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Abstract
This work studies the problem of construction of optimal quadrature formulas in the
sense of Sard in the space L(m)

2 (0, 1) for numerical calculation of Fourier coefficients.
Using Sobolev’s method, we obtain new sine and cosine weighted optimal
quadrature formulas of such type for N + 1≥ m, where N + 1 is the number of nodes.
Then, explicit formulas for the optimal coefficients of optimal quadrature formulas are
obtained. The obtained optimal quadrature formulas in L(m)

2 (0, 1) space are exact for
algebraic polynomials of degree (m – 1).
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1 Introduction
Methods based on the Fourier transform are virtually used in many areas of engineering
and science. It is known that one of the most important and interesting discoveries in
mathematics is that many math functions can be approximated by a series of sinusoids,
called Fourier series. Furthermore, we know that the Fourier coefficients

Fs(ω) =
∫ 1

0
f (t) sin(2πωt) dt, Fc(ω) =

∫ 1

0
f (t) cos(2πωt) dt

are strongly oscillating integrals for sufficiently large values of ω. Moreover, these weighted
integrals can be applied to reconstruct X-ray Computed Tomography images [11, 13, 15]. It
should be noted that standard methods are not suitable for numerical calculation of these
integrals. Therefore, it is necessary to develop special methods for approximate calculation
of such integrals. It should be noted that one of the first numerical integration formula for
the integral

I[f ,ω] =
∫ b

a
e2π iωxf (x) dx, (1)

i.e., for the linear combination of Fs(ω) and Fc(ω), was obtained by Filon [5] in 1928 us-
ing a quadratic spline. Since then, for integrals of different types of highly oscillating
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functions many special effective methods have been developed, such as the Filon-type
method, the Clenshaw–Curtis–Filon-type method, the Levin-type methods, the modi-
fied Clenshaw–Curtis method, the generalized quadrature rule, and the Gauss–Laguerre
quadrature. Recently, in [1, 2], based on Sobolev’s method, the problem of construction
of optimal quadrature formulas in the sense of Sard for numerical calculation of integrals
(1) with integer ω was studied in Hilbert spaces L(m)

2 and W (m,m–1)
2 .

In [13], the authors deal with the construction of an optimal quadrature formula for ap-
proximation of Fourier integrals in the Sobolev space L(1)

2 [a, b] of nonperiodic, complex-
valued functions that are square integrable with first-order derivative. There, the quadra-
ture sum consists of a linear combination of the given function values in a uniform grid.
The difference between the integral and the quadrature sum is estimated by the norm of
the error functional. The optimal quadrature formula is obtained by minimizing the norm
of the error functional with respect to coefficients. Moreover, several numerical results are
presented and the obtained optimal quadrature formula is applied to reconstruct the X-
ray Computed Tomography image by approximating Fourier transforms. We note that the
results of the paper were generalized for functions of the Sobolev space L(m)

2 in [14].
In the work [15], the construction process of the optimal quadrature formulas for

weighted integrals is presented in the Sobolev space L̃(m)
2 (0, 1) of complex-valued peri-

odic functions that are square integrable with mth-order derivative. In particular, optimal
quadrature formulas are given for Fourier coefficients. There, using the optimal quadra-
ture formulas the approximation formulas for Fourier integrals

∫ b
a e2πωxf (x) dx with ω ∈R

are obtained. In the cases m = 1, 2, and 3, the obtained approximation formulas are applied
for reconstruction of Computed Tomography (CT) images coming from the filtered back-
projection method. Compared with the optimal quadrature formulas in the nonperiodic
case, the approximation formula for the periodic case is much simpler, therefore, it is easy
to implement and involves less computation.

We note that quadrature and cubature formulas with extremal properties play an impor-
tant role in applications. The works [7, 8] and [9] also deal with some extremality prop-
erties. In these works, the authors considered a sequence of positive linear operators that
map C(�) into itself, where � is a compact convex subset of Rd . In [8], they established
Korovkin-type theorems. In the work [9], the authors studied cubature formulas on � that
approximate the integral of every convex function from above. They are called negative-
definite formulas. For aiming at “good” negative-definite formulas the authors introduced
and studied three extremal properties named as minimal, best, and optimal.

The present work is devoted to numerical calculation of the integrals Fs(ω) and Fc(ω)
with high accuracy.

For this, here in the space L(m)
2 (0, 1), we consider quadrature formulas of the forms

∫ 1

0
sin(2πωx)ϕ(x) dx ∼=

N∑
β=0

Cs[β]ϕ[β] (2)

and

∫ 1

0
cos(2πωx)ϕ(x) dx ∼=

N∑
β=0

Cc[β]ϕ[β], (3)
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where Cs[β] and Cc[β] are coefficients, [β] = hβ , h = 1
N , N is a natural number, ω ∈ R,

and ω �= 0. L(m)
2 (0, 1) is the Sobolev space of function ϕ that are square integrable with mth

generalized derivative and equipped with the norm

‖ϕ‖L(m)
2 (0,1) =

(∫ 1

0

(
ϕ(m)(x)

)2 dx
)1/2

.

It should be noted that constructions of optimal quadrature formulas with sine and co-
sine weight functions of the forms (2) and (3) in the Sobolev space L(m)

2 were considered
in the works [3] and [12], respectively. In the present paper, for completeness, we give the
results for optimal quadrature formulas of the form (2) obtained in [3] and we obtain a
more simplified system for determining the coefficient of optimal quadrature formulas
(3) that requires a smaller amount of calculation than the results of the work [12]. Along
with these, we obtain a more simplified form of the results [14] by linear combination of
optimal quadrature formulas of the form (2) and (3).

The rest of the paper is organized as follows. In Sect. 2 we state the problem of construc-
tion of weighted optimal quadrature formulas in the space L(m)

2 (0, 1). In Sect. 3 we give
some definitions and preliminary results. In Sect. 4 we construct trigonometric weighted
optimal quadrature formulas and find the optimal coefficients. Finally, in Sect. 5 we
present some numerical results of the upper bounds for the errors of the optimal quadra-
ture formulas in the forms (2) and (3).

