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Abstract
The initial boundary value problem of an anisotropic porous medium equation is
considered in this paper. The existence of a weak solution is proved by the monotone
convergent method. By showing that ∇u ∈ L∞(0, T ; L2loc(�)), according to different
boundary value conditions, some stability theorems of weak solutions are obtained.
The unusual thing is that the partial boundary value condition is based on a
submanifold � of ∂� × (0, T ) and, in some special cases,
� = {(x, t) ∈ ∂� × (0, T ) :

∏
ai(x, t) > 0}.
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1 Introduction
The well-posedness and regularity of weak solutions to the porous medium equation

ut = �um (1.1)

or

β(u)t = �u, β(u) = |u| 1
m sign u (1.2)

were addressed from the sixties to eighties in the twentieth century by many mathemati-
cians, one can refer to [3, 6, 17, 18, 21, 22] and the references therein. Later, DiBenedetto
[2] and Ziemer [28] studied the regularity to the more general equation

β(u)t = ∇ · �a(x, t, u,∇u) + b(x, t, u,∇u), (1.3)

considering suitable assumptions on �a and b. The proofs followed different approaches:
DiBenedetto’s proof was based on a parabolic version of De Giorgi’s technique, while
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Ziemer’s approach was related to Moser’s iteration technique. But, since many reaction-
diffusion processes depend on different environments, one should consider a reaction-
diffusion equation with anisotropic characteristic, then the anisotropic porous medium
equation modeled by

ut =
N∑

i=1

(
umi

)
xi

, (x, t) ∈ QT , (1.4)

was introduced and studied since 1980s. Actually, Song [19, 20] studied the existence and
uniqueness of the very weak solution of the anisotropic porous medium equation with sin-
gular advections and absorptions. Henriques [7] established an interior regularity result
for the solutions of (1.4). Li [11] developed the finite element method to derive a special
analytical solution for anisotropic porous medium equation for time-independent diffu-
sion. Also, several applied models related to an anisotropic porous medium have been
introduced recently. The first one is the flow diverter model. Since the explicit model-
ing of thin wires of simulation of flow diverter (FD) imposes extremely high demand of
computational resources and time, such a fact limits its use in time-sensitive presurgi-
cal planning. One alternative approach is to model as a homogenous porous medium,
which saves time but with compromise in accuracy. Then, Ou et al. [13] proposed a new
method to model FD as a heterogeneous and anisotropic porous medium whose proper-
ties were determined from local porosity. The second one is a multiple-relaxation-time
lattice Boltzmann model for the flow and heat transfer in a hydrodynamically and ther-
mally anisotropic porous medium [8]. The third one arises from computational fluid dy-
namics (CFD). Doumbia et al. [5] gave a CFD modelling of an animal occupied zone using
an anisotropic porous medium model with velocity-dependent resistance parameters. An-
other model comes from the physical characteristics of cracked rocks. By testing elastic
velocities and Thomsen parameters—as a function of crack density for fixed values of as-
pect ratio—predicted by the model with data acquired from synthetic rock samples, Nasci-
mento et al. [12] introduced a new ultrasonic physical model in an anisotropic porous
cracked medium.

Moreover, in the theory of PDE, the anisotropic equation has provoked more people’s
attention in recent time. For example, the existence and multiplicity of nontrivial solutions
to the anisotropic elliptic equation

N∑

i=1

∂

∂xi

(|uxi |pi–2uxi

)
= f (x, u), x ∈ �, (1.5)

has been an active topic in recent years (see [4, 15, 16], etc.), while the anisotropic parabolic
equation

ut =
N∑

i=1

∂

∂xi

(
ai(x)|uxi |pi–2uxi

)
+ f (x, t, u), (x, t) ∈ QT , (1.6)

was studied in [1, 14], etc.
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In this paper, we consider the well-posedness of weak solutions to the following initial
boundary value problem:

ut =
N∑

i=1

∂

∂xi

(
ai(x, t)|u|αi uxi

)
+

N∑

i=1

∂bi(u, x, t)
∂xi

, (x, t) ∈ QT , (1.7)

with

u(x, 0) = u0(x), x ∈ �, (1.8)

and

u(x, t) = 0, (x, t) ∈ ∂� × (0, T). (1.9)

Compared with equation (1.1), we call equation (1.7) an anisotropic medium equation
with a convection term. Apart from the anisotropic characteristic of equation (1.7), we
are concerned with whether the homogeneous boundary value condition (1.9) is overde-
termined or not. In our previous work [27], we made the usual exploration on the following
porous medium equation:

ut = div
(
a(x)∇um)

+
N∑

i=1

∂bi(um)
∂xi

, (x, t) ∈ QT . (1.10)

We found that if one wants to prove the uniqueness (or the stability) of weak solutions to
this equation, the homogeneous boundary value condition (1.9) can be replaced by that
a(x) = 0, x ∈ ∂�. Even much earlier, Yin and Wang [23, 24] studied the following equation:

∂u
∂t

– div
(
a(x)|∇u|p–2∇u

)
– fi(x)Diu + c(x, t)u = g(x, t), (x, t) ∈ QT , (1.11)

divided the boundary value condition into three parts, and in particular they showed that
if a(x) = 0, fi(x) = 0 when x ∈ ∂�, then the uniqueness of a weak solution to equation (1.11)
can be proved independent of the boundary value condition (1.9). The optimal boundary
value condition matching up with equation (1.11) was studied by the author recently in
[26].

Instead of a(x)|x∈∂� = 0 in [27], we only assume that ai(x, t) > 0, (x, t) ∈ �× (0, T) and do
not emphasize that

ai(x, t) = 0, (x, t) ∈ ∂� × [0, T], i = 1, 2, . . . , N .

