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Abstract
The objective of this paper is to introduce a new motif of α∗-ψ -�-contraction
multivalued mappings, some novel fixed-point and coincidence-point results for this
contraction will be investigated in the scope of F-metric spaces, and some examples
are given to illustrate our main results and we derive the existence and uniqueness of
a solution of a functional equation to support our main result.
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1 Introduction and preliminaries
The conception of F-metric space (F-MS) was given by Jleli and Samet [21] in 2018 as a
generalization of metric space (MS) [16], that has gained importance due to the develop-
ment of the metric fixed-point theory; they proved that every metric space is an F-MS, but
the converse is not true, confirming that F-MS is more general than the metric space with
the help of concrete examples, and compared this concept with existing generalizations
from the literature. They defined a natural topology τF on these spaces and studied their
topological properties. Moreover, a new fixed-point theorem of the Banach Contraction
Principle (BCP) was established in the scope of F-MS. This article is arranged into four
sections. The first section contains a short history of the literature, providing motivation
for this article and some basic definitions that will help readers understand our results. In
Sect. 2, new fixed-point theorems for α∗-ψ-�-contraction multivalued mappings in the
scope of F-MS and the given example will be discussed. In Sect. 3, the coincidence-point
results for said contraction mappings in F-MS are investigated as consequences. Section 4
is concerned with an application of the said results to the functional equations in dynamic
programming with its example.

Definition 1.1 ([16]) A mapping d : ϒ × ϒ → [0,∞) on a nonempty set ϒ , satisfying the
following conditions for all γ , δ,κ ∈ ϒ ,
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(d1) d(γ , δ) = 0 ⇐⇒ γ = δ;
(d2) d(γ , δ) = d(δ,γ );
(d3) d(γ , δ) ≤ d(γ ,κ) + d(κ , δ),

is called a metric on ϒ and the pair (ϒ , d) is said to be a MS.

We start with a brief recollection of basic ideas and the facts of F-MS. First, let 
 be the
set of functions L : (0,∞) →R satisfying the following stipulations:

(
1) L is nondecreasing, i.e., 0 < ϑ < ς 	⇒L(ϑ) ≤L(ς ).
(
2) For every sequence {ςζ } ⊂ (0,∞), we have

lim
ζ→∞ςζ = 0 ⇐⇒ lim

ζ→∞L(ςζ ) = –∞.

Definition 1.2 ([21]) Let ϒ be a nonempty set and Q : ϒ × ϒ → [0,∞) be a given map-
ping. We postulate that there exists (L,α) ∈ 
 × [0,∞) such that,

(Q1) (γ , δ) ∈ ϒ × ϒ , Q(γ , δ) = 0 ⇐⇒ γ = δ;
(Q2) Q(γ , δ) = Q(δ,γ );
(Q3) for every (γ , δ) ∈ ϒ × ϒ , ∀ν ∈N, ν ≥ 2, and ∀ (ςi)νi=1 ⊂ ϒ , (ς1,ςν) = (γ , δ), we have

Q(γ , δ) > 0 	⇒ L
(
Q(γ , δ)

) ≤L
(

ν–1∑

i=1

Q(ςi,ςi+1)

)

+ α.

Then, Q is said to be an F-M on ϒ , and the pair (ϒ ,Q) is said to be an F-MS.

Example 1.3 ([21]) Let ϒ = N, and let Q : ϒ × ϒ → [0,∞) be the mapping defined by

Q(γ , δ) =

⎧
⎨

⎩
(γ – δ)2, if (γ , δ) ∈ [0, 3] × [0, 3],

|γ – δ| if (γ , δ) /∈ [0, 3] × [0, 3],

for all (γ , δ) ∈ ϒ × ϒ , with L(ς ) = ln(ς ) and α = ln(3). Then, (ϒ ,Q) is an F-MS.

Example 1.4 ([21]) Let ϒ = N, and let Q : ϒ × ϒ → [0,∞) be the mapping defined by

Q(γ , δ) =

⎧
⎨

⎩
e|γ –δ|, if γ = δ,

0 if γ 
= δ,

for all (γ , δ) ∈ ϒ × ϒ , with L(ς ) = –1
ς

and α = 1. Then, (ϒ ,Q) is an F-MS.

Definition 1.5 ([21]) Let (ϒ ,Q) be an F-MS, then:
(i) Let {γζ } be a sequence in ϒ ; we say that {γζ } is F-convergent to γ ∈ ϒ if {γζ } is

convergent to γ with respect to the F-MS Q.
(ii) A sequence {γζ } is F-Cauchy if limζ ,η→∞ Q(γζ ,γη) = 0.

(iii) We say that (ϒ ,Q) is F-complete if every F-Cauchy sequence in ϒ is F-convergent
to an assured element in ϒ .

Theorem 1.6 ([21]) Let (ϒ ,Q) be an F-MS, and let � : ϒ → ϒ be a mapping. We postulate
that the following affirmations hold:
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(i) (ϒ ,Q) is F-complete,
(ii) there exists k ∈ (0, 1) such that

Q
(
�(γ ),�(δ)

) ≤ kQ(γ , δ), ∀(γ , δ) ∈ ϒ × ϒ .

Then, � has a unique fixed point γ ∗ ∈ ϒ . Moreover, for any γ0 ∈ ϒ , the sequence {γζ } ⊂ ϒ

defined by γζ+1 = �(γζ ), ζ ∈N is F-convergent.

Many writers used the motif of F-MS to investigate powerful fixed-point results; for
instance, Alnaser et al. [4] defined relation theoretic contractions and proved some gener-
alized fixed-point theorems in F-metric spaces. Hussain and Kanwal [20] considered the
notion of α-ψ-contraction and presented some fixed- and coupled fixed-point results in
the setting of F-MSs. Lateef and Ahmad [24] defined Dass and Gupta’s contraction in the
context of F-MSs and then proved some new fixed-point theorems to generalize and elab-
orate several known literature results. Mitrović et al. [26] proved certain common fixed-
point theorems and some consequences to obtain the results of Banach, Jungck, Reich, and
Berinde in F-MSs with an application for dynamic programming. Hussain [19] introduced
the idea of fractional convex-type contraction and established some new fixed-point re-
sults for Reich-type α-η-contraction and Kannan-type α-η-contraction mappings in F-
MS. He derived some consequences for Suzuki-type contractions, orbitally T-complete,
and orbitally continuous mappings.