2 Statement of the problem
In this section, we consider a weighted quadrature formula of the form

∫ 1

0
p(x)ϕ(x) dx ∼=

N∑
β=0

C[β]ϕ[β], (4)

where p(x) is a weight function,
∫ 1

0 p(x) dx < ∞, [β] = hβ , h = 1/N , N is a natural number,
C[β] are coefficients of the formula (4), and ϕ is a function of the space L(m)

2 (0, 1). In the
following, for convenience we denote the space L(m)

2 (0, 1) as L(m)
2 .

The following difference is called the error of the quadrature formula (4)

(�,ϕ) =
∫ ∞

–∞
�(x)ϕ(x) dx =

∫ 1

0
p(x)ϕ(x) dx –

N∑
β=0

C[β]ϕ[β]. (5)

Here, � is an error functional corresponding to the quadrature formula (4) and it belongs
to the conjugate space L(m)∗

2 . The functional � has the form

�(x) = ε[0,1](x)p(x) –
N∑

β=0

C[β]δ
(
x – [β]

)
, (6)

here, ε[0,1](x) is the characteristic function of the interval [0, 1], δ is the Dirac delta function.
The following conditions are imposed because the functional � is defined on the space

L(m)
2

(
�, xα

)
= 0, α = 0, 1, 2, . . . , m – 1. (7)
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The last equations mean exactness of the quadrature formula (4) for any polynomial of
degree (m – 1).

It is known that by the Cauchy–Schwarz inequality

∣∣(�,ϕ)
∣∣ ≤ ∣∣|ϕ||L(m)

2
· ||�|∣∣L(m)∗

2

the error (5) can be estimated by the norm of the error functional (6)

‖�‖L(m)∗
2

= sup
‖ϕ‖

L(m)
2

=1

∣∣(�,ϕ)
∣∣.

In this way, the error estimate of the quadrature formula (4) on the space L(m)
2 is reduced

to finding a norm of the error functional �(x) in the conjugate space L(m)∗
2 . Hence, we state

the following.

Problem 1 Find the coefficients C̊[β] that give a minimum value to the quantity ‖�‖L(m)∗
2

and find the following

inf
C[β]

‖�‖L(m)∗
2

. (8)

The quadrature formula (4) with such coefficients C̊[β] is called the optimal quadrature
formula in the sense of Sard (see [17]), C̊[β] are called the optimal coefficients and the
corresponding error functional denoted by �̊ has the norm

‖�̊‖L(m)∗
2

= inf
C[β]

‖�‖L(m)∗
2

.

Thus, in order to solve Problem 1, first we should calculate ‖�‖L(m)∗
2

and then we have to

find the optimal coefficients C̊[β] that give the minimum to ‖�‖L(m)∗
2

.

It is well known that for any functional � in L(m)∗
2 the following equality holds (see [21,

23])

‖�‖2
L(m)∗

2
= (�,ψ�) =

∫ ∞

–∞
�(x)ψ�(x) dx, (9)

where

ψ�(x) =
∫ ∞

–∞
�(y)

|x – y|2m–1

2(2m – 1)!
dy + Pm–1(x) (10)

and ψ� is the extremal function for the error functional � defined on the space L(m)
2 [0, 1],

Pm–1(x) is any polynomial of degree (m – 1). We note that the extremal function was found
by Sobolev [20].
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Then from (9), taking (7) and (10) into account, one can obtain

‖�‖2
L(m)∗

2
= (–1)m

( N∑
β=0

N∑
γ =0

C[β]C[γ ]
|[β] – [γ ]|2m–1

2(2m – 1)!

– 2
N∑

β=0

C[β]
∫ 1

0
p(x)

|x – [β]|2m–1

2(2m – 1)!
dx

+
∫ 1

0

∫ 1

0
p(x)p(y)

|x – y|2m–1

2(2m – 1)!
dx dy

)
. (11)

See, for example [19].
Thus, for construction of optimal quadrature formulas of the form (4) we should find

the minimum value of the expression (11) under the conditions (7). For this, we need some
definitions and preliminary results that are given in the next section.

3 Definitions and preliminary results
In this section we give some definitions and known results that are necessary in the proof
of the main results.

Here, we use the concept of discrete argument functions and operations on them given
in [20, 23].

Assume that φ(x) and ψ(x) are real-valued functions of real variables and are defined in
the real line R. We recall that [β] = hβ , β ∈ Z, h = 1

N , where N is a natural number.

Definition 1 Function φ[β] is a function of a discrete argument, if it is given on some set
of integer values of β .

Definition 2 The inner product of two discrete functions φ[β] and ψ[β] is the number

[φ,ψ] =
∞∑

β=–∞
φ[β] · ψ[β],

if the series on the right-hand side of the last equality converges absolutely.

Definition 3 The convolution of two discrete functions φ[β] and ψ[β] is the following
inner product

φ[β] ∗ ψ[β] =
[
φ[γ ],ψ[β – γ ]

]
=

+∞∑
γ =–∞

φ[γ ] · ψ[β – γ ].

In this work, the discrete analog Dm[β] of the operator d2m/dx2m plays an important role
in the construction of optimal formulas in L(m)

2 (0, 1) space. This discrete operator satisfies
the equality

hDm[β] ∗ |[β]|2m–1

2(2m – 1)!
= δ[β], (12)

where δ[β] =
{ 1, β = 0,

0, β �= 0, and ∗ is the convolution for the discrete argument functions.
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It should be noted that the discrete analog Dm[β] of the operator d2m/dx2m was first
introduced and studied by Sobolev [20]. In [18], the discrete analog Dm[β] was constructed
and the following theorem was proved.

