai) – ̂Hi,1(a)
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– λi
(

F(ai, bi) – F(a, b)
)∥

∥

1 +
∥

∥̂Hi,1(a) – ̂H1(a)
∥

∥

1 + |λi – λ|∥∥F(a, b)
∥

∥

1

)

+ ‖ϕi,1‖1 + ci,1φ1

(

1
�i,1

∥

∥̂Hi,1(ai) – ̂Hi,1(a) – λi
(

F(ai, bi) – F(a, b)
)∥

∥

1

+
∥

∥̂Hi,1(a) – ̂H1(a)
∥

∥

1 + |λi – λ|∥∥F(a, b)
∥

∥

1

)

+ ‖ϕi,1‖1) + di,1)

≤ αi‖ai – a‖1 + (1 – αi)L1

(

1
�i,1

(∥

∥̂Hi,1(ai) – ̂Hi,1(a)
∥

∥

1

+ λi
∥

∥F(ai, bi) – F(a, b)
∥

∥

1 +
∥

∥̂Hi,1(a) – ̂H1(a)
∥

∥

1 (4.5)

+ |λi – λ|∥∥F(a, b)
∥

∥

1

)

+ ‖ϕi,1‖1 + ci,1φ1

(

1
�i,1

(∥

∥̂Hi,1(ai) – ̂Hi,1(a)
∥

∥

1

+ λi
∥

∥F(ai, bi) – F(a, b)
∥

∥

1 +
∥

∥̂Hi,1(a) – ̂H1(a)
∥

∥

1

+ |λi – λ|∥∥F(a, b)
∥

∥

1

)

+ ‖ϕi,1‖1

)

+ di,1

)

= αi‖ai – a‖1 + (1 – αi)L1

(

1
�i,1

(∥

∥̂Hi,1(ai) – ̂Hi,1(a)
∥

∥

1

+ λi
∥

∥F(ai, bi) – F(a, b)
∥

∥

1

)

+ μi,1 + ci,1φ1

(

1
�i,1

(∥

∥̂Hi,1(ai) – ̂Hi,1(a)
∥

∥

1

+ λi
∥

∥F(ai, bi) – F(a, b)
∥

∥

1

)

+ μi,1

)

+ di,1

)

,

where for each i ≥ 0,

μi,1 =
1

�i,1

(∥

∥̂Hi,1(a) – ̂H1(a)
∥

∥

1 + |λi – λ|∥∥F(a, b)
∥

∥

1

)

+ ‖ϕi,1‖1

and

ϕi,1 = R
̂Hi,1
Mi ,λi

[

̂H1(a) – λF(a, b)
]

– R̂H1
M,λ
[

̂H1(a) – λF(a, b)
]

.

Taking into account that for each i ≥ 0, the mapping ̂Hi,1 is ri-Lipschitz continuous, and
the mapping F is τ1-Lipschitz continuous and τ2-Lipschitz continuous with respect to its
first and second arguments, respectively, it follows that

∥

∥̂Hi,1(ai) – ̂Hi,1(a)
∥

∥

1 ≤ ri‖ai – a‖1 (4.6)

and
∥

∥F(ai, bi) – F(a, b)
∥

∥

1 ≤ ∥

∥F(ai, bi) – F(a, bi)
∥

∥

1 +
∥

∥F(a, bi) – F(a, b)
∥

∥

1

≤ τ1‖ai – a‖1 + τ2‖bi – b‖2.
(4.7)

Substituting (4.6) and (4.7) into (4.5), for all i ≥ 0, we obtain

‖ai+1 – a‖1 ≤ αi‖ai – a‖1 + (1 – αi)L1

(

ri + λiτ1

�i,1
‖ai – a‖1

+
λiτ2

�i,1
‖bi – b‖2 + μi,1 + ci,1φ1

(

ri + λiτ1

�i,1
‖ai – a‖1 (4.8)
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+
λiτ2

�i,1
‖bi – b‖2 + μi,1

)

+ di,1

)

.

By following similar arguments as in the proofs of (4.5)–(4.8) with suitable changes, from
(3.24), (4.5), Lemma 2.12, and the assumptions, one can deduce that

‖bi+1 – b‖2 ≤ αi‖bi – b‖2 + (1 – αi)L2

(

ki + ρiθ2

�i,2
‖bi – b‖2

+
ρiθ1

�i,2
‖ai – a‖1 + μi,2 + ci,2φ2

(

ki + ρiθ2

�i,2
‖bi – b‖2 (4.9)

+
ρiθ1

�i,2
‖ai – a‖1 + μi,2

)

+ di,2

)

,

where for each i ≥ 0,

μi,2 =
1

�i,2

(∥

∥̂Hi,2(b) – ̂H2(b)
∥

∥

2 + |ρi – ρ|∥∥G(a, b)
∥

∥

2

)

+ ‖ϕi,2‖2

and

ϕi,2 = R
̂Hi,2
Ni ,ρi

[

̂H2(b) – ρG(a, b)
]

– R̂H2
N ,ρ
[

̂H2(b) – ρG(a, b)
]

.

Taking L = max{L1, L2} and making use of (4.8) and (4.9), we conclude that for all i ≥ 0,

∥

∥(ai+1, bi+1) – (a, b)
∥

∥∗

= ‖ai+1 – ai‖1 + ‖bi+1 – b‖2

≤ αi
(‖ai – a‖1 + ‖bi – b‖2

)

+ (1 – αi)L
((

ri + λiτ1

�i,1
+

ρiθ1

�i,2

)

‖ai – a‖1

+
(

ki + ρiθ2

�i,2
+

λiτ2

�i,1

)

‖bi – bi‖2 + μi,1 + μi,2

+ ci,1φ1

(

ri + λiτ1

�i,1
‖ai – a‖1 +

λiτ2

�i,1
‖bi – b‖2 + μi,1

)

+ ci,2φ2

(

ki + ρiθ2

�i,2
‖bi – b‖2 +

ρiθ1

�i,2
‖ai – a‖1 + μi,2

)