So, for any given t ∈ [0, T], both

{
x ∈ ∂� : ai(x, t) = 0

}

and

{
x ∈ ∂� : ai(x, t) > 0

}
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may have a positive (N – 1)-dimensional Hausdorff measure in ∂�. Naturally, based on
past experience [23, 24, 27], we guess that a partial boundary value condition

u(x, t) = 0, (x, t) ∈ � ⊆ ∂� × (0, T), (1.12)

is enough to ensure the well-posedness of weak solutions to equation (1.7). The further
work is to specify the explicit expression of � in (1.12). Different from other related refer-
ences [23, 24, 27] in which � is just a cylinder, we found that � appearing in (1.12) is a sub-
manifold of ∂�× (0, T) and, in some special cases, � = {(x, t) ∈ ∂�× (0, T) :

∏
ai(x, t) > 0}.

Actually, compared with [7, 19, 20], the degeneracy of diffusion coefficient ai(x, t) has
brought more essential difficulties. For example, maybe it is not difficult to construct
the fundamental solution of equation (1.4) by Barenblatt’s method, but it is impossible
to construct the corresponding fundamental solution of the simplest anisotropic porous
medium equation

ut =
N∑

i=1

∂

∂xi

(
ai(x, t)|u|αi uxi

)
(1.13)

by a similar method. However, the main aim of this paper is to study the well-posedness
of weak solutions to equation (1.7), and we pay no attention to the fundamental solution
for the time being. The local integrability ∇u ∈ L∞(0, T ; L2

loc(�)), which was found for the
first time in this paper, acts as an important role to overcome the above difficulties.

The remainder of this paper is structured as follows. In Sect. 2, we present the defini-
tion of weak solution and the main results. In Sect. 3, the existence of a weak solution
is proved. In Sect. 4, the stability of a weak solution to the usual initial boundary value
problem is studied. In Sect. 5, the local integrability of ∇u is found and the uniqueness of
a weak solution to the usual initial boundary value problem is obtained. In Sect. 6, when
∏N

i=1 ai(x, t)|x∈∂� = 0, the stability of a weak solution based on a partial boundary value
condition is proved. In Sect. 7, we prove the stability of weak solutions under the general
condition

∏N
i=1 ai(x, t) ≥ 0.

2 The definition of the weak solution and the main results
The definition of weak solution and the main results of this paper are listed below.

Definition 2.1 A function u(x, t) is said to be a weak solution of equation (1.7) if

u ∈ L∞(QT ), ut ∈ L1(QT ),

ai(x, t)
∣
∣u

αi
2 +1

xi

∣
∣2 ∈ L∞(

0, T ; L1(�)
)
, i = 1, 2, . . . , N ,

(2.1)

and for any function ϕ ∈ C1
0(QT ), there holds

∫∫

QT

(

–
∂ϕ

∂t
u +

N∑

i=1

ai(x, t)uαi uxiϕxi

)

dx dt +
N∑

i=1

∫∫

QT

bi(u, x, t)ϕxi (x, t) dx dt = 0. (2.2)

The initial value condition is satisfied in the sense of that

lim
t→0

∫

�

(
u(x, t) – u0(x)

)
φ(x) dx = 0, (2.3)
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where φ(x) ∈ C∞
0 (�). The boundary value condition (1.9) or the partial boundary value

condition (1.12) is satisfied in the sense of trace.

Theorem 2.2 If αi > 0, bi(s, x, t) is a C1 function and | ∂
∂xi

bi(s, x, t)| ≤ c(M) when |s| ≤ M +1,
u0(x) satisfies

u0(x) ∈ L∞(�), ai(x, 0)uαi
0 |u0xi | ∈ L1(�), i = 1, 2, . . . , N , (2.4)

ai(x, t) ≥ 0 satisfies

∫∫

QT

∂
√ai

∂xi
dx dt ≤ c, i = 1, 2, . . . , N , (2.5)

then equation (1.7) with initial boundary values (1.8)–(1.9) has a nonnegative solution.
Here and the after, M is a constant such that ‖u0(x)‖L∞(�) ≤ M.

From Theorem 2.3 to Theorem 2.6, we all assume that ai(x, t) > 0, x ∈ � and denote that

α+ = max{α1,α2, . . . ,αN }, α– = max{α1,α2, . . . ,αN }.

Theorem 2.3 Let u(x, t) and v(x, t) be two solutions of equation (1.7) with the initial value
u0(x), v0(x) respectively, and with the boundary value condition (1.9). If αi ≥ 0, and there
is a constant α > 1

2 (α+ + 2) such that

∣
∣bi(u, x, t) – bi(v, x, t)

∣
∣ ≤ cai(x, t)

1
2 |u – v|α , i = 1, 2, . . . , N , (2.6)

then the solution of equation (1.7) is unique.

Theorem 2.4 Let u(x, t) and v(x, t) be two nonnegative solutions of equation (1.7) with
the initial value u0(x), v0(x) respectively, with the same boundary value condition (1.9). If
αi ≥ 1,

∫

�

ai(x, t)vαi–1|vxi |2 ≤ c,
∫

�

ai(x, t)uαi–1|uxi |2 ≤ c, i = 1, 2, . . . , N , (2.7)

∣
∣bi(u, x, t) – bi(v, x, t)

∣
∣ ≤ cai(x, t)

1
2 |u – v|2, i = 1, 2, . . . , N , (2.8)

then
∫

�

∣
∣u(x, t) – v(x, t)

∣
∣ ≤ c

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx. (2.9)

Theorem 2.4 implies that we only can show that the stability of weak solutions is true
for a kind of solutions which satisfy (2.7). The following stability theorems are established
on a partial boundary value condition.