BCP [12] appeared in 1922 as the basis of functional analysis and plays a main role in
several branches of mathematics and applied sciences, which asserts that every contrac-
tion mapping defined in complete MS has a fixed point. In many directions, this principle
has been extended and generalized either by relaxing the contractive stipulations or im-
posing some more stipulations on space. Jungck [22] studied coincidence and common
fixed points of commuting mappings and improved the BCP. In [35], coincidence-point
and common fixed-point theorems for a class of Ćirić–Suzuki hybrid contractions involv-
ing a multivalued and two single-valued maps in an MS are obtained. Coincidence-point
theorems for Geraghty contraction mappings have been introduced in different spaces
[27–29, 33, 34, 37–39].

Theorem 1.7 ([12]) Let (ϒ ,Q) be a complete MS and � : ϒ −→ ϒ be a contraction map-
ping, that is ∀γ , δ ∈ ϒ , and k ∈ (0, 1),

Q(�γ ,�δ) ≤ kQ(γ , δ).

Then, � has a unique fixed point.

In 1973, Geraghty [17] generalized BCP and established its fixed-point results on com-
plete MS.

Theorem 1.8 ([17]) Let (ϒ ,Q) be a complete MS and � : ϒ −→ ϒ be a mapping such that
∀ γ , δ ∈ ϒ , and β ∈�,

Q(�γ ,�δ) ≤ β
(
Q(γ , δ)

)
Q(γ , δ),
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where � is a class of functions β : [0,∞) → [0, 1) satisfying β(ςζ ) → 1 	⇒ ςζ → 0 as
ζ → ∞.

Then, � has a unique fixed point γ ∗ ∈ ϒ .
In 2013, Cho et al. [14] presented the notion of α-Geraghty contraction-type mappings

and deduced the unique fixed-point theorems for such mappings in a complete MS. In
2014, Popescu [31] opened a wide field in fixed-point theory by defining the concepts of
α-orbital and triangular α-orbital admissible mappings and verified the unique fixed-point
theorems for the said mappings, which are generalizations of α-Geraghty contraction-type
mappings. In 2012, Wardowski [36] introduced the definition of F-contraction and proved
fixed-point results as a generalization of the BCP in a complete MS, see also [1, 2, 5–7, 11,
18].

Definition 1.9 ([31]) Let � : ϒ → ϒ be a map and α : ϒ ×ϒ →R be a function. Then, �
is said to be α-orbital admissible if α(γ ,�γ ) ≥ 1 implies α(�γ ,�2γ ) ≥ 1.

Definition 1.10 ([31]) Let � : ϒ → ϒ be a map and α : ϒ × ϒ → R be a function. Then,
� is said to be triangular α-orbital admissible if � is α-orbital admissible and α(γ , δ) ≥ 1
and α(δ,�δ) ≥ 1 imply α(γ ,�δ) ≥ 1.

Lemma 1.11 ([31]) Let � : ϒ → ϒ be a triangular α-orbital admissible mapping. Assume
that there exists γ1 ∈ ϒ such that α(γ1,�γ1) ≥ 1. Define a sequence {γζ } by γζ+1 = �γζ .
Then, we have α(γζ ,γη) ≥ 1 for all ζ ,η ∈ N with ζ < η.

Definition 1.12 ([23]) Let ϒ be a set. Assume that � : ϒ → ϒ and � : ϒ → 2ϒ . If w =
�γ ∈ �γ for some γ ∈ ϒ , then γ is called a coincidence point of � and �, and w is called
a point of coincidence of � and �.

Mappings � and � are called weakly compatible if �γ ∈ �γ for some γ ∈ ϒ implies
��(γ ) ⊆ ��(γ ).

Proposition 1.13 ([23]) Let ϒ be a set. Assume that � : ϒ → ϒ and � : ϒ → 2ϒ are
weakly compatible mappings. If � and � have a unique point of coincidence w = �γ ∈ �γ ,
then w is the unique common fixed point of � and �.

Definition 1.14 ([9]) Let (ϒ , d) be an MS. Let CB(ϒ) be the family of all nonempty closed
and bounded subsets of ϒ . Let H : CB(ϒ) × CB(ϒ) → [0,∞) be a function defined by

H(A, B) = max
{

sup
γ∈A

Q(γ , B), sup
δ∈B

Q(A, δ)
}

for all A, B ∈ CB(ϒ),

where Q(γ , B) = inf{d(γ , δ), δ ∈ B}. Then, H defines a metric on CB(ϒ) called the Haus-
dorff metric induced by d.

Asif et al. [10] obtain fixed points and common fixed-point results for Reich-type F-
contractions for both single and set-valued mappings in F-MSs. Alansari et al. [3] studied
a few fuzzy fixed-point theorems and discussed the corresponding fixed-point theorems
of multivalued and single-valued mappings on F-complete F-MSs.
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Lemma 1.15 ([3]) Let A and B be nonempty closed and compact subsets of an F-metric
space (ϒ ,Q). If a ∈ A, then Q(a, B) ≤ HQ(A, B).

Let � be the family of nondecreasing functions ψ : [0,∞) → [0,∞) such that
∑∞

n=1 ψn(t) < +∞, ∀t > 0, where ψn is the nth iterate of ψ .

Lemma 1.16 ([8]) Let ψ ∈ � . Then,
1. ψ(t) < t, ∀t > 0;
2. ψ(0) = 0.

Definition 1.17 ([25]) Let � : (0,∞) −→ (0,∞) be a mapping verifying:
(�1) � is nondecreasing;
(�2) for each positive sequence {tn},

lim
n→∞�(tn) = 0 if and only if lim

n→∞ tn = 0;

(�3) � is continuous.

We denote by � the set of functions � : (0,∞) −→ (0,∞) satisfying the conditions
(�1) – (�3).

We modify the Definition 1.17 by adding a general condition (�4) that is given in the
following way:

(�4) �(
∑n

i=1 Ai) ≤ ∑n
i=1 �(Ai), for all Ai ∈ (0,∞), i = 1, 2, · · · , n,

where � is the set of functions � : (0,∞) −→ (0,∞) satisfying the conditions (�1), (�3),
and (�4).

Example 1.18 Define the following functions for all t ∈ (0,∞),
(1) �(t) = at, a > 0;
(2) �(t) = |t|.

Then � ∈ �.

Now, we state and prove our main result.