+ di,1 + di,2

)

≤ αi
(‖ai – a‖1 + ‖bi – b‖2

)

(4.10)

+ (1 – αi)L
(

ϑλi ,ρi (i)
(‖ai – a‖1 + ‖bi – b‖2

)

+ μi,1 + μi,2 + ci,1φ1
(

ϑλi ,ρi (i)
(‖ai – a‖1 + ‖bi – b‖2

)

+ μi,1
)

+ ci,2φ2
(

ϑλi ,ρi (i)
(‖ai – a‖1 + ‖bi – b‖2

)

+ μi,2
)

+ di,1 + di,2
)

≤ αi
∥

∥(ai, bi) – (a, b)
∥

∥∗ + (1 – αi)L
(

ϑλi ,ρi (i)
∥

∥(ai, bi) – (a, b)
∥

∥∗
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+ μi,1 + μi,2 + ci,1φ
(

ϑλi ,ρi (i)
∥

∥(ai, bi) – (a, b)
∥

∥∗ + μi,1
)

+ ci,2φ
(

ϑλi ,ρi (i)
∥

∥(ai, bi) – (a, b)
∥

∥∗ + μi,2
)

+ di,1 + di,2
)

,

where φ is a self-mapping of R+ defined by (3.22), and for each i ≥ 0,

ϑλi ,ρi (i) = max

{

ri + λiτ1

�i,1
+

ρiθ1

�i,2
,

ki + ρiθ2

�i,2
+

λiτ2

�i,1

}

.

Since ri → r, ki → k, λi → λ, ρi → ρ , �i,j → �j for j = 1, 2, it follows that ϑλi ,ρi (i) → ϑλ,ρ ,
as i → ∞, where ϑλ,ρ is the same as in (3.11). By virtue of the fact that r < �1 and k < �2,
there are some λ0,ρ0 > 0 small enough such that ϑλ0,ρ0 ∈ (0, 1). Then, for̂ϑλ0,ρ0 = ϑλ0,ρ0 +1

2 ∈
(ϑλ0,ρ0 , 1) there exists i0 ≥ 1 such that ϑλi ,ρi (i) <̂ϑλ0,ρ0 for all i ≥ i0. Thereby, from (4.10)
we derive that for all i ≥ i0,

∥

∥(ai+1, bi+1) – (a, b)
∥

∥∗

≤ αi
∥

∥(ai, bi) – (a, b)
∥

∥∗ + (1 – αi)L
(

̂ϑλ0,ρ0

∥

∥(ai, bi) – (a, b)
∥

∥∗

+ μi,1 + μi,2 + ci,1φ
(

̂ϑλ0,ρ0

∥

∥(ai, bi) – (a, b)
∥

∥∗ + μi,1
)

+ ci,2φ
(

̂ϑλ0,ρ0

∥

∥(ai, bi) – (a, b)
∥

∥∗ + μi,2
)

+ di,1 + di,2
)

=
(

L̂ϑλ0,ρ0 + (1 – L̂ϑλ0,ρ0 )αi
)∥

∥(ai, bi) – (a, b)
∥

∥∗

+ (1 – αi)L
(

μi,1 + μi,2 + ci,1φ
(

̂ϑλ0,ρ0

∥

∥(ai, bi) – (a, b)
∥

∥∗

+ μi,1
)

+ ci,2φ
(

̂ϑλ0,ρ0

∥

∥(ai, bi) – (a, b)
∥

∥∗ + μi,2
)

+ di,1 + di,2
)

.

(4.11)

Letting γi = L̂ϑλ0,ρ0 + (1–L̂ϑλ0,ρ0 )αi for each i ≥ 0 and thanks to the facts that L(ϑλ0,ρ0 +1) <
2 and lim supi αi < 1, we deduce that

lim sup
i

γi = lim sup
i

(

L̂ϑλ0,ρ0 + (1 – L̂ϑλ0,ρ0 )αi
)

= L̂ϑλ0,ρ0 + (1 – L̂ϑλ0,ρ0 ) lim sup
i

αi

< 1.

Owing to the facts that Mi
G−→ M and Ni

G−→ N , from Theorem 4.2 it follows that for
j = 1, 2, ‖ϕi,j‖j → 0 as i → ∞. Meanwhile, since for j = 1, 2, ̂Hi,j(xj) → ̂Hj(xj) for any xj ∈ Xj,
λi → λ and ρi → ρ as i → ∞, we conclude that for j = 1, 2, μi,j → 0 as i → ∞. Rely-
ing on the fact that for j = 1, 2, Sj is a ({ci,j}∞i=0, {di,j}∞i=0,φj)-total uniformly Lj-Lipschitzian
mapping, invoking Definition 4.1, for j = 1, 2 we have ci,j, di,j → 0 as i → ∞. By assuming
σi = ‖(ai, bi) – (a, b)‖∗ and

ti = (1 – αi)L
(

μi,1 + μi,2 + ci,1φ
(

̂ϑλ0,ρ0

∥

∥(ai, bi) – (a, b)
∥

∥∗ + μi,1
)

+ ci,2φ
(

̂ϑλ0,ρ0

∥

∥(ai, bi) – (a, b)
∥

∥∗ + μi,2
)

+ di,1 + di,2
)

,

we infer that limi→∞ ti = 0 and (4.11) can be written as σi+1 ≤ γiσi + ti for all i ≥ 0. We now
note that all the conditions of Lemma 4.5 are satisfied and thereby making use of (4.11) and
Lemma 4.5 it follows that σi → 0 as i → ∞, i.e., (ai, bi) → (a, b), as i → ∞. Accordingly,
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the sequence {(ai, bi)}∞i=0 generated by Algorithm 3.12 converges strongly to the unique
solution of the SVI (3.1), that is, the only element of Fix(Q) ∩ SVI(Xj,̂Hj, M, N , F , G : j =
1, 2). This completes the proof. �

Taking Sj ≡ Ij, the identity mapping on Xj, the following corollary follows from Theo-
rem 4.7 immediately.