Theorem 2.5 Let u(x, t) and v(x, t) be two solutions of equation (1.7) satisfying

1
λ

∫

�λt\�2λt

ai(x, t)|u|αi |uxi |2 dx < C(T), (2.10)
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1
λ

∫

�λt\�2λt

ai(x, t)|v|αi |vxi |2 dx < C(T), (2.11)

with the initial value u0(x), v0(x) respectively, and with a partial boundary value condition

v(x, t) = u(x, t) = 0, (x, t) ∈ �. (2.12)

If α– ≥ 1, bi(·, x, t) satisfies

∣
∣bi(u, x, t) – bi(v, x, t)

∣
∣ ≤ c

√
ai(x, t)|u – v|, i = 1, 2, . . . , N , (2.13)

then
∫

�

∣
∣u(x, t) – v(x, t)

∣
∣ ≤ c

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx. (2.14)

Here,

� =

{

(x, t) ∈ ∂� × (0, T) :
N∑

i=1

√
ai(x, t)

( N∏

j=1

aj(x, t)

)

xi

�= 0

}

(2.15)

and �λt = {x ∈ � :
∏N

i=1 ai(x, t) > λ}.

Theorem 2.5 is based on the fact that we can show the first order partial derivative to
the solution u is with the local integrability

uxi ∈ L∞(
0, T ; L2

loc(�)
)
, i = 1, 2, . . . , N . (2.16)

The weakness of Theorem 2.5 is that the expression of �, (2.15) seems too complicated.
By choosing another test function, we can prove another stability theorem based on a
simpler partial boundary value condition.

Theorem 2.6 Suppose α– ≥ 1,

N∏

j=1

aj(x, t) = 0, (x, t) ∈ ∂� × (0, T). (2.17)

Let u(x, t) and v(x, t) be two solutions of equation (1.7) with the initial value u0(x), v0(x)
respectively, but without the boundary value condition. If (2.13) is true and

N∑

i=1

∫

�λt\�2λt

ai(x, t)

∣
∣
∣
∣
∣

N∑

k=1

akxi

ak

∣
∣
∣
∣
∣

2

dx ≤ c, (2.18)

then
∫

�

∣
∣u(x, t) – v(x, t)

∣
∣ ≤ c

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx.
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We find that the partial boundary value conditions with (2.12) are submanifold of ∂� ×
(0, T), while in the previous works the corresponding partial boundary value conditions
are the cylinder domains �1 × (0, T), where �1 ⊆ ∂� is a relatively open subset [9, 10, 23,
25, 27], etc.

Last but not least, once the well-posedness problem has been solved, we can consider
the extinction, blow-up phenomena, the positivity, and the large time behavior of the weak
solutions of anisotropic porous medium equation (1.7) in the future. However, different
from the porous medium equation, because of the anisotropy, these problems are not so
easy to be solved, the methods used in the usual porous medium equation (1.1) cannot be
extended to the anisotropic porous medium equation (1.13) directly.

3 The existence of weak solution
Proof of Theorem 2.2 We consider the following normalized problem:

unt =
N∑

i=1

∂

∂xi

(
ain(un, x, t)∇un

)
+

N∑

i=1

∂bi(un, x, t)
∂xi

, (x, t) ∈ QT , (3.1)

un(x, t) =
1
n

, (x, t) ∈ ∂� × (0, T),

un(x, 0) = u0n(x) = u0(x) +
1
n

, x ∈ �,

where ain(u, x, t) ≥ c(n) > 0, and

ain(un, x, t) =
(

ai(x, t) +
1
n

)

uαi if u ∈
[

1
n

, M +
1
n

]

. (3.2)

Similar to the porous medium equation (1.1), we can show that problem (3.1) has a
nonnegative solution un, which is called as a viscous solution generally and satisfies

un ∈ L∞(QT ), unt ∈ L2(QT ), unxi ∈ L2(QT ), i = 1, 2, . . . , N , (3.3)

and by comparison theorem, we have

un+1(x, t) ≤ un(x, t) ≤ M + 1.

Thus

u(x, t) = lim
n→∞ un(x, t) (3.4)

is well defined. Now, we will prove u is a weak solution of (1.7).
First, multiplying both sides of the first equation in (3.1) by φ = un – 1

n , denoting that
Qt = � × (0, t) for t ∈ (0, T), then

∫∫

Qt

unt

(

un –
1
n

)

dx dt +
N∑

i=1

∫∫

Qt

(

ai(x, t) +
1
n

)

|un|αi |unxi |2 dx dt

=
∫∫

Qt

∫∫

Qt

∂bi(un, x, t)
∂xi

(

un –
1
n

)

dx dt.

(3.5)
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Since

∣
∣
∣
∣

∂

∂xi
bi(un, x, t)

∣
∣
∣
∣ ≤ c(M), i = 1, 2, . . . , N ,

we have

∣
∣
∣
∣

∫∫

Qt

∂bi(un, x, t)
∂xi

(

un –
1
n

)

dx dt
∣
∣
∣
∣

=
∣
∣
∣
∣–

∫∫

Qt

bi(un, x, t)
∂

∂xi

(

un –
1
n

)

dx dt
∣
∣
∣
∣

=
∣
∣
∣
∣–

∫∫

Qt

∂

∂xi

∫ un

1
n

bi(s, x, t) ds dx dt +
∫∫

QT

∫ un

1
n

∂

∂xi
bi(s, x, t) ds dx dt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫∫

Qt

∫ un

1
n

∂

∂xi
bi(s, x, t) ds dx dt

∣
∣
∣
∣

≤
∫∫

Qt

∣
∣
∣
∣

∫ un

1
n

∂

∂xi
bi(s, x, t) ds

∣
∣
∣
∣dx dt

≤ c(M, T).