Theorem 1 The discrete analog to the differential operator d2m

dx2m has the form

Dm[β] = p ·

⎧⎪⎪⎨
⎪⎪⎩

∑m–1
k=1 Akq|β|–1

k , |β| ≥ 2,

1 +
∑m–1

k=1 Ak , |β| = 1,

C +
∑m–1

k=1
Ak
qk

, β = 0,

(13)

where

p =
(2m – 1)!

h2m , Ak =
(1 – qk)2m+1

E2m–1(qk)
, C = –22m–1,

E2m–1(x) is the Euler–Frobenius polynomial of degree (2m – 1), qk are the roots of the Euler–
Frobenius polynomials E2m–2(x) and satisfy the inequality |qk| < 1, and h is a small positive
parameter.

Moreover, several properties of the discrete analog Dm[β] were studied in [20, p. 732]
and [18]. Here, we need the following of them.

The discrete argument function Dm[β] and the monomials [β]k are related to each other
as follows

Dm[β] ∗ [β]k = 0, k = 0, 1, . . . , 2m – 1. (14)

The Euler–Frobenius polynomials Ek(x), k = 1, 2, . . . are defined by the following formula
(see, e.g., [21, 22])

Ek(x) =
(1 – x)k+2

x
·
(

x
d

dx

)k x
(1 – x)2 , (15)

where E0(x) = 1. The following identity holds for the polynomial Ek(x):

Ek(x) = xkEk

(
1
x

)
. (16)

Moreover, the following takes place.

Theorem 2 (Lemma 1.4.3 of [19]) The Euler–Frobenius polynomial of degree k is deter-
mined by the formula

Pk(x) = (x – 1)k+1
k+1∑
i=0

�i0k+1

(x – 1)i , (17)

i.e., Pk(x) = Ek(x), where �i0k =
∑i

l=1(–1)i–l(i
l
)
lk .
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The coefficients of the Euler–Frobenius polynomial

Ek(x) =
k∑

m=0

am,kxm (18)

of degree k satisfy the equality am,k = ak–m,k , m = 0, 1, . . . , k.
From [10] we use the following formula

n–1∑
γ =0

qγ γ k =
1

1 – q

k∑
i=0

(
q

1 – q

)i

�i0k –
qn

1 – q

k∑
i=0

(
q

1 – q

)i

�iγ k|γ =n, (19)

where �iγ k is the finite difference of order i of γ k , and q is a ratio of a geometric progres-
sion.

We also apply the following well-known formulas from [6]

β–1∑
γ =0

γ k =
k+1∑
j=1

k!Bk+1–j

j!(k + 1 – j)!
β j, (20)

where Bk+1–j are Bernoulli numbers, k is a natural number, and

�αxν =
ν∑

p=0

(
ν

p

)
�α0pxν–p. (21)

Further, we introduce the following notations

B1 =
e2π iωh

(e2π iωh – 1)2m E2m–2
(
e2π iωh), (22)

B2 =
2e2π iωh

2i(e2π iωh – 1)2j+1 E2j–1
(
e2π iωh), (23)

B3 =
e2π iωh(1 – e2π iω) – (–1)αe2π iωh(1 – e–2π iω)

(1 – e2π iωh)α+1 Eα–1
(
e2π iωh), (24)

B4 =
α–1∑
j=1

(
α

j

)
hj+1 e2π iωh+2π iω – (–1)je2π iωh–2π iω

(1 – e2π iωh)j+1 Ej–1
(
e2π iωh), (25)

where E2m–2(x), Eα–1(x), E2j–1(x), and Ej–1(x) are Euler–Frobenius polynomials, and i2 = –1.
In the next section we present the main results, i.e., we find the analytic expressions for

coefficients of the optimal quadrature formulas of the forms (2) and (3).

4 Main results
For the quadrature formulas of the forms (2) and (3) we have the error functionals

�s(x) = ε[0,1](x) sin(2πωx) –
N∑

β=0

Cs[β]δ
(
x – [β]

)
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and

�c(x) = ε[0,1](x) cos(2πωx) –
N∑

β=0

Cc[β]δ
(
x – [β]

)
,

respectively. For the norms of the functionals �s and �c from (11) when p(x) = sin(2πωx)
and p(x) = cos(2πωx), we obtain the following expressions, respectively:

‖�s‖2
L(m)∗

2
= (–1)m

( N∑
β=0

N∑
γ =0

Cs[β]Cs[γ ]
|[β] – [γ ]|2m–1

2(2m – 1)!

– 2
N∑

β=0

Cs[β]
∫ 1

0
sin(2πωx)

|x – [β]|2m–1

2(2m – 1)!
dx

+
∫ 1

0

∫ 1

0
sin(2πωx) sin(2πωy)

|x – y|2m–1

2(2m – 1)!
dx dy

)
(26)

and

‖�c‖2
L(m)∗

2
= (–1)m

( N∑
β=0

N∑
γ =0

Cc[β]Cc[γ ]
|[β] – [γ ]|2m–1

2(2m – 1)!

– 2
N∑

β=0

Cc[β]
∫ 1

0
cos(2πωx)

|x – [β]|2m–1

2(2m – 1)!
dx

+
∫ 1

0

∫ 1

0
cos(2πωx) cos(2πωy)

|x – y|2m–1

2(2m – 1)!
dx dy

)
. (27)

In order to find the optimal coefficients C̊s[γ ] and C̊c[γ ] for γ = 0, 1, . . . , N that give
the minimum to ‖�s‖2

L(m)∗
2

and ‖�c‖2
L(m)∗

2
under the conditions (7), respectively, we use the

Lagrange method of undetermined multipliers. Then, we obtain the following systems of
linear equations for the optimal coefficients C̊s[γ ]:

N∑
γ =0

C̊s[γ ]
|[β] – [γ ]|2m–1

2(2m – 1)!
+ Ps,m–1[β] = fs,m[β], β = 0, 1, . . . , N , (28)