2 Main results
In this section, we shall introduce a generalization of Geraghty contraction type mappings
and establish some novel fixed-point theorems for α∗-�-ψ-contraction multivalued map-
pings in the setting of F-MS.

Definition 2.1 Let (ϒ ,Q) be an F-MS, α : ϒ × ϒ → [0,∞) be a function. A mapping
� : ϒ → CB(ϒ) is called a α∗-�-ψ-contraction multivalued mapping if there exists β ∈
�, � ∈ � and ψ ∈ � such that

�
(
α∗(�γ ,�δ)HQ(�γ ,�δ)

) ≤ ψ
[
�

(
β
(ℵ(γ , δ)

)ℵ(γ , δ)
)]

, (2.1)

where

ℵ(γ , δ) = max

{
Q(γ , δ),Q(γ ,�γ ),Q(δ,�δ),

Q(γ ,�δ) + Q(δ,�γ )
2

}
,

for all γ , δ ∈ ϒ .
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Theorem 2.2 Let (ϒ ,Q) be an F-complete F-MS, α : ϒ × ϒ → [0,∞) be a function, and
� : ϒ → CB(ϒ) a mapping. Postulating that the following affirmations hold:

(1) � is α∗-�-ψ-contraction;
(2) � is triangular α∗-orbital admissible;
(3) there exists an γ0 ∈ ϒ such that α∗(γ0,�γ0) ≥ 1;
(4) � is continuous.

Then, � has a unique fixed point γ ∗ ∈ ϒ .

Proof Due to (3), we define a sequence {γn}n∈N by assuming that γ1 ∈ �γ0 such that
α(γ0,�γ0) = α(γ0,γ1) ≥ 1 and γ2 ∈ �γ1, γ3 ∈ �γ2, . . . ,γζ+1 ∈ �γζ = �ζ γ0, from (2) and
Lemma 1.11, we have α(γζ ,γζ+1) ≥ 1 for all ζ ∈ N ∪ {0}. Using Lemma 1.15, from (1) and
(�1), we have

�
(
Q(γζ ,γζ+1)

) ≤ �
(
HQ(�γζ–1,�γζ )

)

≤ �
(
α∗(�γζ–1,�γζ )HQ(�γζ–1,�γζ )

)

≤ ψ
(
�

[
β
(ℵ(γζ–1,γζ )

)ℵ(γζ–1,γζ )
])

. (2.2)

We evaluate

ℵ(γζ–1,γζ ) = max

{
Q(γζ–1,γζ ),Q(γζ–1,�γζ–1),

Q(γζ ,�γζ ), Q(γζ–1,�γζ )+Q(γζ ,�γζ–1)
2

}

= max

{
Q(γζ–1,γζ ),Q(γζ–1,γζ ),Q(γζ ,γζ+1)

Q(γζ–1,γζ+1)+Q(γζ ,γζ )
2

}

,

since

Q(γζ–1,γζ+1)
2

≤ max
{
Q(γζ–1,γζ ),Q(γζ ,γζ+1)

}
,

we conclude that

ℵ(γζ–1,γζ ) = max
{
Q(γζ–1,γζ ),Q(γζ ,γζ+1)

}
.

Now, if max{Q(γζ–1,γζ ),Q(γζ ,γζ+1)} = Q(γζ ,γζ+1) for ζ ≥ 1, then from (2.2), we obtain

�
(
Q(γζ ,γζ+1)

) ≤ ψ
(
�

[
β
(
Q(γζ ,γζ+1)

)
.Q(γζ ,γζ+1)

])
,

since β ∈� and from (�1), we have

Q(γζ ,γζ+1) < Q(γζ ,γζ+1),

which is a discrepancy as Q(γζ ,γζ+1) ≥ 0. Therefore,

max
{
Q(γζ–1,γζ ),Q(γζ ,γζ+1)

}
= Q(γζ–1,γζ ),
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by (2.2), we have

�
(
Q(γζ ,γζ+1)

) ≤ �
(
α∗(�γζ–1,�γζ )HQ(�γζ–1,�γζ )

)

≤ ψ
(
�

[
β
(
Q(γζ–1,γζ )

)
.Q(γζ–1,γζ )

])

≤ ψ
(
�

[
β
(
Q(γζ–1,γζ )

)
.
(
α∗(�γζ–2,�γζ–1)HQ(Tγζ–2, Tγζ–1)

)])

≤ ψ2(�
[
β
(
Q(γζ–1,γζ )

)
β
(
Q(γζ–2,γζ–1)

)
Q(γζ–2,γζ–1)

])

...

≤ ψζ
(
�

[
β
(
Q(γζ–1,γζ )

)
β
(
Q(γζ–2,γζ–1)

)
...β

(
Q(γ0,γ1)

)
Q(γ0,γ1)

])

= ψζ

(

�

[(
ζ∏

i=1

β
(
Q(γi–1,γi)

)
)

Q(γ0,γ1)

])

< ψζ
(
�

[
Q(γ0,γ1)

])
, for all ζ ∈N.

Let ε > 0 be fixed and (L, a) ∈ 
× [0,∞) be such that (Q3) is satisfied. By (
2), there exists
ð > 0 such that

0 < ς < ð implies L(ς ) < L(ε) – a. (2.3)

Let �(ε) ∈N such that 0 <
∑

ζ≥�(ε) ψ
ζ (�[Q(γ0,γ1)]) < �(ð).

Hence, by using properties of ψ , (2.3) and (
1), we have

L
(

η–1∑

j=ζ

ψ j(�
[
Q(γ0,γ1)

])
)

≤ L
( ∑

ζ≥�(ε)

ψζ
(
�

[
Q(γ0,γ1)

])
)

< L
(
�(ε)

)
– a, (2.4)

where η > ζ > �(ε) with Q(γζ ,γη) > 0 using (Q3) and (2.4), we have

L
(
�

(
Q(γζ ,γη)

)) ≤ L
(

η–1∑

j=ζ

ψ j(�
[
Q(γ0,γ1)

])
)

+ a

≤ L
( ∑

ζ≥�(ε)

ψζ
(
�

[
Q(γ0,γ1)

])
)

+ a

< L
(
�(ε)

)
– a + a

= L
(
�(ε)

)
,

which implies by (
1) and (�1) that

Q(γζ ,γη) < ε, ∀η > ζ > �(ε).