Corollary 4.8 Assume that Xj, ̂Hj, ̂Hi,j, Mi, Ni, λi, ρi, F , G, M, N (i ≥ 0 and j = 1, 2) are the
same as in Theorem 3.3 and let all the conditions of Theorem 3.3 hold. Then, the iterative
sequence {(ai, bi)}∞i=0 generated by Algorithm 3.13 converges strongly to the unique solution
of the SVI (3.1).

Taking Sj ≡ Ij, ̂Hi,j = ̂Hj, λi = λ and ρi = ρ for each i ≥ 0 and j ∈ {1, 2}, we obtain the
following corollary as a direct consequence of Theorem 4.7.

Corollary 4.9 Let Xj, ̂Hj, F , G, M, N (j = 1, 2) be the same as in Theorem 4.2 and let all
the conditions of Theorem 4.2 hold. Suppose that for each i ≥ 0, Mi : X1 ⇒ X1 is an ̂H1-
accretive set-valued mapping and Ni : X2 ⇒ X2 is an ̂H2-accretive set-valued mapping such

that Mi
G−→ M and Ni

G−→ N . Assume further that r < �1 and k < �2. Then, the iterative
sequence {(ai, bi)}∞i=0 generated by Algorithm 3.14 converges strongly to the unique solution
of the SVI (3.1).

5 H(·, ·)-Accretive operators and some comments
In this section, our attention is turned to investigate and analyze the notion of an H(·, ·)-
accretive operator and the related results available in [26]. Some remarks together with
relevant commentaries are also pointed out.

Let us first remark that throughout [26], X is assumed to be a real Banach space such
that J is single-valued. As we know, J is single-valued if and only if X is smooth. Hence,
throughout the rest of paper, unless otherwise stated, we assume that X is a real smooth
Banach space.

Definition 5.1 ([26]) For given single-valued mappings A, B : X → X and H : X × X → X,
(i) H(A, .) is said to be α-generalized accretive with respect to A if there exists a

constant α ∈R satisfying

〈

H(Ax, u) – H(Ay, u), J(x – y)
〉≥ α‖x – y‖2, ∀x, y, u ∈ X;

(ii) H(., B) is said to be β-generalized accretive with respect to B if there exists a
constant β ∈R such that

〈

H(u, Bx) – H(u, By), J(x – y)
〉≥ β‖x – y‖2, ∀x, y, u ∈ X;

(iii) H(·, ·) is said to be ρ-Lipschitz continuous with respect to A if there exists a
constant ρ > 0 such that

∥

∥H(Ax, u) – H(Ay, u)
∥

∥≤ ρ‖x – y‖, ∀x, y, u ∈ X;



Balooee and Yao Journal of Inequalities and Applications        (2022) 2022:112 Page 33 of 43

(iv) H(·, ·) is said to be ς -Lipschitz continuous with respect to B if there exists a
constant ς > 0 such that

∥

∥H(u, Bx) – H(u, By)
∥

∥≤ ς‖x – y‖, ∀x, y, u ∈ X.

Here, it is to be noted that, as was pointed out in [26], in a similar way to cases (iv) and (v)
of Definition 2.1 in [26], one can define the generalized accretivity of the mapping H(·, ·)
with respect to B and the Lipschitz continuity of the mapping H(·, ·) with respect to B, as
we have done, respectively, in parts (ii) and (iv) of Definition 5.1.

Proposition 5.2 Let A, B : X → X and H : X × X → X be the mappings and let ̂H : X → X
be a mapping defined by ̂H(x) := H(Ax, Bx) for all x ∈ X. Then, the following conclusions
hold:

(i) If H(·, ·) is α, β-generalized accretive with respect to A, B, respectively, then ̂H is
(α + β)-strongly accretive and hence it is strictly accretive (resp., accretive and
–(α + β)-relaxed accretive) provided that α + β > 0 (resp., α + β = 0 and α + β < 0);

(ii) If H(·, ·) is r1-Lipschitz continuous with respect to A and r2-Lipschitz continuous with
respect to B, then ̂H is (r1 + r2)-Lipschitz continuous.

Proof (i) Since H(·, ·) is α, β-generalized accretive with respect to A, B, respectively, it
yields

〈

̂H(x) – ̂H(y), J(x – y)
〉

=
〈

H(Ax, Bx) – H(Ay, By), J(x – y)
〉

=
〈

H(Ax, Bx) – H(Ay, Bx), J(x – y)
〉

+
〈

H(Ay, Bx) – H(Ay, By), J(x – y)
〉

≥ α‖x – y‖2 + β‖x – y‖2

= (α + β)‖x – y‖2.

If α + β > 0, the last inequality ensures that ̂H is (α + β)-strongly accretive and so the fact
that ̂H is strictly accretive is straightforward. For the case when α +β = 0 (resp., α +β < 0),
thanks to the preceding inequality we infer that ̂H is accretive (resp., –(α + β)-relaxed
accretive).

(ii) Taking into account that the mapping H(·, ·) is r1-Lipschitz continuous and r2-
Lipschitz continuous with respect to the mappings A and B, respectively, it follows that
for all x, y ∈ X,

∥

∥̂H(x) – ̂H(y)
∥

∥ =
∥

∥H(Ax, Bx) – H(Ay, By)
∥

∥

≤ ∥

∥H(Ax, Bx) – H(Ay, Bx)
∥

∥

+
∥

∥H(Ay, Bx) – H(Ay, By)
∥

∥

≤ (r1 + r2)‖x – y‖;

i.e., ̂H is (r1 + r2)-Lipschitz continuous. The proof is finished. �
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It is significant to emphasize that every bifunction H : X × X → X that is α, β-
generalized accretive with respect to A, B, respectively, is actually a univariate (α + β)-
strongly accretive (resp., accretive and –(α + β)-relaxed accretive) mapping provided that
α + β > 0 (resp., α + β = 0 and α + β < 0) and is not a new one. At the same time, thanks to
Proposition 5.2(ii), the notion of Lipschitz continuity of the bifunction H : X × X → X
with respect to the mappings A, B : X → X presented in parts (iii) and (iv) of Defi-
nition 5.1 is exactly the same concept of Lipschitz continuity of a univariate mapping
̂H = H(A, B) : X → X that appeared in Definition 2.1(v) and is not a new one.