Thus, from (3.5), we can find that

N∑

i=1

∫∫

Qt

(

ai(x, t) +
1
n

)

|un|αi |unxi |2 dx dt

=
∫

�

(

u0n(x) –
1
n

)

u0n(x) –
∫

�

un(x, T)
(

un(x, t) –
1
n

)

dx

+
∫∫

Qt

∂bi(un, x, t)
∂xi

(

un –
1
n

)

dx dt

≤ c,

which implies

(

ai(x, t) +
1
n

)

|un|αi |unxi |2
∣
∣
L1(QT ) ≤ c, i = 1, 2, . . . , N . (3.6)

By choosing a subsequence, we may assume that

(

ai(x, t) +
1
n

) 1
2
(

αi

2
+ 1

)–1

u
αi
2 +1

nxi ⇀ ζi, (3.7)

weakly in L2(QT ).
In the second step, we want to show that

ζi = ai(x, t)
1
2

(
αi

2
+ 1

)–1

u
αi
2 +1

xi . (3.8)
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For any ∀ψ ∈ C1
0(QT ), we have

∫∫

QT

(

ai(x, t) +
1
n

) 1
2
(

αi

2
+ 1

)–1

u
αi
2 +1

nxi · ψ dx dt

=
(

αi

2
+ 1

)–1[∫∫

QT

∂

∂xi

((

a(x, t) +
1
n

) 1
2

u
αi
2 +1

n

)

ψ dx dt

–
∫∫

QT

∂(a(x, t) + 1
n ) 1

2

∂xi
u

αi
2 +1

n ψ dx dt
]

=
(

αi

2
+ 1

)–1[

–
∫∫

QT

(

ai(x, t) +
1
n

) 1
2

u
αi
2 +1

n ψxi dx dt

–
∫∫

QT

∂(ai(x, t) + 1
n ) 1

2

∂xi
u

αi
2 +1

n ψ dx dt
]

.

(3.9)

Let n → ∞. Then

lim
n→∞

∫∫

QT

(

ai(x, t) +
1
n

) 1
2
(

αi

2
+ 1

)–1

u
αi
2 +1

nxi · ψ dx dt =
∫∫

QT

ζψ dx dt. (3.10)

For the right-hand side of (3.9), by the assumption

∫∫

QT

∂
√

a
∂xi

dx dt ≤ c,

using the dominated convergent theorem, we have

lim
n→∞

(
αi

2
+ 1

)–1[

–
∫∫

QT

(

ai(x, t) +
1
n

) 1
2

u
αi
2 +1

n ψxi dx dt

–
∫∫

QT

∂(ai(x, t) + 1
n ) 1

2

∂xi
u

αi
2 +1

n ψ dx dt
]

=
(

αi

2
+ 1

)–1[

–
∫∫

QT

ai(x, t)
1
2 u

αi
2 +1ψxi dx dt –

∫∫

QT

∂ai(x, t) 1
2

∂xi
u

αi
2 +1ψ dx dt

]

.

(3.11)

From (3.9)–(3.11), we obtain (3.8).
In the third step, since bi ∈ C1, by (3.4), we have

lim
n→∞ bi(un, x, t) = bi(u, x, t). (3.12)

Moreover, by a BV estimate method [9, 10], we can show that

∫∫

QT

∣
∣
∣
∣
∂un

∂t

∣
∣
∣
∣ ≤ c (3.13)

and
∫∫

QT

∣
∣
∣
∣
∂un

∂xi

∣
∣
∣
∣ ≤ c, i = 1, 2, . . . , N . (3.14)
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Then ut ∈ L1(QT ) and (2.1) is true, and we can define the trace of u on the boundary ∂�.
The initial value condition true in the sense of (2.3) can be found in [22] etc.

Thus, u is a solution of equation (1.7) with the initial value (1.8) and the homogeneous
boundary value condition (1.9). Theorem 2.2 is proved. �

Finally, we would like to point out that, though the viscous solution un satisfies (3.3), we
cannot deduce that the solution u of equation (1.7) satisfies

ut ∈ L2(QT ), |uxi | ∈ L2(QT ).

Actually, in the next section, we will show that

|uxi | ∈ L2(0, T ; Lloc(�)
)
.

4 The uniqueness of weak solution of the usual initial boundary value problem
Proposition 4.1 Let u(x, t) be a solution of equation (1.7). Then

∇u ∈ L∞(
0, T ; L2

loc(�)
)
. (4.1)

Proof Let un be the viscous solution of the initial boundary value (3.1)–(3.3). If we choose
(un – u)φ as the test function, where φ ∈ C1

0(QT ), then

∫ T

0

∫

�

(un – u)φ
∂un

∂t
dx dt

+
N∑

i=1

∫ T

0

∫

�

a(x, t)φ(x)|un|αi unxi (un – u)xi dx dt

+
N∑

i=1

∫ T

0

∫

�

a(x, t)|un|αi (un – u)unxiφxi dx dt

+
N∑

i=1

∫ T

0

∫

�

bi(un, x, t)φ(un – u)xi dx dt

+
N∑

i=1

∫ T

0

∫

�

bi(un, x, t)φxi (un – u)) dx dt

= 0.

(4.2)

Let n → ∞ in (4.2). We can deduce that

lim
n→∞

∫∫

QT

a(x, t)φ|un|αi unxi (un – u)xi dx dt = 0, i = 1, 2, . . . , N ,
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and this equality yields

lim
n→∞

∫∫

QT

a(x, t)φ|un|αi unxi uxi dx dt

= lim
n→∞

∫∫

QT

a(x, t)φ|un|αi |unxi |2 dx dt

≤ c.

Due to the arbitrariness of φ and |un|αi unxi ∈ L1(0, T ; L2
loc(�)), there holds

uxi ∈ L∞(
0, T ; L2

loc(�)
)
, i = 1, 2, . . . , N . �

Theorem 4.2 If there is β , 1 > β > 0, and there is a nonnegative function gi(x, t) such that

∣
∣bi(u, x, t) – bi(v, x, t)

∣
∣ ≤ cgi(x, t)|u – v| 2–β+αi

2 , i = 1, 2, . . . , N , (4.3)
∫∫

QT

gi(x, t)2ai(x, t)–1 dx dt ≤ c, i = 1, 2, . . . , N , (4.4)

then the nonnegative solution of equation (1.7) is unique.