Therefore, {γζ } is an F-Cauchy sequence in (ϒ ,Q). Since ϒ is F-complete, there exists
γ ∗ ∈ ϒ such that γζ −→ γ ∗ as ζ −→ ∞, implies

lim
ζ→∞Q

(
γ ∗,γζ

)
= 0. (2.5)
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Now, to show that γ ∗ ∈ �γ ∗ is a fixed point of �, presume that Q(γ ∗,�γ ) > 0 such that
γ ∗ /∈ �γ ∗ with α(γ ∗,γζ ) ≥ 1, ζ ∈N. By (Q3) and (�4), we have

L
(
�

(
Q

(
�γ ∗,γ ∗))) ≤ L

(
�

(
Q

(
�γ ∗,�γζ

)
+ Q

(
�γζ ,γ ∗))) + a

≤ L
(
�

(
Q

(
�γ ∗,�γζ

))
+ �

(
Q

(
�γζ ,γ ∗))) + a

≤ L
(
�

(
α∗

(
�γ ∗,�γζ

)
HQ

(
�γ ∗,�γζ

))
+ �

(
Q

(
�γζ ,γ ∗))) + a

≤ L
(
ψ

(
�

[
β
(ℵ(

γ ∗,γζ

))ℵ(
γ ∗,γζ

)])
+ �

(
Q

(
�γζ ,γ ∗))) + a

≤ L
(
ψ

(
�

[ℵ(
γ ∗,γζ

)])
+ �

(
Q

(
�γζ ,γ ∗))) + a

< L
(
�

[ℵ(
γ ∗,γζ

)]
+ �

(
Q

(
�γζ ,γ ∗))) + a, (2.6)

where

ℵ(
γ ∗,γζ

)
= max

{
Q(γ ∗,γζ ),Q(γ ∗,�γ ∗),Q(γζ ,�γζ ),

Q(γ ∗ ,�γζ )+Q(�γ ∗ ,γζ )
2

}

= max

{
Q(γ ∗,γζ ),Q(γ ∗,�γ ∗),Q(γζ ,γζ+1),

Q(γ ∗ ,γζ+1)+Q(�γ ∗ ,γζ )
2

}

,

for all ℵ(γ ∗,γζ ) and using (2.5), (�2), and (
2), we obtain

lim
ζ→∞L

(
�

(ℵ(
γ ∗,γζ

))
+ �

(
Q

(
�γζ ,γ ∗))) + a = –∞,

which is a discrepancy. Hence, we have

Q
(
γ ∗,�γ

)
= 0, that is γ ∗ ∈ �γ ∗. (2.7)

For uniqueness, we postulate that γ ∗ and δ∗ are two fixed points of � in ϒ such that γ ∗ 
=
δ∗. Then,

�
(
Q

(
γ ∗, δ∗)) = �

(
Q

(
�γ ∗,�δ∗))

≤ �
(
α∗

(
�γ ∗,�δ∗)HQ

(
�γ ∗,�δ∗))

≤ ψ
(
�

[
β
(ℵ(

γ ∗, δ∗))ℵ(
γ ∗, δ∗)])

< ψ
(
�

[ℵ(
γ ∗, δ∗)])

< �
[ℵ(

γ ∗, δ∗)],

where

ℵ(
γ ∗, δ∗) = max

{
Q(γ ∗, δ∗),Q(γ ∗,�γ ∗),Q(δ∗,�δ∗),

Q(γ ∗ ,�δ∗)+Q(δ∗ ,�γ ∗)
2

}

= Q
(
γ ∗, δ∗).

From (�1), this yields that

Q
(
γ ∗, δ∗) < Q

(
γ ∗, δ∗),

a discrepancy. Therefore, γ ∗ = δ∗ and � has a unique fixed point γ ∗ ∈ ϒ . �
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Example 2.3 Let ϒ = R be F-M and Q given by

Q(γ , δ) =

⎧
⎨

⎩
(γ – δ)2 if (γ , δ) ∈ [0, 3] × [0, 3],

|γ – δ| if (γ , δ) /∈ [0, 3] × [0, 3],

with L(ς ) = ln(ς ) and a = ln(3). Then, (ϒ ,Q) is an F-complete F- MS. Define � : ϒ →
CB(ϒ) by

�γ =

⎧
⎨

⎩
{ γ +1

e10 }, if γ ∈ [0,∞),

{0} otherwise,

and α : ϒ × ϒ → [0,∞) by

α(γ , δ) =

⎧
⎨

⎩

1
γ

+ 1 if γ , δ ∈ (0,∞),

0 otherwise,

let β : ϒ × ϒ → [0, 1) be as β(γ , δ) = 4(γ +1+e10)
e20(γ +1) , �(t) = t and ψ(t) = 3

4 t.
Now, for all (γ , δ) ∈ [0, 3] × [0, 3], then

�
(
α∗(�γ ,�δ)HQ(�γ ,�δ)

)

= �

[
γ + 1 + e10

γ + 1
max

(
sup
a∈�δ

Q(a,�δ), sup
b∈�δ

Q(�γ , b)
)]

= �

[
γ + 1 + e10

γ + 1
max

(
sup

a∈�γ

Q

(
a,

{
δ + 1
e10

})
, sup

b∈�δ

Q

({
γ + 1

e10

}
, b

))]

= �

[
γ + 1 + e10

γ + 1
max

(
Q

(
γ + 1

e10 ,
{

δ + 1
e10

})
,Q

({
γ + 1

e10

}
,
δ + 1
e10

))]

= �

[
γ + 1 + e10

γ + 1
max

(
Q

(
γ + 1

e10 ,
δ + 1
e10

)
,Q

(
γ + 1

e10 ,
δ + 1
e10

))]

≤ 3
4
�

[
4(γ + 1 + e10)

e20(γ + 1)
(γ – δ)2

]

≤ ψ
[
�

(
β
(ℵ(γ , δ)

)ℵ(γ , δ)
)]

.

Otherwise, we have

�
(
α∗(�γ ,�δ)HQ(�γ ,�δ)

)
= 0 ≤ ψ

[
�

(
β
(ℵ(γ , δ)

)ℵ(γ , δ)
)]

.

Now, for (γ , δ) ∈ (0, 3] × (0, 3], α∗(γ ,�γ ) ≥ 1 implies α∗(�γ ,�2γ ) ≥ 1, then � is α∗-orbital
admissible and α(γ , δ) ≥ 1 and α∗(δ,�δ) ≥ 1 imply α∗(γ ,�δ) ≥ 1, therefore � is triangular
α∗-orbital admissible. Hence, all affirmations of Theorem 2.2 are satisfied and γ ∗ = 1

e10–1 ∈
ϒ is the fixed point of �.