Definition 5.3 ([26, 35]) For given single-valued mappings A, B : X → X and H : X ×
X → X, a set-valued mapping M : X ⇒ X is said to be H(·, ·)-accretive with respect to
mappings A and B (or simply H(·, ·)-accretive in the following), if M is accretive and
(H(A, B) + λM)(X) = X for every λ > 0.

Remark 5.4 It is worth mentioning that the concept of an H(·, ·)-accretive operator was
initially introduced by Zou and Huang [35] in 2008, and was studied for the case when
H(·, ·) is α-strongly accretive with respect to A, β-relaxed accretive with respect to B,
and α > β . Afterwards, several generalizations of this notion appeared in the literature.
Recently, this notion has been considered by Tang and Wang [26] and has been stud-
ied in a more general case when H(·, ·) is α-generalized accretive with respect to A, β-
generalized accretive with respect to B. It should be pointed out that by defining the map-
ping ̂H : X → X as ̂H(x) := H(Ax, Bx) for all x ∈ X, Definition 5.3 coincides exactly with
Definition 2.6. In other words, the concept of an H(·, ·)-accretive operator is actually the
same notion of the ̂H-accretive operator introduced and studied by Fang and Huang [11]
and is not a new one.

According to the following conclusion, the authors [26] deduced that every H(·, ·)-
accretive operator is maximal under some appropriate conditions.

Lemma 5.5 ([26, Theorem 2.1]) Let H(·, ·) be α, β-generalized accretive with respect to
A, B, respectively, such that α + β > 0. Let M : X ⇒ X be an H(·, ·)-accretive operator with
respect to A and B. If the inequality 〈u – v, J(x – y)〉 ≥ 0 holds for all (y, v) ∈ Graph(M), then
u ∈ M(x).

Proof Defining the mapping ̂H : X → X by ̂H(x) := H(Ax, Bx) for all x ∈ X, from the as-
sumptions and using Proposition 5.2(i) it follows that ̂H is (α + β)-strongly accretive and
so it is a strictly accretive mapping. At the same time, invoking Remark 5.4, M is an ̂H-
accretive mapping. We now note that all the conditions of Lemma 2.9 are satisfied and so
the conclusion follows from Lemma 2.9 immediately. �

It should be noted that the conclusion of Theorem 2.1 in [26] has been derived based
on Theorem 3.1 in [35] without presenting any proof. In fact, in [35, Theorem 3.1], the
authors proved that every H(·, ·)-accretive operator with respect to mappings A and B
satisfying the appropriate conditions, where H(·, ·) is α-strongly accretive with respect
to A, β-relaxed accretive with respect to B and α > β is maximal. Tang and Wang [26]
concluded the same assertion for H(·, ·)-accretive mappings for the case when H(·, ·) is
αβ-generalized accretive with respect to A, B, respectively, and α + β �= 0. However, by
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following a similar argument as in the proof of [35, Theorem 3.1] with suitable modifica-
tions, we found that the condition α + β �= 0 in the context of [26, Theorem 2.1] must be
replaced by the condition α + β > 0, as has been done in the context of Lemma 5.5.

Lemma 5.6 ([26, Theorem 2.2]) Let H(·, ·) be α, β-generalized accretive with respect to
A, B, respectively, such that α + β > 0. Let M : X ⇒ X be an H(·, ·)-accretive operator with
respect to A and B. Then, the operator (H(A, B) + λM)–1 is single-valued.

Proof Let us define the mapping ̂H : X → X as ̂H(x) := H(Ax, Bx) for all x ∈ X. Then, in
the light of the assumptions, Proposition 5.2(i) implies that ̂H is (α + β)-strongly accre-
tive and so it is a strictly accretive mapping. Meanwhile, in view of Remark 5.4, M is an
̂H-accretive operator. Thereby, all the conditions of Lemma 2.10 are satisfied. Hence, ac-
cording to Lemma 2.10, the operator (̂H + λM)–1 = (H(·, ·) + λM)–1 is single-valued for
every constant λ > 0. The proof is completed. �

Remark 5.7 It should be pointed out that the assertion of Theorem 2.2 in [26] is derived
similarly to that of assertion of Theorem 3.3 in [35]. In fact, in Theorem 3.3 of [35], the
authors proved that for a given H(·, ·)-accretive operator M : X ⇒ X with respect to the
mappings A and B, where H(·, ·) is α-strongly accretive with respect to A, β-relaxed ac-
cretive with respect to B, and α > β , the operator (H(A, B) + λM)–1 is single-valued for
every constant λ > 0. Without giving any proof, Tang and Wang [26] claimed that the
same assertion holds for the case when H(·, ·) is α, β-generalized accretive with respect to
A, B, respectively, and α + β �= 0. However, by following a similar argument as in the proof
of Theorem 3.3 presented in [35] with suitable changes, we inferred that the condition
α + β �= 0 in the context of [26, Theorem 2.2] must be replaced by the condition α + β > 0,
as we have done in the context of Lemma 5.6.

Based on Theorem 2.2 in [26], the authors defined the resolvent operator associated
with an H(·, ·)-accretive operator M : X ⇒ X as follows.

Definition 5.8 ([26, Definition 2.3]) Let H(·, ·) be α, β-generalized accretive with respect
to A, B, respectively, such that α + β > 0. Let M : X ⇒ X be an H(·, ·)-accretive operator
with respect to A and B. For each λ > 0, the resolvent operator RH(·,·)

M,λ : X → X is defined by

RH(·,·)
M,λ =

(

H(A, B) + λM
)–1(u), ∀u ∈ X.