Proof For a small positive constant δ > 0, denoting Dδ = {x ∈ � : w = u – v > δ}, we suppose
that the measure μ(Dδ) > 0. Let

Fλ(ξ ) =

⎧
⎨

⎩

1
1–β

λβ–1 – 1
1–β

ξβ–1, if ξ > λ,

0, if ξ ≤ λ,
(4.5)

where δ > 2λ > 0, 1 > β > 0.
Now, by a process of limit, we can choose Fλ(w) = Fλ(u – v) and integrate it over Qt ,

0 ≤ t < T , accordingly,

∫ t

0

∫

�

wtFλ(w) dx dt

+
N∑

i=1

∫ t

0

∫

�

ai(x, t)|u|αi (uxi – vxi )
2F ′

λ(w) dx dt

+
N∑

i=1

∫ t

0

∫

�

ai(x, t)
(|u|αi – |v|αi

)
vxi )(uxi – vxi )F

′
λ(w) dx dt

+
N∑

i=1

∫ t

0

∫

�

[
bi(u, x, t) – bi(v, x, t)

](
Fλ(w)

)
xi

dx dt

= 0.

(4.6)

In the first place,

∫ t

0

∫

�

ai(x, t)|u|αi (uxi – vxi )
2F ′

λ(w) dx dt

≥
∫ t

0

∫

�

ai(x, t)|u|αi (u – v)β–2|wxi |2 dx dt.
(4.7)
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In the second place, by (4.3), (4.4), we have

∫ t

0

∫

�

ai(x, t)
(|u|αi – |v|αi

)
vxi (uxi – vxi )F

′
λ(w) dx dt

=
∫ t

0

∫

Dλ

ai(x, t)
(|u|αi – |v|αi

)
vxi (uxi – vxi )F

′
λ(w) dx dt

≤
∫ t

0

∫

Dλ

[
1
4

ai(x, t)|u|αi (u – v)β–2|wxi |2

+ 4ai(x, t)
(|u|αi – |v|αi

)
(u – v)β–2|vxi |2

]

dx dt

≤ c +
1
4

∫ t

0

∫

Dλ

ai(x, t)|u|αi (u – v)β–2|wxi |2 dx dt.

(4.8)

In the third place, by (4.3), since u and v both are nonnegative,

|u – v| ≤ u

we have

∣
∣
∣
∣

∫ t

0

∫

�

[
bi(u, x, t) – bi(v, x, t)

]
F ′

λ(u – v)(u – v)xi dx dt
∣
∣
∣
∣

=
∣
∣
∣
∣

∫ t

0

∫

Dλ

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)β–2(u – v)xi dx dt

∣
∣
∣
∣

≤
∫ t

0

∫

�

wβ–2
[

4
([

bi(u, x, t) – bi(v, x, t)
]
u– αi

2 ai(x, t)– 1
2
)2

+
1
4

ai(x, t)uαi |wxi |2
]

dx dt

≤ c +
1
2

∫ T

0

∫

�

ai(x, t)uαi wβ–2|wxi |2 dx dt.

(4.9)

Last but not least, let t0 = inf{τ ∈ (0, t] : w > λ}. Then

∫ t

0

∫

Dλ

wtFλ(w) dx dt =
∫

Dλ

(∫ t0

0
wtFλ(w) dt +

∫ t

t0

wtFλ(w) dt
)

dx

≥
∫

Dλ

∫ w(x,t)

λ

Fλ(s) dsdx

≥
∫

Dλ

(w – 2λ)Fλ(2λ) dx ≥ (δ – 2λ)Fλ(2λ)μ(Dλ).

(4.10)

From (4.6)–(4.10), we have

(δ – 2λ)
1 – 2β–1

1 – β
λβ–1 ≤ c.

Letting λ → 0, we get the contradiction. �
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Proof of Theorem 2.3 If condition (2.6) is true, then conditions (4.3),(4.4) are true naturally.
Thus, we have Theorem 2.3. �

5 The stability of weak solution of the usual initial boundary value problem
For any given positive integer n, let gn(s) =

∫ s
0 hn(τ ) dτ , hn(s) = 2n(1 – n|s|)+. Then hn(s) ∈

C(R), and

hn(s) ≥ 0,
∣
∣shn(s)

∣
∣ ≤ 1,

∣
∣gn(s)

∣
∣ ≤ 1, (5.1)

and

lim
n→∞ gn(s) = sign s, lim

n→∞ sg ′
n(s) = 0. (5.2)

As we have pointed out in the introduction section, for the classical porous medium equa-
tion

ut = �um,

if u(x, t) and v(x, t) are two nonnegative solutions of the initial boundary value problem,
by choosing gn(um – vm) as the test function, we easily show that

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤

∫

�

∣
∣u(x, 0) – v(x, 0)

∣
∣dx, t ∈ [0, T). (5.3)

Now, for the anisotropic diffusion equation (1.7) considered in this paper, since αi may
be different from one to another, though for every i

uαi uxi =
1
αi

u1+αi
xi

,

we cannot choose gn(u1+αi – v1+αi ) as a test function. If we insist on using a similar method
to obtain the stability (5.3), then only for a kind of weak solution we can achieve the re-
quirement.

Theorem 5.1 Let u(x, t) and v(x, t) be two nonnegative solutions of the initial boundary
value problem (1.7)–(1.9) satisfying (2.7). If αi ≥ 1,

∣
∣
∣
∣
bi(u, x, t) – bi(v, x, t)

(u – v)(u
αi
2 – v

αi
2 )

∣
∣
∣
∣ ≤ cgi(x, t), i = 1, 2, . . . , N , (5.4)

and

∫

�

ai(x, t)–1gi(x, t)2 dx ≤ c(T), i = 1, 2, . . . , N , (5.5)

then the stability (5.3) is true.
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Proof By a process of limit, we can choose gn(u – v) as the test function, then

∫

�

gn(u – v)
∂(u – v)

∂t
dx

+
N∑

i=1

∫

�

ai(x, t)|u|αi (uxi – vxi )
2g ′

n(u – v) dx

= –
N∑

i=1

∫

�

ai(x, t)
(|u|αi – |v|αi

)
vxi (uxi – vxi )g

′
n(u – v) dx

–
N∑

i=1

∫

�

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi g

′
n(u – v) dx dt.