3 Consequences
In this part, some consequences are discussed in F-MS.
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Theorem 3.1 Let (ϒ ,Q) be an F-MS, set � : ϒ → ϒ and � : ϒ → CB(ϒ). Presume that
there exist functions β ∈�, � ∈ �, and ψ ∈ � such that ∀γ , δ ∈ ϒ ,

�
(
HQ(�γ ,�δ)

) ≤ ψ
(
�

[
β
(ℵ�(γ , δ)

)ℵ�(γ , δ)
])

, (3.1)

where

ℵ�(γ , δ) = max

{
Q(�γ ,�δ),Q(�γ ,�γ ),Q(�δ,�δ),

Q(�γ ,�δ) + Q(�δ,�γ )
2

}
.

If for any γ ∈ ϒ , �ϒ ⊆ �ϒ and �ϒ is an F-complete subspace of ϒ .

Then, � and � have a unique point of coincidence. Indeed, if � and � are weakly com-
patible, then � and � have a unique common fixed point γ ∗ ∈ ϒ .

Proof Let γ0 ∈ ϒ , since �ϒ ⊆ �ϒ , we can construct a sequence {δζ }ζ∈N by

δζ ∈ �γζ–1 = �γζ , ∀ζ ∈ N. (3.2)

Now, if there exists some ζ0 ∈ N such that Q(δζ0 , δζ0+1) = 0, then δζ0 = δζ0+1, which implies
that �γζ0 = �γζ0 , thus γζ0 is a coincidence point of � and �, so w0 ∈ �γζ0 = �γζ0 is the
point of coincidence of � and �. We postulate that Q(δζ , δζ+1) > 0 ∀ζ ∈ N. From (3.1) and
(3.2), we have

�
(
Q(δζ , δζ+1)

) ≤ �
(
HQ(�γζ–1,�γζ )

)

≤ ψ
(
�

(
β
(ℵ�(γζ–1,γζ )

)ℵ�(γζ–1,γζ )
))

, (3.3)

where

ℵ�(γζ–1,γζ ) = max

{
Q(�γζ–1,�γζ ),Q(�γζ–1,�γζ–1),

Q(�γζ ,�γζ ), Q(�γζ–1,�γζ )+Q(�γζ ,�γζ–1)
2

}

= max

{
Q(δζ–1, δζ ),Q(δζ–1, δζ ),Q(δζ , δζ+1),

Q(δζ–1,δζ+1)+Q(yζ ,yζ )
2

}

= max
{
Q(δζ–1, δζ ),Q(δζ , δζ+1)

}
.

We conclude that

ℵ�(γζ–1,γζ ) = max
{
Q(δζ–1, δζ ),Q(δζ , δζ+1)

}
.

Now, if max{Q(δζ–1, δζ ),Q(δζ , δζ+1)} = Q(δζ , δζ+1) for ζ ≥ 1, then from (3.2), we obtain

�
(
Q(δζ , δζ+1)

) ≤ ψ
[
�

(
β
(
Q(δζ , δζ+1)

)
Q(δζ , δζ+1)

)]
.

Since β ∈� and from (�1), we have

Q(δζ , δζ+1) < Q(δζ , δζ+1),
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which is a discrepancy as Q(δζ , δζ+1) ≥ 0. Therefore,

max
{
Q(δζ–1, δζ ),Q(δζ , δζ+1)

}
= Q(δζ–1, δζ ), (3.4)

by (3.3) and (3.4), we have

�
(
Q(δζ , δζ+1)

)

= �
(
Q(�γζ–1,�γζ )

) ≤ �
(
HQ(�γζ–1,�γζ )

)

≤ ψ
[
�

(
β
(
Q(�γζ–1,�γζ )

)
.Q(�γζ–1,�γζ )

)]

= ψ
[
�

(
β
(
Q(δζ–1, δζ )

)
.Q(δζ–1, δζ )

)]

= ψ
[
�

(
β
(
Q(δζ–1, δζ )

)
.Q(�γζ–2,�γζ–1)

)]

≤ ψ
[
�

(
β
(
Q(δζ–1, δζ )

)
.HQ(�γζ–2,�γζ–1)

)]

≤ ψ2[�
(
β
(
Q(δζ–1, δζ )

)
β
(
Q(δζ–2, δζ–1)

)
Q(�γζ–3,�γζ–2)

)]

= ψ2[�
(
β
(
Q(δζ–1, δζ )

)
β
(
Q(δζ–2, δζ–1)

)
Q(δζ–2, δζ–1)

)]

· · ·
≤ ψζ

[
�

(
β
(
Q(�γζ–1,γζ )

)
β
(
Q(γζ–2,γζ–1)

)
...β

(
Q(γ0,γ1)

)
Q(γ0,γ1)

)]

= ψζ
[
�

(
β
(
Q(δζ–1, δζ )

)
β
(
Q(δζ–2, δζ–1)

)
...β

(
Q(δ0, δ1)

)
Q(δ0, δ1)

)]

= ψζ

[

�

([
ζ∏

i=1

β
(
Q(δi–1, δi)

)
]

Q(δ0, δ1)

)]

< ψζ
[
�

(
Q(δ0, δ1)

)]
,

for all ζ ∈ N. Let ε > 0 be fixed and (L, a) ∈ 
 × [0,∞) be such that (Q3) is satisfied. By
(
2), there exists ð > 0 such that

0 < ς < ð implies L(ς ) < L(ε) – a. (3.5)

Let �(ε) ∈ N such that 0 <
∑

ζ≥�(ε) ψ
ζ [�(Q(δ0, δ1))] < �(ð). Hence, by using the properties

of ψ , (3.5), and (
1), we have

L
(

η–1∑

j=ζ

ψ j[�
(
Q(δ0, δ1)

)]
)

≤ L
(∑

ζ≥�

ψζ
[
�

(
Q(δ0, δ1)

)]
)

(3.6)

< L
(
�(ε)

)
– a,

where η > ζ > � with Q(δζ , δη) > 0, using (Q3) and (3.6), we have

L
(
�

(
Q(δζ , δη)

)) ≤ L
(

η–1∑

j=ζ

ψ j[�
(
Q(δ0, δ1)

)]
)

+ a

≤ L
(∑

ζ≥�

ψζ
[
�

(
Q(δ0, δ1)

)])
+ a
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< L
(
�(ε)

)
– a + a

= L
(
�(ε)

)
,

which yields by (
1) and (�1) that

Q(δζ , δη) < ε, ∀η > ζ > �.