Note, in particular, that by defining the operator ̂H : X → X as ̂H(x) := H(Ax, Bx) for
all x ∈ X, thanks to the assumptions from Proposition 5.2(i) it follows that ̂H is a strictly
accretive operator. Furthermore, by virtue of Remark 5.4, M is an ̂H-accretive operator.
Thus, based on Definition 2.11, for any constant λ > 0, the resolvent operator R̂HM,λ = RH(·,·)

M,λ :
X → X associated with an ̂H = H(·, ·)-accretive operator M is defined by

RH(·,·)
M,λ (u) = R̂HM,λ(u) = (̂H + λM)–1(u) =

(

H(A, B) + λM
)–1(u), ∀u ∈ X.

Indeed, in view of the discussion mentioned above, the notion of the resolvent operator
RH(·,·)

M,λ associated with an H(·, ·)-accretive operator M : X ⇒ X and an arbitrary constant
λ > 0, where H(·, ·) is α, β-generalized accretive with respect to A, B, respectively, and
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α + β > 0 is actually the same notion of the resolvent operator R̂HM,λ associated with the
̂H-accretive operator M and the real constant λ > 0 given in Definition 2.11 and is not a
new one. At the same time, it should be remarked that in Definition 2.3 of [26], the notion
of a resolvent operator associated with an H(·, ·)-accretive operator M : X ⇒ X is defined
based on Theorem 2.2 in [26]. However, as was pointed out in Remark 5.7, the condition
α +β �= 0 in the context of Theorem 2.2 of [26] must be replaced by the condition α +β > 0.
Hence, this correction must be done in the context of Definition 2.3 of [26], as has done
in the context of Definition 5.8.

With the aim of proving the Lipschitz continuity of the resolvent operator RH(·,·)
M,λ and

computing an estimate of its Lipschitz constant, Tang and Wang [26] presented one of the
most important results of Sect. 2 of [26] without any proof as follows.

Lemma 5.9 ([26, Theorem 2.3]) Let H(·, ·) be α, β-generalized accretive with respect to
A, B, respectively, such that α + β > 0. Let M : X ⇒ X be an H(·, ·)-accretive operator with
respect to A and B. Then, the resolvent operator RH(·,·)

M,λ : X → X is 1
α+β

-Lipschitz continuous,
that is,

∥

∥RH(·,·)
M,λ (u) – RH(·,·)

M,λ (v)
∥

∥≤ 1
α + β

‖u – v‖, ∀u ∈ X.

Proof Defining the mapping ̂H : X → X as ̂H(x) := H(Ax, Bx) for all x ∈ X, with the help of
the assumptions, from Proposition 5.2(i) it follows that the operator ̂H is (α + β)-strongly
accretive. At the same time, by virtue of Remark 5.4, M is an ̂H-accretive operator. Tak-
ing r = α + β , Lemma 2.12 ensures that the resolvent operator R̂HM,λ = RH(·,·)

M,λ : X → X is
Lipschitz continuous with constant 1

r = 1
α+β

, i.e.,

∥

∥RH(·,·)
M,λ (u) – RH(·,·)

M,λ (v)
∥

∥ =
∥

∥R̂HM,λ(u) – R̂HM,λ(v)
∥

∥≤ 1
r
‖u – v‖ =

1
α + β

‖u – v‖,

for all u, v ∈ X. This gives the desired result. �

Example 5.10 ([26, Example 2.1]) Let X = R
2 = (–∞, +∞) × (–∞, +∞) and define A, B :

R
2 →R

2, respectively, by

Ax = (–x1, –x2) = –x and Bx = (2x1, 2x2) = 2x, ∀x = (x1, x2) ∈R
2.

Suppose that the bifunction H(·, ·) : R2 × R
2 → R

2 is defined by H(·, ·)((x, y)) = x + y, for
all x, y ∈ X = R

2. Thanks to the facts that

〈

H(Ax, y) – H(Ay, u), J(x – y)
〉

= 〈Ax – Ay, x – y〉
=
〈

(–x1 + y1, –x2 + y2), (x1 – y1, x2 – y2)
〉

= 〈–x + y, x – y〉
= –‖x – y‖2
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and

〈

H(u, Bx) – H(u, By), J(x – y)
〉

= 〈Bx – By, x – y〉
=
〈

(2x1 – 2y1, 2x2 – 2y2), (x1 – y1, x2 – y2)
〉

= 〈2x – 2y, x – y〉
= 2‖x – y‖2,

Tang and Wang [26] deduced that H(·, ·) is –1, 2-generalized accretive with respective to
A, B, respectively. By virtue of the facts that

∥

∥H(Ax, u) – H(Ay, u)
∥

∥ = ‖Ax – Ay‖ = ‖ – x + y‖ ≤ ‖x – y‖

and

∥

∥H(u, Bx) – H(u, By)
∥

∥ = ‖Bx – By‖ = ‖2x – 2y‖ ≤ 2‖x – y‖,

it follows that H(·, ·) is 1-Lipschitz continuous and 2-Lipschitz continuous with respect to
A and B, respectively. Taking into account that H is not strongly accretive with respect to
A, they pointed out that the condition of Theorems 3.1, 3.3, 3.4, and Definition 3.2 of Zou
and Huang [35] is not satisfied.

Let us define the mapping ̂H : X → X by ̂H(x) := H(Ax, Bx) for all x ∈ X. Then, for all
x ∈ X, we have ̂H(x) = Ax + Bx = –x + 2x = x. Now, taking α = –1, β = 2, r1 = 1 and r2 = 2,
in light of the fact that α + β = –1 + 2 > 0, from parts (i) and (ii) of Proposition 5.2, it is
expected that the mapping ̂H is (α + β) = 1-strongly accretive and (r1 + r2) = 3-Lipschitz
continuous. Since

〈

̂H(x) – ̂H(y), J(x – y)
〉

= 〈x – y, x – y〉 ≥ ‖x – y‖2

and

∥

∥̂H(x) – ̂H(y)
∥

∥ = ‖x – y‖ ≤ 3‖x – y‖,

for all x, y ∈ X, these facts confirm our expectations, i.e., our observations are compatible
with our derived assertions in Proposition 5.2.