(5.6)

Obviously,

∫

�

ai(x, t)|u|αi (uxi – vxi )
2g ′

n(u – v) dx ≥ 0. (5.7)

By (2.7) and αi ≥ 1, using the Lebesgue dominated theorem, we have

lim
n→∞

∫

�

ai(x, t)
∣
∣|u|αi – |v|αi

∣
∣|vxi |2g ′

n(u – v) dx = 0, (5.8)

lim
n→∞

∫

�

ai(x, t)
∣
∣|u|αi – |v|αi

∣
∣|uxi |2g ′

n(u – v) dx = 0. (5.9)

From (5.8)–(5.9), we obtain

lim
n→∞

∣
∣
∣
∣

∫

�

ai(x, t)
(|u|αi – |v|αi

)
vxi (uxi – vxi )g

′
n(u – v) dx

∣
∣
∣
∣ = 0. (5.10)

We now prove that

lim
n→∞

∫

�

(
bi(u, x, t) – bi(v, x, t)

)
gn

′(u – v)(u – v)xi dx = 0. (5.11)

In detail, by (5.4), we have

∣
∣
∣
∣

∫

�

(
bi(u, x, t) – bi(v, x, t)

)
g ′

n(u – v)(u – v)xi dx
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Dnt

[
bi(u, x, t) – bi(v, x, t)

]
g ′

n(u – v)(u – v)xi dx
∣
∣
∣
∣

≤ c
∫

Dnt

∣
∣
∣
∣
bi(u, x, t) – bi(v, x, t)

u – v

∣
∣
∣
∣
∣
∣(u – v)xi

∣
∣dx

= c
∫

Dnt

∣
∣
∣
∣ai(x, t)– 1

2
bi(u, x, t) – bi(v, x, t)

(u – v)(u
αi
2 – v

αi
2 )

∣
∣
∣
∣
∣
∣ai(x, t)

1
2
(
u

αi
2 – v

αi
2
)
(u – v)xi

∣
∣dx (5.12)

≤ c
(∫

Dnt

∣
∣
∣
∣ai(x, t)– 1

2
bi(u, x, t) – bi(v, x, t)

(u – v)(u
αi
2 – v

αi
2 )

∣
∣
∣
∣

2

dx
) 1

2



Zhi and Zhan Journal of Inequalities and Applications        (2022) 2022:108 Page 15 of 22

· c
(∫

Dnt

∣
∣ai(x, t)

1
2
(
u

αi
2 – v

αi
2
)
(u – v)xi

∣
∣2 dx

) 1
2

≤ c
(∫

Dnt

ai(x, t)–1gi(x, t)2 dx
) 1

2
(∫

Dnt

ai(x, t)
(∣
∣u

αi
2 +1

xi

∣
∣2 +

∣
∣u

αi
2 +1

xi

∣
∣2)dx

) 1
2

.

Here, we have used the notation

Dnt =
{

x ∈ � : |u – v| <
1
n

}

.

Let n → ∞ in (5.12). Since (5.5),
∫

�

ai(x, t)–1gi(x, t)2 dx ≤ c,

if D0 = {x ∈ � : |u – v| = 0} is a set with 0 measure, by that
∫

Dnt

ai(x, t)
(∣
∣u

αi
2 +1

xi

∣
∣2 +

∣
∣u

αi
2 +1

xi

∣
∣2)dx ≤ c,

we have

lim
n→∞

∫

Dnt

ai(x, t)–1gi(x, t)2 dx =
∫

D0

ai(x, t)–1gi(x, t)2 dx = 0. (5.13)

While D0 = {x ∈ � : |u – v| = 0} has a positive measure, by that

∫

Dnt

∣
∣
∣
∣ai(x, t)– 1

2
bi(u) – bi(v)

(u – v)(u
αi
2 – v

αi
2 )

∣
∣
∣
∣

2

dx

≤
∫

�

ai(x, t)–1gi(x, t)2 dx

≤ c,

then

lim
n→∞

∫

Dnt

∣
∣a(x, t)

1
2
(
u

αi
2 – v

αi
2
)
(u – v)xi

∣
∣2 dx

=
∫

D0

∣
∣a(x, t)

1
2
(
u

αi
2 – v

αi
2
)
(u – v)xi

∣
∣2 dx = 0.

Thus, in both cases, the right-hand side of inequality (5.12) goes to 0 as n → ∞.
Moreover,

lim
n→∞

∫

�

gn(u – v)
∂(u – v)

∂t
dx

=
∫

�

sgn(u – v)
∂(u – v)

∂t
dx

=
∫

�

sgn(u – v)
∂(u – v)

∂t

=
d
dt

∫

�

|u – v|dx.

(5.14)
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At last, let n → ∞ in (5.6). Then

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx. �

Proof of Theorem 2.4 Since we assume conditions (2.7)–(2.8), conditions (5.4)–(5.5) are
true naturally, by Theorem 5.1, we clearly have Theorem 2.4. �

6 The partial boundary value condition based on a submanifold
In this section, we consider equation (1.7) with the initial value condition (1.8) and with
a partial boundary value condition (2.12). For a small positive constant λ > 0 and any t ∈
[0, t), let

�λt =

{

x ∈ � :
N∏

i=1

ai(x, t) > λ

}

,

and set

φ(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1, if x ∈ �2λt ,
1
λ

(
∏N

i=1 ai(x, t) – λ), if x ∈ �λt \ �2λt ,

0, if x ∈ � \ �λt .