Therefore, {δζ } = {�γζ } is an F-Cauchy sequence in �ϒ . Since �ϒ is F-complete, there
exists v∗, u∗ ∈ ϒ such that v∗ = �u∗, which implies

lim
ζ→∞Q

(
v∗, δζ

)
= 0 = lim

η,ζ→∞Q(δη, δζ ) = lim
ζ→∞Q

(�u∗, δζ

)
= 0. (3.7)

Now, we show that v∗ ∈ �u∗. Postulating that Q(v∗,�u∗) > 0, by (3.1), we have

�
(
Q

(
δζ ,�u∗)) = �

(
Q

(
�γζ–1,�u∗)) ≤ �

(
HQ

(
�γζ–1,�u∗))

≤ ψ
(
�

[
β
(ℵ�

(
γζ–1, u∗)).ℵ�

(
γζ–1, u∗)]), (3.8)

where

ℵ�(γζ–1, u) = max

{
Q(�γζ–1,�u∗),Q(�γζ–1,�γζ–1),

Q(�u∗,�u∗), Q(�γζ–1,�u∗)+Q(�u∗ ,�γζ–1)
2

}

= max

{
Q(δζ–1, v∗),Q(δζ–1, δζ ),Q(v∗,�u∗),

Q(δζ–1,�u∗)+Q(v∗ ,δζ )
2

}

. (3.9)

Since β ∈�, from (�1), letting ζ → ∞ in (3.8) and applying (3.9), we obtain

Q
(
v∗,�u∗) < Q

(
v∗,�u∗),

which is a discrepancy. Therefore, Q(v∗,�u∗) = 0, which implies that v∗ ∈ �u∗. Thus,
v∗ = �u∗ ∈ �u∗, and hence � and � have a coincidence point u∗, and v∗ is a point of co-
incidence of � and �. By (Q1), we have Q(v∗, v∗) = 0. Postulating that v∗

1 is another point
of coincidence of � and � such that we can find u∗

1 ∈ ϒ , such that v∗
1 = �u∗

1 ∈ �u∗
1 and by

(Q1), Q(v∗
1, v∗

1) = 0. Now, we prove that Q(v∗, v∗
1) = 0 by contrast. Assume that Q(v∗, v∗

1) > 0,
from (3.1)

�
(
Q

(
v∗, v∗

1
)) ≤ �

(
Q

(
�u∗,�u∗

1
)) ≤ �

(
HQ

(
�u∗,�u∗

1
))

≤ ψ
(
�

[
β
(ℵ�

(
u∗, u∗

1
))ℵ�

(
u∗, u∗

1
)])

, (3.10)

ℵ�
(
u∗, u∗

1
)

= max

{
Q(�u∗,�u∗

1),Q(�u∗,�u∗),
Q(�u∗

1,�u∗
1), Q(�u∗ ,�u∗

1)+Q(�u∗ ,�u∗
1)

2

}

= max

{
Q(v∗, v∗

1),Q(v∗, v∗),Q(v∗
1, v∗

1),
Q(v∗ ,v∗

1)+Q(v∗ ,v∗
1)

2

}

= Q
(
v∗, v∗

1
)
. (3.11)
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Since β ∈ �, from (�1), (3.10), and (3.11), we obtain Q(v∗, v∗
1) < Q(v∗, v∗

1), which is a dis-
crepancy. Therefore, Q(v∗, v∗

1) = 0 implies that v∗ = v∗
1. Thus, � and � have a unique point

of coincidence. Moreover, since � and � are weakly compatible, we have �v∗ = �v∗. Now,
let w = �v∗ ∈ �v∗. From the uniqueness of the point of coincidence, we have w = v = �v∗ ∈
�v∗. Therefore, � and � have a unique common fixed point. �

Corollary 3.2 Let (ϒ ,Q) be an F-complete F-MS, α : ϒ × ϒ → [0,∞) be a function. A
mapping � : ϒ → ϒ is called an improved α-Geraghty contraction mapping if there exist
β ∈� such that for all γ , δ ∈ ϒ ,

α(γ , δ)Q(�γ ,�δ) ≤ β
(ℵ(γ , δ)

)
.ℵ(γ , δ),

where

ℵ(γ , δ) = max

{
Q(γ , δ),Q(γ ,�γ ),Q(δ,�δ),

Q(γ ,�δ) + Q(δ,�γ )
2

}
,

for all γ , δ ∈ ϒ , satisfying the following stipulations:
(1) � is an improved α-Geraghty contraction;
(2) � is triangular α-orbital admissible;
(3) there exists an γ0 ∈ ϒ such that α(γ0,�γ0) ≥ 1;
(4) � is continuous.

Then, � has a unique fixed point γ ∗ ∈ ϒ .

Corollary 3.3 Let (ϒ ,Q) be an F-MS, and �,� : ϒ → ϒ be two mappings with �ϒ ⊆ �ϒ

and �ϒ is F-complete. The pair (�,�) is an improved Geraghty contraction if there exists
β ∈� such that for all γ , δ ∈ ϒ ,

Q(�γ ,�δ) ≤ β
(ℵ�(γ , δ)

)
.ℵ�(γ , δ),

where

ℵ�(γ , δ) = max

{
Q(�γ ,�δ),Q(�γ ,�γ ),Q(�δ,�δ),

Q(�γ ,�δ) + Q(�δ,�γ )
2

}
.

Then, � and g have a unique point of coincidence. Indeed, if � and � are weakly compatible,
then � and � have a unique common fixed point γ ∗ ∈ ϒ .