Definition 5.11 ([26, 60]) Let A, B : X → X and H : X × X → X be three single-valued
mappings. Let Mi, M : X ⇒ X be H(·, ·)-accretive operators for i = 1, 2, . . . . The sequence

{Mi} is said to be graph-convergent to M, denoted by Mi
G−→ M, if for every (x, u) ∈

Graph(M), there exists a sequence of points (xi, ui) ∈ Graph(Mi) such that xi → x and
ui → u, as i → ∞.

As was pointed out, by defining the mapping ̂H : X → X by ̂H(x) := H(Ax, Bx) for all
x ∈ X, the notion of H(·, ·)-accretive mapping is exactly the same concept of ̂H-accretive
mapping and is not a new one. Thanks to this fact we found that if in Definition 5.11,
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the mappings Mi (i ≥ 0) and M are assumed to be ̂H-accretive, then Definition 5.11 be-
comes actually the same Definition 4.1. In fact, the notion of graph convergence for H(·, ·)-
accretive mappings introduced in [26, 60] is exactly the same concept of graph conver-
gence for ̂H-accretive mappings as a special case of Definition 4.1 and is not a new one.

Using the notion of graph convergence for H(·, ·)-accretive operators, Tang and Wang
[26] established an equivalence between the graph convergence of a sequence of H(·, ·)-
accretive operators and their associated resolvent operators, respectively, to a given H(·, ·)-
accretive mapping and its associated resolvent operator as follows.

Theorem 5.12 ([26, Theorem 2.4]) Let Mi, M : X ⇒ X be H(·, ·)-accretive operators for
i = 1, 2, . . . . Assume that H : X × X → X is a single-valued mapping such that

(a) H(A, B) is α, β-generalized accretive with respect to A, B, respectively, with α + β > 0;
(b) H(A, B) is γ1, γ2-Lipschitz continuous with respect to A, B, respectively.
Then, the following statements are equivalent:

(i) Mi
G−→ M;

(ii) For each λ > 0, RH(·,·)
Mi ,λ (u) → RH(·,·)

M,λ (u), ∀u ∈ X ;
(iii) For some λ0 > 0, RH(·,·)

Mi ,λ0
(u) → RH(·,·)

M,λ0
(u), ∀u ∈ X .

Proof Let us define the mapping ̂H : X → X by ̂H := H(Ax, Bx) for all x ∈ X. Thanks to
the assumptions mentioned in parts (a) and (b), from parts (i) and (ii) of Proposition 5.2 it
follows that ̂H is (α +β)-strongly accretive and (γ1 +γ2)-Lipschitz continuous. Meanwhile,
invoking Remark 5.4, Mi (i ≥ 0) and M are ̂H-accretive mappings and so the resolvent
operators RH(·,·)

Mi ,λ (i ≥ 0) and RH(·,·)
M,λ become actually the same resolvent operators R̂HMi ,λ (i ≥

0) and R̂HM,λ, respectively. Taking � = α + β and γ = γ1 + γ2, we note that all the conditions
of Corollary 4.9 are satisfied. Now, in the light of Corollary 4.9, it follows that the following
statements are equivalent:

(i) Mi
G−→ M;

(ii) For each λ > 0, RH(·,·)
Mi ,λ (u) = R̂HMi ,λ(u) → R̂HM,λ(u) = RH(·,·)

M,λ (u), ∀u ∈ X ;
(iii) For some λ0 > 0, RH(·,·)

Mi ,λ0
(u) = R̂HMi ,λ0

(u) → R̂HM,λ0
(u) = RH(·,·)

M,λ0
(u), ∀u ∈ X .

The proof is completed. �

Let for i = 1, 2, Xi be real Banach spaces and let Ai, Bi : Xi → Xi, Hi : Xi ×Xi → Xi, F : X1 ×
X2 → X1 and G : X1 × X2 → X2 be the nonlinear operators. Recently, Tang and Wang [26]
considered and studied the SVI (3.1), where M : X1 ⇒ X1 and N : X2 ⇒ X2 are H1(A1, B1)-
accretive and H2(A2, B2)-accretive set-valued operators, respectively. In order to present
a characterization of the solution of the SVI (3.1) involving Hi(·, ·)-accretive operators M
and N (i = 1, 2), Tang and Wang [26] gave the following conclusion by using the notion of
the resolvent operators RH1(·,·)

M,λ and RH2(·,·)
N ,ρ .

Lemma 5.13 ([26, Lemma 3.1]) Let X1 and X2 be two real smooth Banach spaces. Let
A1, B1 : X1 → X1, A2, B2 : X2 → X2 be four single-valued operators, H1 : X1 × X1 → X1 be a
single-valued mapping such that H1(A1, B1) is α1, β1-generalized accretive with respect to
A1, B1, respectively, with α1 + β1 > 0, and H2 : X2 × X2 → X2 be a single-valued mapping
such that H2(A2, B2) is α2, β2-generalized accretive with respect to A2, B2, respectively, with
α2 + β2 > 0. Let M : X1 ⇒ X1 be an H1(·, ·)-accretive set-valued mapping and N : X2 ⇒ X2

be an H2(·, ·)-accretive set-valued mapping. Then, the following statements are equivalent:
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(i) (a, b) ∈ X1 × X2 is a solution of the problem (3.1) (involving an H1(·, ·)-accretive
operator M and an H2(·, ·)-accretive operator N , that is, [26, problem (3.1)]);

(ii) For any λ,ρ > 0, (a, b) satisfies

⎧

⎨

⎩

a = RH1(·,·)
M,λ [H1(A1(a), B1(a)) – λF(a, b)],

b = RH2(·,·)
N ,ρ [H2(A2(b), B2(b)) – ρG(a, b)];

(iii) For some λ0 > 0 and ρ0 > 0, (a, b) satisfies

⎧

⎨

⎩

a = RH1(·,·)
M,λ0

[H1(A1(a), B1(a)) – λ0F(a, b)],

b = RH2(·,·)
N ,ρ0

[H2(A2(b), B2(b)) – ρ0G(a, b)].