(6.1)

Proof of Theorem 2.5 If we choose φgn(u – v) as the test function, then

∫ T

0

∫

�

φ(x)gn(u – v)
∂(u – v)

∂t
dx dt

+
N∑

i=1

∫ T

0

∫

�

ai(x, t)|u|αi (uxi – vxi )
2φg ′

n(u – v) dx dt

+
N∑

i=1

∫ T

0

∫

�

ai(x, t)
(|u|αi – |v|αi

)
vxi (u – v)xiφg ′

n(u – v) dx dt

+
N∑

i=1

∫ T

0

∫

�

ai(x, t)|u|αi uxi – vxi |v|αi )φxi gn(u – v) dx dt

+
N∑

i=1

∫ T

0

∫

�

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi g

′
n(u – v)φ dx dt

+
N∑

i=1

∫ T

0

∫

�

∫

�

[
bi(u, x, t) – bi(v, x, t)

]
gn(u – v)φxi dx dt

= 0.

(6.2)

Clearly, we have

∫ T

0

∫

�

ai(x, t)|u|αi (uxi – vxi )(u – v)xi g
′
n(u – v)φ dx ≥ 0, (6.3)
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and from
∫∫

QT
|ut|dx dt ≤ c, we deduce

lim
n→∞ lim

λ→0

∫∫

Qt

φ(x)gn(u – v)
∂(u – v)

∂t
dx dt

= lim
n→∞

∫∫

Qt

gn(u – v)
∂(u – v)

∂t
dx dt

=
∫∫

Qt

sign(u – v)
∂(u – v)

∂t
dx dt

=
∫ t

0

∫

�

d
dt

|u – v|dx dt.

(6.4)

Since

uxi , vxi ∈ L∞(
0, T ; L2

loc(�)
)
, i = 1, 2, . . . , N , (6.5)

by that αi ≥ 1, using the Lebesgue dominated theorem, we have

lim
n→∞

∣
∣
∣
∣

∫ T

0

∫

�

ai(x, t)
(|u|αi – |v|αi

)
vxi (u – v)xiφg ′

n(u – v) dx dt
∣
∣
∣
∣

≤ c lim
n→∞

∫ T

0

∫

�λt

ai(x, t)|u – v|(|vxi |2 + |uxi |2
)
φg ′

n(u – v) dx dt

= 0.

(6.6)

At the same time, if we denote that

�φ =
{

x ∈ � : 1 > φ(x) > 0
}

= �λt \ �2λt ,

then by (2.10) we have

lim
λ→0

lim
n→∞

∣
∣
∣
∣

∫ T

0

∫

�

ai(x, t)
(|u|αi uxi – |v|αi vxi

) · φxi gn(u – v) dx dt
∣
∣
∣
∣

= lim
λ→0

lim
n→∞

∣
∣
∣
∣

∫ T

0

∫

�φ

ai(x, t)
(|u|αi uxi – |v|αi vxi

) ·
(∏N

j=1 aj(x, t)
)

xi

λ
gn(u – v) dx dt

∣
∣
∣
∣

≤ c lim
λ→0

(∫ T

0

1
λ

∫

�φ

ai(x, t)
(∣
∣uαi

∣
∣|uxi |2 +

∣
∣vαi

∣
∣|uxi |2

)
dx dt

) 1
2

·
(∫ T

0

1
λ

∫

�φ

ai(x, t)

∣
∣
∣
∣
∣

( N∏

j=1

aj(x, t)

)

xi

sign(u – v)

∣
∣
∣
∣
∣

2

dx dt

) 1
2

≤ c

(∫ T

0

1
λ

∫

�φ

∣
∣
∣
∣
∣

√
ai(x, t)

( N∏

j=1

aj(x, t)

)

xi

sign(u – v)

∣
∣
∣
∣
∣

2

dx dt

) 1
2

= c

(∫ T

0

∫

∂�

∣
∣
∣
∣
∣

√
ai(x, t)

( N∏

j=1

aj(x, t)

)

xi

sign(u – v)

∣
∣
∣
∣
∣

2

d� dt

) 1
2

= 0.

(6.7)
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For the convection term, by (6.5) and (2.13), we have

lim
n→∞

∣
∣
∣
∣

∫ T

0

∫

�

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi g

′
n(u – v)φ dx dt

∣
∣
∣
∣

≤ c lim
n→∞

∫ T

0

∫

�

(u – v)xi |u – v|g ′
n(u – v)φ dx dt

≤ c lim
n→∞

(∫ T

0

∫

�φ

(|uxi |2 + |vxi |2
)

dx dt
) 1

2
(∫ T

0

∫

�

[|u – v|g ′
n(u – v)

]2 dx dt
) 1

2

= 0.

(6.8)

By (2.13), using the homogeneous boundary value condition (2.12), we have

lim
λ→0

lim
n→∞

∣
∣
∣
∣

∫ T

0

∫

�

[
bi(u, x, t) – bi(v, x, t)

]
φxi gn(u – v) dx dt

∣
∣
∣
∣

≤ lim
λ→0

∫ T

0

1
λ

∫

�λt\�2λt

∣
∣bi(u, x, t) – bi(v, x, t)

∣
∣

∣
∣
∣
∣
∣

( N∏

j=1

aj(x, t)

)

xi

∣
∣
∣
∣
∣
dx dt

≤ c
∫ T

0

∫

∂�

|u – v|
∣
∣
∣
∣
∣

√
ai(x, t)

( N∏

j=1

aj(x, t)

)

xi

∣
∣
∣
∣
∣
d� dt

= 0.

(6.9)

Now, after letting n → ∞, let λ → 0 in (6.2). Then
∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx.

Theorem 2.5 is proved. �

7 The proof of Theorem 2.6
In this section, we prove Theorem 2.6. For a small positive constant λ > 0 and any t ∈ [0, t),
set �λt and φ(x) as (6.1).