N∑
γ =0

C̊s[γ ][γ ]α = gs,α , α = 0, 1, . . . , m – 1, (29)

where

fs,m[β] =
(–1)m

(2πω)2m sin
(
2πω[β]

)
–

2m–1∑
α=0

[β]2m–1–α · (–1)α

2 · α!(2m – 1 – α)!
· gs,α

+
2m–1∑
α=0

(–1)α[β]2m–1–α

(2m – 1 – α)!
cos

(
απ

2

)
, (30)

gs,α = –
α–1∑
k=0

α!
(α – k)!

cos(2πω + kπ
2 )

(2πω)k+1 –
2α! sin(πω)
(2πω)α+1 sin

(
πω +

απ

2

)
(31)
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and for C̊c[γ ]:

N∑
γ =0

C̊c[γ ]
|[β] – [γ ]|2m–1

2(2m – 1)!
+ Pc,m–1[β] = fc,m[β], β = 0, 1, . . . , N , (32)

N∑
γ =0

C̊c[γ ][γ ]α = gc,α , α = 0, 1, . . . , m – 1, (33)

where

fc,m[β] =
(–1)m

(2πω)2m cos
(
2πω[β]

)
–

2m–1∑
α=0

[β]2m–1–α · (–1)α

2 · α!(2m – 1 – α)!
· gc,α

+
2m–1∑
α=0

(–1)α[β]2m–1–α

(2m – 1 – α)!(2πω)α+1 sin

(
απ

2

)
, (34)

gc,α =
α–1∑
k=0

α!
(α – k)!

sin(2πω + kπ
2 )

(2πω)k+1 +
2α! sin(πω)
(2πω)α+1 cos

(
πω +

απ

2

)
. (35)

In [20] it is proved that each of the systems (28), (29) and (32), (33) has a unique solution
for any fixed N satisfying the inequality N + 1 ≥ m.

We note that in the (28), (29) and (32), (33) the coefficients C̊s[γ ] and C̊c[γ ], polynomials
Ps,m–1[β] and Pc,m–1[β] are unknowns.

Our aim is to obtain the exact solutions of the systems (28), (29) and (32), (33), respec-
tively.

The following theorems hold.

Theorem 3 The optimal quadrature formulas in the sense of Sard of the form (2) in the
space L(m)

2 (0, 1) when ω ∈ R and ωh /∈ Z have the coefficients with the following analytic
expressions

C̊s[0] = h

[
1

2πωh
– Km,ω

cos(πωh)
2 sin(πωh)

+
m–1∑
k=1

ms,kqk – ns,kqN
k

qk – 1

]
,

C̊s[β] = h

[
Km,ω sin(2πωhβ) +

m–1∑
k=1

(
ms,kqβ

k + ns,kqN–β

k
)]

, β = 1, N – 1, (36)

C̊s[N] = h

[
–

cos(2πω)
2πωh

+ Km,ω
cos(2πω – πωh)

2 sin(πωh)
+

m–1∑
k=1

–ms,kqN
k + ns,kqk

qk – 1

]
,

where

Km,ω =
(

sin(πωh)
πωh

)2m (2m – 1)!
2
∑m–2

k=0 ak,2m–2 cos(2πωh(m – 1 – k)) + am–1,2m–2
,

qk are the roots of the Euler–Frobenius polynomial E2m–2(x) with |qk| < 1, ak,α are the kth
coefficients of the Euler–Frobenius polynomial of degree α, and ms,k and ns,k satisfy the
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system of linear equations

m–1∑
k=1

ms,kqk – (–1)jns,kqN+1
k

(qk – 1)j+1 Ej–1(qk)

= –
(–1)jj! cos( π j

2 )
(2πωh)j+1 –

(1 + (–1)j)Km,ωe2π iωh

2i(e2π iωh – 1)j+1 Ej–1
(
e2π iωh), j = 1, m – 1,

m–1∑
k=1

ms,kqN+1
k – (–1)jns,kqk

(1 – qk)j+1 Ej–1(qk)

=
j! cos(2πω + π j

2 )
(2πωh)j+1 –

(e2π iω + (–1)je–2π iω)Km,ωe2π iωh

2i(1 – e2π iωh)j+1 Ej–1
(
e2π iωh), j = 1, m – 1.

Theorem 4 The optimal quadrature formulas in the sense of Sard of the form (2) in the
space L(m)

2 (0, 1) when ωh ∈ Z and ω �= 0 have the coefficients with the following analytic
expressions

C̊s[0] = h

[
1

2πωh
+

m–1∑
k=1

ms,kqk – ns,kqN
k

qk – 1

]
,

C̊s[β] = h

[m–1∑
k=1

(
ms,kqβ

k + ns,kqN–β

k
)]

, β = 1, N – 1,

C̊s[N] = h

[
–

1
2πωh

+
m–1∑
k=1

–ms,kqN
k + ns,kqk

qk – 1

]
,

where qk are the roots of the Euler–Frobenius polynomial E2m–2(x) with |qk| < 1, and ms,k

and ns,k satisfy the system of linear equations

m–1∑
k=1

ms,kqk – (–1)jns,kqN+1
k

(qk – 1)j+1 Ej–1(qk) = –
(–1)jj! cos( π j

2 )
(2πωh)j+1 , j = 1, m – 1,

m–1∑
k=1

ms,kqN+1
k – (–1)jns,kqk

(1 – qk)j+1 Ej–1(qk) =
j! cos(2πω + π j

2 ))
(2πωh)j+1 , j = 1, m – 1.