Proof Defining the mappings ̂Hi : Xi → Xi for i = 1, 2 as ̂Hi(xi) := Hi(Aixi, Bixi) for all
xi ∈ Xi, in the light of the assumptions it follows from Proposition 5.2(i) that the oper-
ators ̂Hi (i = 1, 2) are strictly accretive. At the same time, invoking Remark 5.4, we infer
that M and N are ̂H1-accretive and ̂H2-accretive operators, respectively, and so the resol-
vent operators RH1(·,·)

M,λ and RH2(·,·)
N ,ρ become actually the same resolvent operators R̂H1

M,λ and
R̂H2

N ,ρ , respectively. Now, we note that all the conditions of Lemma 3.1 are satisfied. Hence,
Lemma 3.1 ensures that the following statements are equivalent:

(i) (a, b) ∈ X1 × X2 is a solution of the SVI (3.1);
(ii) For any λ,ρ > 0, (a, b) satisfies

⎧

⎨

⎩

a = R̂H1
M,λ[̂H1(a) – λF(a, b)] = RH1(·,·)

M,λ [H1(A1(a), B1(a)) – λF(a, b)],

b = R̂H2
N ,ρR̂H2

N ,ρ[̂H2(b) – ρG(a, b)] = RH2(·,·)
N ,ρ [H2(A2(b), B2(b)) – ρG(a, b)];

(iii) For some λ0 > 0 and ρ0 > 0, (a, b) satisfies

⎧

⎨

⎩

a = R̂H1
M,λ0

[̂H1(a) – λ0F(a, b)] = RH1(·,·)
M,λ0

[H1(A1(a), B1(a)) – λ0F(a, b)],

b = R̂H2
N ,ρ0

R̂H2
N ,ρ0

[̂H2(b) – ρ0G(a, b)] = RH2(·,·)
N ,ρ0

[H2(A2(b), B2(b)) – ρ0G(a, b)].

This completes the proof. �

Taking into account the above-mentioned argument, it is significant to emphasize that
contrary to the claim of the authors in [26], Lemma 5.13 (that is, [26, Lemma 3.1]) gives
actually a characterization of the solution of the SVI (3.1) involving an ̂H1-accretive map-
ping M and an ̂H2-accretive mapping N not the SVI (3.1) involving H1(·, ·)-accretive and
H2(·, ·)-accretive mappings M and N (that is, [26, the problem (3.1)]). Meanwhile, it should
be remarked that throughout Sect. 3 of [26], the spaces Xi (i = 1, 2) are assumed to be real
Banach spaces such that for each i ∈ {1, 2}, the normalized duality mapping Ji : Xi ⇒ X∗

i

is single-valued. It is known that, in general, Ji (i = 1, 2) is single-valued if and only if Xi is
smooth. Hence, in the following, we may assume that Xi (i = 1, 2) are real smooth Banach
spaces, as we have assumed in the context of Lemma 5.13.

Under some suitable conditions, Tang and Wang [26] proved the existence of a unique
solution for [26, problem (3.1)] (that is, the SVI (3.1) involving an H1(·, ·)-accretive map-
ping M and an H2(·, ·)-accretive mapping N ) as follows.
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Theorem 5.14 ([26, Theorem 3.1]) Let X1, X2, A1, B1, A2, B2, H1, H2, M, N be the same as
in Lemma 5.13. Furthermore, assume that H1(A1, B1) is r1, r2-Lipschitz continuous with re-
spect to A1, B1, respectively, H2(A2, B2) is k1, k2-Lipschitz continuous with respect to A2, B2,
respectively, F : X1 × X2 → X1 is τ1-Lipschitz continuous with respect to its first argument
and τ2-Lipschitz continuous with respect to its second argument, and G : X1 × X2 → X2 is
θ1-Lipschitz continuous with respect to its first argument and θ2-Lipschitz continuous with
respect to its second argument. If the following inequalities hold:

r1 + r2

α1 + β1
< 1 and

k1 + k2

α2 + β2
< 1,

then the SVI (3.1) (with an H1(·, ·)-accretive mapping M and an H2(·, ·)-accretive mapping
N , that is, [26, the problem (3.1)]) admits a unique solution.

Proof Let us define for i = 1, 2, the mapping ̂Hi : Xi → Xi by ̂Hi(xi) = Hi(Aixi, Bixi) for all
xi ∈ Xi. Since H1(A1, B1) is α1, β1-generalized accretive with respect to A1, B1, respectively,
with α1 + β1 > 0, and r1, r2-Lipschitz continuous, from parts (i) and (ii) of Proposition 5.2
we conclude that ̂H1 is (α1 + β1)-strongly accretive and (r1 + r2)-Lipschitz continuous. By
an argument analogous to the previous one, from the assumptions and Proposition 5.2
it follows that the operator ̂H2 is (α2 + β2)-strongly accretive and (k1 + k2)-Lipschitz con-
tinuous. Furthermore, thanks to Remark 5.4 we deduce that M and N are ̂H1-accretive
and ̂H2-accretive mappings, respectively. Then, the problem (3.1) in [26] involving an
H1(·, ·)-accretive mapping M and an H2(·, ·)-accretive mapping N coincides exactly with
the SVI (3.1) involving an ̂H1-accretive mapping M and an ̂H2-accretive mapping N . Tak-
ing �i = αi +βi (i = 1, 2), r = r1 + r2 and k = k1 + k2, we have r

�1
= r1+r2

α1+β1
< 1 and k

�2
= k1+k2

α2+β2
< 1.