Proof of Theorem 2.6 Let u(x, t), v(x, t) be two solutions of equation (1.7) with the initial
boundary values u0(x), v0(x) respectively, but without the partial boundary value condition
(2.12). By assumption (2.17), we can choose gn(φ(u – v)) as the test function and get

∫

�

gn
(
φ(u – v)

)∂(u – v)
∂t

dx

+
N∑

i=1

∫

�

ai(x, t)
(|u|αi uxi – |v|αi vxi

)
(uxi – vxi )g

′
n
(
φ(u – v)

)
φ dx

+
N∑

i=1

∫

�

ai(x, t)
(|u|αi uxi – |v|αi vxi

)
φxi (u – v)g ′

n
(
φ(u – v)

)
dx

+
N∑

i=1

∫

�

[
bi(u, x, t) – bi(v, x, t)

][
φxi (u – v) + φ(u – v)xi

]
g ′

n
(
φ(u – v)

)
dx

= 0.

(7.1)
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In the first place, we have

∫

�

ai(x, t)
(|u|αi uxi – |v|αi vxi

)
(uxi – vxi )g

′
n
(
φ(u – v)

)
φ dx

=
∫

�

ai(x, t)|u|αi (uxi – vxi )
2g ′

n
(
φ(u – v)

)
φ dx

+
∫

�

ai(x, t)
(|u|αi – |v|αi

)
vxi (uxi – vxi )g

′
n
(
φ(u – v)

)
φ dx.

(7.2)

Clearly,

∫

�

ai(x, t)|u|αi (uxi – vxi )
2g ′

n
(
φ(u – v)

)
φ dx ≥ 0,

and

∫

�

ai(x, t)
(|u|αi – |v|αi

)
vxi (uxi – vxi )g

′
n
(
φ(u – v)

)
φ dx

≤ 1
4

∫

�

ai(x, t)
∣
∣|u|αi – |v|αi

∣
∣(uxi – vxi )

2g ′
n
(
φ(u – v)

)
φ dx

+ 4
∫

�

ai(x, t)
∣
∣|u|αi – |v|αi

∣
∣|vxi |2g ′

n
(
φ(u – v)

)
φ dx.

(7.3)

Since ai(x, t) satisfies (2.17) and

φ(x, t) = 0, x ∈ � \ �λt

by that α– ≥ 1 and

|∇u| ∈ L∞(
0, T ; L2

loc(�)
)
, |∇v| ∈ L∞(

0, T ; L2
loc(�)

)
,

using the Lebesgue dominated convergence theorem, we have

lim
n→∞

∣
∣
∣
∣

∫

�

ai(x, t)
(
uαi – vαi

)
(uxi – vxi )

2g ′
n
(
φ(u – v)

)
φ dx

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

∫

�λt

ai(x, t)
(
uαi – vαi

)
(uxi – vxi )

2g ′
n
(
φ(u – v)

)
φ dx

∣
∣
∣
∣

= 0,

(7.4)

lim
n→∞

∣
∣
∣
∣

∫

�

ai(x, t)
(
uαi – vαi

)|vxi |2g ′
n
(
φ(u – v)

)
φ dx

∣
∣
∣
∣

= lim
n→∞

∣
∣
∣
∣

∫

�λt

ai(x, t)
(
uαi – vαi

)|vxi |2g ′
n
(
φ(u – v)

)
φ dx

∣
∣
∣
∣

= 0.

(7.5)
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In the second place, we have
∫

�

ai(x, t)
(|u|αi uxi – |v|αi vxi

)
φxi (u – v)g ′

n
(
φ(u – v)

)
dx

=
∫

�λt

ai(x, t)|u|αi (uxi – vxi )
φxi

φ
φ(u – v)g ′

n
(
φ(u – v)

)
dx

+
∫

�λt

ai(x, t)
(|u|αi – |v|αi

)
vxi

φxi

φ
φ(u – v)g ′

n
(
φ(u – v)

)
dx.

(7.6)

While by (2.18)

∫

�

ai(x, t)
∣
∣
∣
∣
φxi

φ

∣
∣
∣
∣

2

dx =
∫

�λt\�2λt

ai(x, t)

∣
∣
∣
∣
∣

N∑

k=1

akxi

ak

∣
∣
∣
∣
∣

2

dx ≤ c,

we have

lim
n→∞

∫

�

ai(x, t)uαi (uxi – vxi )
φxi

φ
φ(u – v)g ′

n
(
φ(u – v)

)
dx

≤ c
∫

�

ai(x, t)uαi (uxi – vxi )
2∣∣φ(u – v)g ′

n
(
φ(u – v)

)∣
∣dx

+ c lim
n→∞

∫

�

ai(x, t)
∣
∣
∣
∣
φxi

φ

∣
∣
∣
∣

2∣
∣φ(u – v)g ′

n
(
φ(u – v)

)∣
∣dx

= 0.

(7.7)

Similarly, we have

lim
n→∞

∣
∣
∣
∣

∫

�

ai(x, t)
(
uαi – vαi

)
vxi

φxi

φ
φ(u – v)g ′

n
(
φ(u – v)

)
∣
∣
∣
∣ = 0. (7.8)

In the third place, since (1.13) |bi(u, x, t) – bi(v, x, t)| ≤ c
√

ai(x, t), we have

lim
n→∞

∣
∣
∣
∣

∫

�

[
bi(u, x, t) – bi(v, x, t)

]
g ′

n
(
φ(u – v)

)
(u – v)φxi dx

∣
∣
∣
∣

= lim
n→∞

∫

�

|φxi |
φ

∣
∣bi(u, x, t) – bi(v, x, t)

∣
∣
∣
∣g ′

n
(
φ(u – v)

)
φ(u – v)

∣
∣dx

≤ c lim
n→∞

∫

�

(∣
∣
∣
∣
|φxi |
φ

∣
∣
∣
∣

2

ai(x, t) + 1
)

∣
∣g ′

n
(
φ(u – v)

)
φ(u – v)

∣
∣dx

= 0.

(7.9)

Moreover, since (4.1), we clearly have

lim
n→∞

∫

�

(
bi(u, x, t) – bi(v, x, t)

)
gn

′(φ(u – v)
)
(u – v)xiφ(x) dx = 0.

Now, let n → ∞ in (7.1). Then
∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx.

Theorem 2.6 is proved. �
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