Theorem 5 The optimal quadrature formulas in the sense of Sard of the form (3) in the
space L(m)

2 (0, 1) when ω ∈ R and ωh /∈ Z have the coefficients with the following analytical
expressions

C̊c[0] = h

(
Km,ω

2
+

m–1∑
k=1

mc,kqk – nc,kqN
k

qk – 1

)
,

C̊c[β] = h

(
Km,ω cos(2πωhβ) +

m–1∑
k=1

(
mc,kqβ

k + nc,kqN–β

k
))

, β = 1, N – 1, (37)

C̊c[N] = h

(
–

sin(2πω)
2πωh

– Km,ω
sin(2πω – πωh)

2 sin(πωh)
+

m–1∑
k=1

–mc,kqN
k + nc,kqk

qk – 1

)
,
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where mc,k and nc,k satisfy the following system of linear equations

m–1∑
k=1

mc,kqk – (–1)jnc,kqN+1
k

(qk – 1)j+1 Ej–1(qk)

=
(–1)jj! sin( π j

2 )
(2πωh)j+1 –

(1 – (–1)j)Km,ωe2π iωh

2(e2π iωh – 1)j+1 Ej–1
(
e2π iωh), j = 1, m – 1,

m–1∑
k=1

mc,kqN+1
k – (–1)jnc,kqk

(1 – qk)j+1 Ej–1(qk)

= –
j! sin(2πω + π j

2 )
(2πωh)j+1 –

(e2π iω – (–1)je–2π iω)Km,ωe2π iωh

2(1 – e2π iωh)j+1 Ej–1
(
e2π iωh), j = 1, m – 1,

qk are the roots of the Euler–Frobenius polynomial E2m–2(x) with |qk| < 1, ak,α is the kth
coefficient of the Euler–Frobenius polynomial of degree α, and Km,ω is defined in Theorem 3.

Theorem 6 The optimal quadrature formulas in the sense of Sard of the form (3) in the
space L(m)

2 (0, 1) when ωh ∈ Z and ω �= 0 have the coefficients with the following analytical
expressions

C̊c[0] = h

(m–1∑
k=1

mc,kqk – nc,kqN
k

qk – 1

)
,

C̊c[β] = h

(m–1∑
k=1

(
mc,kqβ

k + nc,kqN–β

k
))

, β = 1, N – 1,

C̊[N] = h

(m–1∑
k=1

–mc,kqN
k + nc,kqk

qk – 1

)
,

where qk are the roots of the Euler–Frobenius polynomial E2m–2(x) with |qk| < 1, mc,k and
nc,k satisfy the system of linear equations

m–1∑
k=1

mc,kqk – (–1)jnc,kqN+1
k

(qk – 1)j+1 Ej–1(qk) =
(–1)jj! sin( jπ

2 )
(2πωh)j+1 , j = 1, m – 1,

m–1∑
k=1

mc,kqN+1
k – (–1)jnc,kqk

(1 – qk)j+1 Ej–1(qk) = –
j! sin(2πω + jπ

2 )
(2πωh)j+1 , j = 1, m – 1.

Now, we prove Theorem 3. Theorems 4, 5, and 6 are proved similarly (see, for example
[12]).

Proof of Theorem 3 First, we denote the left-hand-side of (28) by

us[β] =
N∑

γ =0

Cs[γ ]
|[β] – [γ ]|2m–1

2 · (2m – 1)!
+ Ps,m–1[β].
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We assume that Cs[γ ] = 0 for γ < 0 and γ > N . Then, using Definition 3, for the function
us[β] we have the following representation

us[β] = Cs[β] ∗ |[β]|2m–1

2 · (2m – 1)!
+ Ps,m–1[β]. (38)

Now, we should express the coefficients Cs[β] through the function us[β].
Then, taking into account (12), (38), and (14), we obtain

Cs[β] = hDm[β] ∗ us[β] for β ∈ Z. (39)

Using (38), for the right-hand side of (39) we have

hDm[β] ∗ us[β] = hDm[β] ∗
(

Cs[β] ∗ |[β]|2m–1

2 · (2m – 1)!
+ Ps,m–1[β]

)

= hDm[β] ∗
(

Cs[β] ∗ |[β]|2m–1

2 · (2m – 1)!

)
+ hDm[β] ∗ Ps,m–1[β],

where Ps,m–1[β] is a polynomial of degree (m–1) with respect to [β]. Hence, taking into ac-
count equalities (12) and (14), and keeping in mind the finiteness of the discrete argument
function Cs[β], we obtain

hDm[β] ∗ us[β] = Cs[β] ∗
(

hDm[β] ∗ |[β]|2m–1

2 · (2m – 1)!

)

= Cs[β] ∗ δ[β]

= Cs[β].

From the other side, for calculating the convolution in the right-hand side of (39), i.e., to
obtain optimal coefficients Cs[β], the function us[β] should be determined for all integer
values of β . It is clear from (28) and (38) that

us[β] = fs,m[β] for β = 0, 1, . . . , N . (40)

Now, we have to find the representation of us[β] for β = –1, –2, . . . and β = N + 1, N + 2, . . . .
First, we consider the cases β = –1, –2, . . . . Then, from (38), using the binomial formula,
we have

us[β] = –
N∑

γ =0

Cs[γ ]
([β] – [γ ])2m–1

2 · (2m – 1)!
+ Ps,m–1[β]

= –
N∑

γ =0

Cs[γ ]
2m–1∑
α=0

[β]2m–1–α(–1)α[γ ]α

2 · α!(2m – 1 – α)!
+ Ps,m–1[β]

= –
m–1∑
α=0

[β]2m–1–α(–1)α

2α!(2m – 1 – α)!

N∑
γ =0

Cs[γ ][γ ]α

–
2m–1∑
α=m

[β]2m–1–α(–1)α

2α!(2m – 1 – α)!

N∑
γ =0

Cs[γ ][γ ]α + Ps,m–1[β].
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Hence, using (29), taking into account (31) and denoting

Qs,m–1[β] =
2m–1∑
α=m

[β]2m–1–α(–1)α

2α!(2m – 1 – α)!