Example 3.4 Let ϒ = [0,∞) and F-M Q given by

Q(γ , δ) =

⎧
⎨

⎩
e|γ –δ| if γ 
= δ,

0 if γ = δ,

with L(ς ) = –1
ς

and a = 1. Then, (ϒ ,Q) is F-complete F-MS. Define � : ϒ → ϒ and � :
ϒ → CB(ϒ) by

�γ =

⎧
⎨

⎩
{ γ

8 }, if γ ∈N∪ {0},
{0} otherwise,

and �γ =

⎧
⎨

⎩

3γ

2 if γ ∈N∪ {0},
0 otherwise.
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Clearly, for all γ ∈ N ∪ {0}, �(ϒ) ⊆ �(ϒ) and �(ϒ) is an F-complete subset of ϒ ; let β :
ϒ × ϒ → [0, 1) be as β(γ , δ) = 1

2 , �(t) = t and ψ(t) = 2
3 t. Now, for all (γ , δ) ∈ N∪ {0} with

γ 
= δ, then

�
(
HQ(�γ ,�δ)

)
= �

(
max

(
sup

a∈�γ

Q(a,�δ), sup
b∈�δ

Q(�γ , b)
))

= �

(
max

(
sup

a∈�γ

Q

(
a,

{
δ

8

})
, sup

b∈�δ

Q

({
γ

8

}
, b

)))

= �

(
max

(
Q

(
γ

8
,
{

δ

8

})
,Q

({
γ

8

}
,
δ

8

)))

= �

(
max

(
Q

(
γ

8
,
δ

8

)
,Q

(
γ

8
,
δ

8

)))

= �

(
Q

(
γ

8
,
δ

8

))

= �
(
e| γ

8 – δ
8 |) = �

(
e

1
4 | γ

2 – δ
2 |)

≤ 2
3
�

(
1
2

e| 3γ
2 – 3δ

2 |
)

≤ ψ
(
�

[
β
(ℵ�(γ , δ)

)
.ℵ�(γ , δ)

])
.

If γ = δ, then we have

�
(
HQ(�γ ,�δ)

)
= 0 ≤ ψ

(
�

[
β
(ℵ�(γ , δ)

)
.ℵ�(γ , δ)

])
.

Otherwise, we have that (3.1) trivially holds. Therefore, all stipulations of Theorem 3.1 are
satisfied. Since ϒ0 = �0 = 0, thus γ = 0 is a common fixed point of � and �.

4 Application for the existence of a solution to a functional equation
In this section, we use our main results to verify the existence and uniqueness of a solution
to the functional equation:

�(γ ) = sup
δ∈ϒ

{
�(γ , δ) + �

(
γ , δ,�

(
μ(γ , δ)

))}
, γ ∈ �, (4.1)

where � : � × ϒ → R and � : � × ϒ × R → R are bounded, μ : � × ϒ → �, � and ϒ

are BSs. Equations of the type (4.1) have applications in mathematical optimization, com-
puter programming, and in dynamic programming, giving tools for solutions to boundary
value problems arising in engineering and physical sciences. Bhakta and Mitra [13] intro-
duced the existence theorems that proved the existence and uniqueness of the solution of a
functional equation under certain conditions in Banach spaces. Deepmala [15] utilized the
fixed-point theorems to establish the existence, uniqueness, and iterative approximation
of the solution for a functional equation in Banach spaces and complete metric spaces. In
[30, 32], common solutions of certain functional equations arising in dynamic program-
ming and common fixed-point theorems for a quadruple of self-mappings satisfying weak
compatibility and JH-operator pairs on a complete metric space were discussed.
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Let L=(�) denote the set of all bounded real-valued functions on �. The pair (L=(�),‖.‖),
where ‖h‖ = supς∈� |h(ς )|, h ∈ L=(�), is a BS along with the metric Q given by

Q(h, k) = sup
ς∈�

∣∣h(ς ) – k(ς )
∣∣ = ‖h – k‖.

To show the existence of a solution to (4.1), we put in place the following stipulations:
(S1) � and � are bounded,
(S2) for all h ∈ L=(�) and γ ∈ �, we define the operator � : L=(�) → L=(�) as

(�h)(γ ) = sup
δ∈ϒ

{
�(γ , δ) + �

(
γ , δ, h

(
μ(γ , δ)

))}
. (4.2)

Undoubtedly, � is well defined since � and � are bounded,
(S3) for a > 1, (γ , δ) ∈ �× ϒ , h, k ∈ L=(�) and ς ∈ �, we have

∣∣�
(
γ , δ, h(ς )

)
– �

(
γ , δ, k(ς )

)∣∣ ≤ e–aℵ(h, k), (4.3)

where

ℵ(h, k) = max

{
Q(h, k),Q(h,�h),Q(k,�k),

Q(k,�h) + Q(h,�k)
2

}
.

We shall verify the following theorem.

Theorem 4.1 Postulate that the stipulations (S1) – (S3) hold, then the functional Eq. (4.1)
has a bounded solution.

Proof Let λ > 0 be arbitrary, γ ∈ � and h, k ∈ L=(�). The space (L=(�),Q) is an F-complete
F-MS. There exist δ1, δ2 ∈ ϒ such that

(�h)(γ ) < �(γ , δ1) + �
(
γ , δ1, h

(
μ(γ , δ1)

))
+ λ, (4.4)

(�k)(γ ) < �(γ , δ2) + �
(
γ , δ2, k

(
μ(γ , δ2)

))
+ λ, (4.5)

(�h)(γ ) ≥ �(γ , δ2) + �
(
γ , δ2, h

(
μ(γ , δ2)

))
, (4.6)

(�k)(γ ) ≥ �(γ , δ1) + �
(
γ , δ1, k

(
μ(γ , δ1)

))
. (4.7)

Then from (4.4) and (4.7), we obtain

(�h)(γ ) – (�k)(γ ) < �
(
γ , δ1, h

(
μ(γ , δ1)

))
– �

(
γ , δ1, k

(
μ(γ , δ1)

))
+ λ

≤ ∣∣�
(
γ , δ1, h

(
μ(γ , δ1)

))
– �

(
γ , δ1, k

(
μ(γ , δ1)

))∣∣ + λ

≤ e–aℵ(h, k) + λ. (4.8)

Similarly from (4.5) and (4.6), we obtain

(�k)(γ ) – (�h)(γ ) < �
(
γ , δ2, k

(
μ(γ , δ2)

))
– �

(
γ , δ2, h

(
μ(γ , δ2)

))
+ λ

≤ ∣∣�
(
γ , δ2, k

(
μ(γ , δ2)

))
– �

(
γ , δ2, h

(
μ(γ , δ2)

))∣∣ + λ
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≤ e–aℵ(h, k) + λ. (4.9)

Combining (4.8) and (4.9), we obtain

∣
∣(�h)(γ ) – (�k)(γ )

∣
∣ ≤ e–aℵ(h, k) + λ,

which implies for λ > 0 and γ ∈ � such that

e ×Q(�h,�k) ≤ 1
ea–1 ℵ(h, k).