We now note that all the conditions of Theorem 3.3 are satisfied and so in accordance with
Theorem 3.3, the SVI (3.1) ([26, the problem (3.1)]) admits a unique solution. This com-
pletes the proof. �

Based on Lemma 5.13 and by assuming that for all i ≥ 0, Mi is an H1(·, ·)-accretive map-
ping with respect to A1 and B1, and Ni is an H2(·, ·)-accretive mapping with respect to A2

and B2, Tang and Wang [26] constructed the following iterative algorithm for finding an
approximate solution of the SVI (3.1) involving an H1(·, ·)-accretive mapping M and an
H2(·, ·)-accretive mapping N (that is, [26, the problem (3.1)]).

Algorithm 5.15 ([26, Algorithm 3.1]) Step 0: Choose some λ0 > 0 and ρ0 > 0 to satisfy the
two inequalities presented in (3.16) (of [26]). Select an initial point (a0, b0) ∈ X1 × X2. Set
i := 0.

Step i: Given (ai, bi) ∈ X1 × X2, compute (ai+1, bi+1) ∈ X1 × X2 by

ai+1 = αiai + (1 – αi)RH1(·,·)
Mi ,λ0

[

H1
(

A1(ai), B1(ai)
)

– λ0F(ai, bi)
]

,

bi+1 = αibi + (1 – αi)RH2(·,·)
Ni ,ρ0

[

H2
(

A2(bi), B2(bi)
)

– ρ0G(ai, bi)
]

,

for i = 0, 1, 2, . . . , where 0 ≤ αi < 1 with lim supi αi < 1.

It is also remarkable that by defining the mapping ̂Hi : Xi → Xi for i = 1, 2 by ̂Hi(xi) :=
Hi(Aixi, Bixi) for all xi ∈ Xi, with the help of the assumptions and utilizing Proposi-
tion 5.2(i) we infer that the operators ̂Hi (i = 1, 2) are strictly accretive. In the light of



Balooee and Yao Journal of Inequalities and Applications        (2022) 2022:112 Page 41 of 43

Remark 5.4 we also conclude that M and N are ̂H1-accretive and ̂H2-accretive operators,
respectively. Meanwhile, the resolvent operators RH1(·,·)

Mi ,λ0
and RH2(·,·)

Ni ,ρ0
(i ≥ 0) become actually

the same resolvent operators R̂H1
Mi ,λ0

and R̂H2
Ni ,ρ0

, respectively. Then, for each i ≥ 0, it yields

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ai+1 = αiai + (1 – αi)RH1(·,·)
Mi ,λ0

[H1(A1(ai), B1(ai)) – λ0F(ai, bi)]

= αiai + (1 – αi)R
̂H1
Mi ,λ0

[̂H1(ai) – λ0F(ai, bi)],

bi+1 = αibi + (1 – αi)RH2(·,·)
Ni ,ρ0

[H2(A2(bi), B2(bi)) – ρ0G(ai, bi)]

= αibi + (1 – αi)R
̂H2
Ni ,ρ0

[̂H2(bi) – ρ0G(ai, bi)].

Thereby, we find that Algorithm 5.15 actually becomes the same Algorithm 3.14 and is
not a new one.

Finally, Tang and Wang [26] closed their paper with the most important result that ap-
peared in it related to the strong convergence of the iterative sequence {(ai, bi)}∞i=0 gen-
erated by Algorithm 5.15 to the unique solution of the SVI (3.1) involving an H1(·, ·)-
accretive mapping M and an H2(·, ·)-accretive mapping N (that is, [26, the problem (3.1)]).

Theorem 5.16 ([26, Theorem 3.2]) Let X1, X2, A1, B1, A2, B2, H1, H2, M, N , F , G be the
same as in Theorem 5.14 (that is, [26, Theorem 3.1]). Assume that the following inequalities
hold:

r1 + r2

α1 + β1
< 1 and

k1 + k2

α2 + β2
< 1.

Furthermore, let Mi : X1 ⇒ X1 (i = 0, 1, 2, . . . ) be H1(·, ·)-accretive set-valued mappings such

that Mi
G−→ M and Ni : X2 ⇒ X2 be H2(·, ·)-accretive set-valued mappings such that Ni

G−→
N . Then, the sequence generated by Algorithm 5.15 (that is, [26, Algorithm 3.1]) converges
strongly to the unique solution of the SVI (3.1) (involving an H1(·, ·)-accretive mapping M
and an H2(·, ·)-accretive mapping N , that is, [26, the problem (3.1)]).

Proof Define for i = 1, 2, the operators ̂Hi : Xi → Xi by ̂Hi(xi) := Hi(Aixi, Bixi) for all xi ∈ Xi.
In light of the assumptions and by the same arguments used in Theorem 5.14, we conclude
that ̂H1 is an (α1 + β1)-strongly accretive and (r1 + r2)-Lipschitz continuous mapping, ̂H2

is an (α2 + β2)-strongly accretive and (k1 + k2)-Lipschitz continuous mapping, for all i ≥ 0,
the mappings Mi and Ni are ̂H1-accretive and ̂H2-accretive, respectively, and the problem
(3.1) in [26] involving an H1(·, ·)-accretive mapping M and an H2(·, ·)-accretive mapping
N coincides exactly with the SVI (3.1) involving an ̂H1-accretive mapping M and an ̂H2-
accretive mapping N . At the same time, Algorithm 5.15 becomes actually the same Algo-
rithm 3.14. Taking �i = αi + βi (i = 1, 2), r = r1 + r2 and k = k1 + k2, we obtain r

�1
= r1+r2

α1+β1
< 1

and k
�2

= k1+k2
α2+β2

< 1. In view of the fact that all the conditions of Corollary 4.9 are satisfied,
Corollary 4.9 ensures that the iterative sequence {(ai, bi)}∞i=0 generated by Algorithm 5.15
converges strongly to the unique solution of the problem (3.1) in [26]. This completes the
proof. �
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