N∑
γ =0

Cs[γ ][γ ]α , (41)

we obtain

us[β] = –
m–1∑
α=0

[β]2m–1–α(–1)α

2α!(2m – 1 – α)!
gs,α – Qs,m–1[β] + Ps,m–1[β] for β = –1, –2, . . . . (42)

Next, we turn our attention to the cases β = N + 1, N + 2, . . . . Then, from (38), similarly
using the binomial formula, we obtain

us[β] =
N∑

γ =0

Cs[γ ]
([β] – [γ ])2m–1

2 · (2m – 1)!
+ Ps,m–1[β]

=
m–1∑
α=0

[β]2m–1–α(–1)α

2α!(2m – 1 – α)!

N∑
γ =0

Cs[γ ][γ ]α

+
2m–1∑
α=m

[β]2m–1–α(–1)α

2α!(2m – 1 – α)!

N∑
γ =0

Cs[γ ][γ ]α + Ps,m–1[β].

From here, using (29), keeping in mind (41), we obtain

us[β] =
m–1∑
α=0

[β]2m–1–α(–1)α

2α!(2m – 1 – α)!
gs,α + Qs,m–1[β] + Ps,m–1[β] for β = N + 1, N + 2, . . . . (43)

By combining equations (40), (42), and (43) for us[β] we obtain

us[β] =

⎧⎪⎪⎨
⎪⎪⎩

–
∑m–1

α=0
[β]2m–1–α (–1)α
2·α!(2m–1–α)! gs,α – Qs,m–1[β] + Ps,m–1[β], β < 0,

fs,m[β], β = 0, N ,∑m–1
α=0

[β]2m–1–α (–1)α
2·α!(2m–1–α)! gs,α + Qs,m–1[β] + Ps,m–1[β], β > N ,

(44)

where Qs,m–1[β] and Ps,m–1[β] are unknown polynomials of degree (m – 1) with respect to
[β].

Now, using Theorem 1 and equality (44), from (39), after some calculations for optimal
coefficients we obtain

C̊s[β] = h

[
Km,ω sin(2πωhβ) +

m–1∑
k=1

(
ms,kqβ

k + ns,kqN–β

k
)]

, β = 1, 2, . . . , N – 1, (45)

where

ms,k =
Akp
qk

∞∑
γ =1

qγ

k

(
–

m–1∑
α=0

[–γ ]2m–1–α(–1)α

2 · α!(2m – 1 – α)!
gs,α + Ps,m–1[–γ ] – Qs,m–1[–γ ] – fs,m[–γ ]

)
,
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ns,k =
Akp
qk

∞∑
γ =1

qγ

k

(m–1∑
α=0

[N + γ ]2m–1–α(–1)α

2 · α!(2m – 1 – α)!
gs,α + Ps,m–1[N + γ ] + Qs,m–1[N + γ ]

– fs,m[N + γ ]

)
,

and qk , p, C, and Ak are given in Theorem 1, Km,ω is unknown and it will be found below.
Now, putting the representation (45) of the coefficients C̊s[β], β = 1, 2, . . . , N – 1, into

the left-hand side of equality (28), using identities (19), (20), (21), and equality (30), after
some simplifications we obtain the following identity with respect to [β]:

C̊s[0]
[β]2m–1

(2m – 1)!
+ sin(2πωhβ)

Km,ωh2me2π iωh

(2m – 1)!(e2πωh – 1)2m E2m–2
(
e2π iωh)

–
[β]2m–1h
(2m – 1)!

(
–

Km,ω cos(πωh)
2 sin(πωh)

+
m–1∑
k=1

ms,kqk – ns,kqN
k

qk – 1

)

–
2m–1∑

j=1

(
2m – 1

j

)
[β]2m–1–j hj+1

(2m – 1)!

(
Km,ω(1 + (–1)j)e2π iωh

2i(e2π iωh – 1)j+1 Ej–1
(
e2π iωh)

+
m–1∑
k=1

ms,kqk – (–1)jns,kqN+1
k

(qk – 1)j+1 Ej–1(qk)

)

–
1
2

2m–1∑
j=m

[β]2m–1–j(–1)j

j!(2m – 1 – j)!

N∑
γ =0

Cs[γ ][γ ]j + Ps,m–1[β]

= –
1
2

2m–1∑
j=m

[β]2m–1–j(–1)j

j!(2m – 1 – j)!
gs,j – sin(2πωhβ)

(–1)m+1

(2πωh)2m

+
2m–1∑

j=0

[β]2m–1–j(–1)j

(2m – 1 – j)!(2πω)j+1 cos

(
jπ
2

)
.

From here, equating the terms consisting of sin(2πωhβ) we obtain

Km,ω =
(

sinπωh
πωh

)2m (2m – 1)!
2
∑m–2

k=0 ak,2m–2 cos(2πωh(m – 1 – k)) + am–1,2m–2
,

which is given in Theorem 1 and equating the similar terms of [β]j for j = 0, m – 1,
j = m, 2m – 2 and j = 2m – 1, separately, we obtain Ps,m–1[β], the system of (m – 1) linear
equations for ms,k , ns,k and analytic expression for C̊s[0], respectively:

Ps,m–1[β] =
2m–1∑
j=m

[β]2m–1–j

j!(2m – 1 – j)!