Taking α(h, k) = e ≥ 1 and β(h, k) = 1
ea–1 ∈ [0, 1), we have

α(h, k)Q(�h,�k) ≤ β
(ℵ(h, k)

)ℵ(h, k).

All the stipulations of Corollary 3.2 are fulfilled, and � has a unique fixed point, so Eq. (4.1)
has a bounded solution. �

Example 4.2 Let � = ϒ = R be a BS with the standard norm ‖γ ‖ = |γ |, for all γ ∈ �.
Postulating that S = [0, 1] ⊆ � is the state space and D = [0,∞) ⊆ ϒ the decision space.
Define μ : S × D → S and � : S × D →R by

μ(γ , δ) =
γ δ2

1 + δ2 and �(γ , δ) = 0, ∀γ ∈ S, and δ ∈ D.

Define � : S →R by

�(γ ) =
1

32
A(γ ), A(γ ) ∈ L=(S) and γ ∈ S.

Now, for all h, k ∈ L=(S), γ ∈ S, we define a map � : L=(S) → L=(S) as,

�h(γ ) = sup
δ∈D

{
�(γ , δ) + �

(
γ , δ, h

(
μ(γ , δ)

))}
,

�k(γ ) = sup
δ∈D

{
�(γ , δ) + �

(
γ , δ, k

(
μ(γ , δ)

))}
,

where � : S × D ×R →R is defined by

�(γ , δ,ς ) =
1

32
ς sin

(
δ

δ + 2

)
.

Hence,

�h(γ ) = sup
δ∈D

{
�(γ , δ) + �

(
γ , δ, h

(
μ(γ , δ)

))}

= sup
δ∈D

�

(
γ , δ, h

(
γ δ2

1 + δ2

))

= sup
δ∈D

1
32

[
h
(

γ δ2

1 + δ2

)
sin

(
δ

δ + 2

)]
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=
1

32
h(γ ) = �1(γ ); γ ∈ S, h ∈ L=(S).

Similarly,

�k(γ ) =
1

32
k(γ ) = �2(γ ); γ ∈ S, k ∈ L=(S).

Note that � and � are bounded; this implies that stipulations (S1) and (S2) of Theorem 4.1
are satisfied. Now,

∣∣�
(
γ , δ, h(ς )

)
– �

(
γ , δ, k(ς )

)∣∣ =
∣
∣∣∣

1
32

h(ς ) sin

(
δ

δ + 2

)
–

1
32

h(ς ) sin

(
δ

δ + 2

)∣
∣∣∣

=
1

32

∣
∣∣
∣sin

(
δ

δ + 2

)∣
∣∣
∣
∣∣h(ς ) – k(ς )

∣∣

≤ 1
32

∣
∣h(ς ) – k(ς )

∣
∣

≤ 1
e2 ‖h – k‖.

Thus, all the assertions of Theorem 4.1 are satisfied and the functional Eq. (4.1) has a
bounded solution in L=(S).

5 Conclusion
In this paper, we introduced a new notion of α∗-ψ-�-contraction multivalued mappings
and proved some novel fixed-point theorems for such contraction in F-MSs. Some conse-
quences are studied to investigate coincidence-point results for this contraction in F-MSs.
Also, we gave some examples to clarify our obtained results; we utilized the main results
to discuss the existence and uniqueness of a solution to a functional equation. The new
concepts lead to further investigations and applications.
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9. Altun, I., Minak, G., Dağ, H.: Multivalued F-contractions on complete metric spaces. J. Nonlinear Convex Anal. 16(4),

659–666 (2015)
10. Asif, A., Nazam, M., Arshad, M., Kim, S.O.: F-Metric, F-contraction and common fixed-point theorems with applications.

Mathematics 7, 586 (2019)
11. Aydi, H., Karapinar, E., Yazidi, H.: Modified F-contractions via alpha-admissible mappings and application to integral

equations. Filomat 31, 1141–1148 (2017)
12. Banach, S.: Sur les operations dans les ensembles abstraits et leur application aux equations itegrals. Fundam. Math.

3, 133–181 (1922)
13. Bhakta, P.C., Mitra, S.: Some existence theorems for functional equations arising in dynamic programming. J. Math.

Anal. Appl. 98(2), 348–362 (1984)
14. Cho, S.H., Bae, J., Karapinar, E.: Fixed point theorems for α-Geraghty contraction type maps in metric spaces. Fixed

Point Theory Appl. 2013, 329 (2013)
15. Deepmala: Existence theorems for solvability of a functional equation arising in dynamic programming. Int. J. Math.

Math. Sci. 2014, 1–9 (2014)
16. Frechet, M.R.: Sur guelgues points du calcul fonctionnel (1906)
17. Geraghty, M.A.: On contractive mappings. Proc. Am. Math. Soc. 40, 604–608 (1973)
18. Hazarika, B., Karapinar, E., Arab, R., Rabbani, M.: Metric-like spaces to prove existence of solution for nonlinear

quadratic integral equation and numerical method to solve it. J. Comput. Appl. Math. 328, 302–313 (2018).
https://doi.org/10.1016/j.cam.2017.07.012

19. Hussain, A.: Fractional convex type contraction with solution of fractional differential equation. AIMS Math. 5(5),
5364–5380 (2020)

20. Hussain, A., Kanwal, T.: Existence and uniqueness for a neutral differential problem with unbounded delay via fixed
point results. Trans. A. Razmadze Math. Inst. 172, 481–490 (2018)

21. Jleli, M., Samet, B.: On a new generalization of metric spaces. J. Fixed Point Theory Appl. 20, 128 (2018)
22. Jungck, G.: Commuting mappings and fixed points. Am. Math. Mon. 83, 261–263 (1976).

https://doi.org/10.2307/2318216
23. Kaewcharoen, A., Kaewkhao, A.: Common fixed points for single-valued and multi-valued mappings in G-metric

spaces. Int. J. Math. Anal. 5(36), 1775–1790 (2011)
24. Lateef, D., Ahmad, J.: Dass and Gupta’s fixed point theorem in F-metric spaces. J. Nonlinear Sci. Appl. 12, 405–411

(2019)
25. Liu, X.D., Chang, S.S., Xiao, Y., Zhao, L.C.: Some fixed point theorems concerning (ψ ,φ)-type contraction in complete

metric spaces. J. Nonlinear Sci. Appl. 9, 4127–4136 (2016)
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