[
(1 + (–1)j)hj+1Km,ωe2π iωh

2i(e2π iωh – 1)j+1 Ej–1
(
e2π iωh)

+ hj+1
m–1∑
k=1

ms,kqk – (–1)jns,kqN+1
k

(qk – 1)j+1 Ej–1(qk) +
(–1)j

2

N∑
γ =0

Cs[γ ][γ ]j

+
(–1)jj! cos( π j

2 )
(2πω)j+1 –

(–1)j

2
gj

]
,
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m–1∑
k=1

ms,kqk – (–1)jns,kqN+1
k

(qk – 1)j+1 Ej–1(qk)

= –
(–1)jj! cos( π j

2 )
(2πωh)j+1

–
(1 + (–1)j)Km,ωe2π iωh

2i(e2π iωh – 1)j+1 Ej–1
(
e2π iωh), j = 1, m – 1, (46)

and

C̊s[0] = h

[
1

2πωh
– Km,ω

sin 2πωh
2 – 2 cos 2πωh

+
m–1∑
k=1

(
ms,k

qk

qk – 1
+ ns,k

qN
k

1 – qk

)]
. (47)

Next, from (29) when α = 0, using equalities (45) and (47) for C̊s[N] we have

C̊s[N] = h

[
cos 2πω

2πωh
– Km,ω

cos(2πω – πωh)
2 sinπωh

+
m–1∑
k=1

(
ms,k

qN
k

qk – 1
+ ns,k

qk

1 – qk

)]
. (48)

Finally, from (29) when α = 1, 2, . . . , m – 1, taking into account (45), (47), and (48), using
(15)–(21) and (22)–(25), after several calculations, we obtain the following system of (m –
1) linear equations for ms,k and ns,k

m–1∑
k=1

ms,kqN+1
k – (–1)jns,kqk

(1 – qk)j+1 Ej–1(qk)

=
j! cos(2πω + π j

2 )
(2πωh)j+1

–
(e2π iω + (–1)je–2π iω)Km,ωe2π iωh

2i(1 – e2π iωh)j+1 Ej–1
(
e2π iωh), j = 1, m – 1. (49)

Hence, combining systems (46) and (49) we come to the system of (2m – 2) linear equa-
tions that is given in the statement of Theorem 3.

Theorem 3 is proved. �

Now, we consider the cases m = 1 and m = 2. We have the following results for the same
ω ∈R.

Corollary 1 Coefficients of the optimal quadrature formulas of the form (2) in the sense of
Sard in the space L(1)

2 (0, 1) when ω ∈R and ωh /∈ Z have the form

Cs[0] = h
[

1
2πωh

–
(

sin(πωh)
πωh

)2 cos(πωh)
2 sin(πωh)

]
,

Cs[β] = h
(

sin(πωh)
πωh

)2

sin
(
2πω[β]

)
, β = 1, N – 1,

Cs[N] = h
[

–
cos(2πω)

2πωh
+

(
sin(πωh)

πωh

)2 cos(2πω – πωh)
2 sin(πωh)

]
,

where [β] = hβ and h = 1
N .
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It should be noted that Corollary 1 is Corollary 2 of the work [13].

Corollary 2 Coefficients of the optimal quadrature formulas of the form (2) in the sense of
Sard in the space L(2)

2 (0, 1) when ω ∈R and ωh /∈ Z have the form

Cs[0] = h
(

1
2πωh

–
K2,ω cos(πωh)

2 sin(πωh)
+

ms,1q1 – ns,1qN
1

q1 – 1

)
,

Cs[β] = h
(
K2,ω sin

(
2πω[β]

)
+ ms,1qβ

1 + ns,1qN–β
1

)
, β = 1, N – 1,

Cs[N] = h
(

–
cos(2πω)

2πωh
+

K2,ω cos(2πω – πωh)
2 sin(πωh)

+
–ms,1qN

1 + ns,1q1

q1 – 1

)
,

where

K2,ω =
(

sin(πωh)
πωh

)4 3
2 + cos(2πωh)

,

ms,1 =
qN

1 (1 – q1)2 sin(2πω)
q1(q2N

1 – 1)

[
–

1
(2πωh)2 +

K2,ω

2(1 – cos(2πωh))

]
,

ns,1 =
(1 – q1)2 sin(2πω)

q1(1 – q2N
1 )

[
–

1
(2πωh)2 +

K2,ω

2(1 – cos(2πωh))

]
.

[β] = hβ , h = 1
N and q1 =

√
3 – 2.

Corollary 3 Coefficients of the optimal quadrature formulas of the form (3) in the sense of
Sard in the space L(1)

2 (0, 1) when ω ∈R and ωh /∈ Z have the form

Cc[0] =
h
2

(
sin(πωh)

πωh

)2

,

Cc[β] = h
(

sin(πωh)
πωh

)2

cos
(
2πω[β]

)
, β = 1, N – 1,

Cc[N] = h
(

sin(2πω)
2πωh

–
(

sin(πωh)
πωh

)2 sin(2πω – πωh)
2 sin(πωh)

)
,

where [β] = hβ and h = 1
N .

We note that Corollary 3 is Corollary 1 of the work [13].

Corollary 4 Coefficients of the optimal quadrature formulas of the form (3) in the sense of
Sard in the space L(2)

2 (0, 1) when ω ∈R and ωh /∈ Z have the form

Cc[0] = h
(

K2,ω

2
+

mc,1q1 – nc,1qN
1

q1 – 1

)
,

Cc[β] = h
(
K2,ω cos

(
2πω[β]

)
+ mc,1qβ

1 + nc,1qN–β
1

)
, β = 1, N – 1,

Cc[N] = h
(

sin(2πω)
2πωh

–
K2,ω sin(2πω – πωh)

2 sin(πωh)
+

–mc,1qN
1 + nc,1q1

q1 – 1

)
,
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where

K2,ω =
(

sin(πωh)
πωh

)4 3
2 + cos(2πωh)

,

nc,1 = –
(cos(2πω) – qN

1 )(1 – q1)2

q1

[
1

(2πωh)2 +
K2,ω

2(cos(2πωh) – 1)

]
,

mc,1 =
(1 – q1)2(cos(2πω) – qN

1 – 1 – q2N
1 )

q1

[
1

(2πωh)2 +
K2,ω

2(cos(2πωh) – 1)

]
,

[β] = hβ , h = 1
N and q1 =

√
3 – 2.

Remark 1 Multiplying both sides of the approximate equality (2) by i (where i2 = –1) and
adding to the left- and right-hand sides of the approximate equality (3), respectively, we
obtain the quadrature formula of the following form

∫ 1

0
e2π iωxϕ(x) dx ∼=

N∑
β=0

C[β]ϕ[β]. (50)

It should be noted that the construction of optimal quadrature formulas of the form (50)
in the space L(m)

2 was solved in [14]. The coefficients of the optimal quadrature formulas
in the form (50) can be also defined as follows

C̊[β] = C̊c[β] + iC̊s[β], β = 0, 1, . . . , N ,

where the optimal coefficients C̊s[β] and C̊c[β] are given in Theorems 3–6.
Thus, from the results of the present work one can obtain the results on optimal quadra-

ture formulas of the form (50) of the work [14] with a more simplified system of linear
equations for determining the optimal coefficients.

5 Numerical results
In this section we present numerical results of comparison for absolute errors of the opti-
mal quadrature formula of the form (2) with sine weight in the case m = 2 and a composite
trapezoidal formula. We note that both of these formulas are exact for linear functions.
We obtain the numerical results of this section using Maple.

It should be noted that the composite trapezoidal quadrature formula is the Newton–
Cotes rule of order 1.

As an example, we consider calculation of the following integral

I =
∫ 1

0
x2 sin(2πωx) dx. (51)

For convenience, we denote the integrand as f (x), i.e., here f (x) = x2 sin(2πωx).
We approximately calculate the integral I by the composite trapezoidal rule. Then, the

approximate value for the integral (51) is calculated as follows using the composite trape-
zoidal rule

Atr =
N–1∑
i=0

x2
i sin(2πωxi) + x2

i+1 sin(2πωxi+1)
2

· (xi+1 – xi). (52)
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Table 1 The absolute values of the error (53) of the composite trapezoidal rule for
N = 1, 10, 100, 1000 and ω = 1.1, 10.1, 100.1, 1000.1

ω = 1.1 ω = 10.1 ω = 100.1 ω = 1000.1

|I – Atr| |I – Atr| |I – Atr| |I – Atr|
N = 1 3.874936(–1) 3.063506(–1) 2.951759(–1) 2.940213(–1)
N = 10 5.701761(–3) 1.641521(–1) 1.529774(–1) 1.518228(–1)
N = 100 5.639861(–5) 4.407336(–4) 1.529774(–1) 1.504333(–1)
N = 1000 5.639251(–7) 4.376634(–6) 4.278453(–5) 1.504194(–1)

Figure 1 The process of convergence for the composite trapezoidal rule for the case ω = 1.1 and
N = 1, 10, 100, 1000

Hence, for the function f (x) = x2 sin(2πωx) the error of the composite trapezoidal rule (52)
is

I – Atr =
∫ 1

0
x2 sin(2πωx) dx –

N–1∑
i=0

x2
i sin(2πωxi) + x2

i+1 sin(2πωxi+1)
2

· (xi+1 – xi). (53)

In Table 1 we give the absolute values of the error (53) of the composite trapezoidal rule
for N = 1, 10, 100, 1000 and ω = 1.1, 10.1, 100.1, 1000.1.
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Figure 2 The composite trapezoidal rule does not converge for ω > N

It can be seen from the results given in Table 1 that the composite trapezoidal rule con-
verges for N ≥ ω. In Fig. 1 the process of this convergence is graphically shown for the
case ω = 1.1 and N = 1, 10, 100, 1000.

In Fig. 2 are given the graphs of numerical calculation of the integral (51) by the com-
posite trapezoidal rule for the case ω = 1.1, 10.1, 100.1, 1000.1, and N = 1. Here, we can see
that the composite quadrature process does not converge for ω > N .

Now, we approximate the above integral (51) using the optimal quadrature formula of
the form (2) with sine weight function in the case m = 2. Then, we have the following
approximate equality

∫ 1

0
sin(2πωx)ϕ(x) dx ∼=

N∑
β=0

Cs[β]ϕ[β], (54)

for ϕ(x) = x2 with optimal coefficients given in Corollary 2. The approximate value for the
integral (51) is calculated as follows using the optimal quadrature formula

Aopt =
N∑

β=0

Cs[β][β]2.
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Table 2 The absolute values for the error (55) of the optimal quadrature formula (54) for
N = 1, 10, 100, 1000 and ω = 1.1, 10.1, 100.1, 1000.1

ω = 1.1 ω = 10.1 ω = 100.1 ω = 1000.1

|I – Aopt| |I – Aopt| |I – Aopt| |I – Aopt|
N = 1 1.114784(–2) 1.444594(–4) 1.484368(–6) 1.488425(–8)
N = 10 3.025851(–5) 6.946015(–6) 8.425457(–8) 8.578893(–10)
N = 100 2.843105(–8) 3.005545(–8) 7.045133(–9) 8.440393(–11)
N = 1000 2.845974(–11) 2.842208(–11) 3.003591(–11) 7.055061(–12)

Hence, for the function ϕ(x) = x2 the error of the optimal quadrature formula (54) is

I – Aopt =
∫ 1

0
x2 sin(2πωx) dx –

∫ 1

0
x2 sin(2πωx) dx –

N∑
β=0

Cs[β][β]2. (55)

Thus, the numerical results of Table 2 show convergence of the optimal quadrature for-
mula (54) for N ≥ ω and N < ω.

6 Conclusion
In the present paper we constructed the optimal quadrature formulas for numerical calcu-
lation of Fourier sine and cosine integrals, when ω ∈R, ω �= 0. We obtained analytic forms
of coefficients for the constructed optimal quadrature formulas in the Sobolev space. In
order to obtain the analytic forms of the optimal coefficients we used the Sobolev method
that is based on the discrete analog of the differential operator d2m/dx2m. The obtained
optimal quadrature formulas in the space L(m)

2 are exact for any algebraic polynomial of
degree m – 1. We presented numerical results of comparison for absolute errors of the op-
timal quadrature formula of the form (2) with sine weight in the case m = 2 and composite
trapezoidal formula that show the advantage of the optimal quadrature formula.
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