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Abstract
This paper aims to establish new upper bounds for the first positive eigenvalue of the
�-Laplacian operator on Riemannian manifolds in terms of mean curvature and
constant sectional curvature. The first eigenvalue for the �-Laplacian operator on
closed orientedm-dimensional semislant submanifolds in a Sasakian space form
˜M

2k+1(ε) is estimated in various ways. Several Reilly-like inequalities are generalized
from our findings for Laplacian to the �-Laplacian on semislant submanifolds in a
sphere S2n+1 with ε = 1 and � = 2.

Keywords: Reilly-type inequality; �-Laplacian; Eigenvalues estimates; Semislant
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1 Introduction and statement of main results
Let Nm be a complete noncompact Riemannian manifold and � be the compact domain
in Nm. Assume �1(�) > 0 denotes the first eigenvalue of the Dirichlet boundary value
problem

�f + �f = 0, in � and f = 0 on ∂�, (1.1)

where � denotes the Laplace operator on Nm. Then, the first eigenvalue �1(N ) is defined
by �1(N ) = inf ��1(�). The Reilly formula relates exclusively to the intrinsic geometry
of the manifold and certainly to the specific PDE under consideration. This can be sim-
ply understandable with the following example. Let (Nm, g) be a compact m-dimensional
Riemannian manifold and let �1 denote the first nonzero eigenvalue of the Neumann
problem

�f + �1f = 0, on N and
∂f
∂N

= 0, on ∂N , (1.2)

where N is the outward normal on ∂Nm. A result of Reilly [22], reads as the following.
Let Nm be a Riemannian manifold and R

k is the Euclidean space having dimensions m
and k, respectively. The manifold Nm is connected, closed, and oriented. The Nm is iso-
metrically immersed in R

k with condition ∂Nm = 0. The mean curvature of this isometric
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immersion is denoted by H and the first nonzero eigenvalue �∇
1 of the Laplacian on Nm

can be written as in the sense of Reily [22]

�∇
1 ≤ l

Vol(Nm)

∫

Nm
|H|2 dV , (1.3)

where the volume element of Nm is denoted by dV . It can be seen in the literature that
many authors were prompted to work in such inequalities for different ambient spaces
after the breakthrough of inequality (1.3). In Minkowski spaces, the upper bound for a
Finsler submanifold is proposed by both Zeng and He [29]. This upper bound relates to
the 1st eigenvalue of the �-Laplacian. For a closed manifold, the first eigenvalue of the
�-Laplace operator is presented by Seto and Wei [25] by using the condition of integral
curvature. In the hyperbolic space, the bottom spectra of the Laplace manifold for a com-
plete and a noncompact submanifold is calculated by Lin [19] and the mean curvature has
the condition of integral pinching. In addition, Xiong [28] contributed his role on closed
hyperspace to find the first Hodge Laplacian eigenvalue. Moreover, Xiong worked for a
complete Riemannian manifold that included the Reilly-type sharp upper bounds for the
eigenvalues in product manifolds. The generalized Reilly inequality (1.3) and first nonzero
eigenvalue of the �-Laplace operator is calculated by Du et al. [16]. On a compact sub-
manifold, they used the Wentzel–Laplace operator having a boundary in Euclidean space.
Following the same pattern, for Dirichlet and Neumann boundary conditions, Blacker and
Seto [6] evidenced a Lichnerowicz-type lower bound for the first nonzero eigenvalue of
the �-Laplacian. They used the Hessian decomposition on Kaehler manifolds having pos-
itive Ricci curvature. A simply connected space form M

m(c) having constant curvature c is
obtained by a well-known evaluation for the first nonzero eigenvalue of Laplacian by the
immersion of a submanifold Nm in simply connected space having m-dimension. This
space form included the Euclidean space R

m, the unit sphere S
m(1), and the hyperbolic

space H(–1)m with c = 0, 1 and c = –1, respectively.
In [3, 4, 13, 15], the first nonzero eigenvalue of the Laplacian is evidenced that is consid-

ered as the generalization of the results in Reilly [22]. For various ambient spaces, the out-
comes of different classes of Riemannian submanifolds indicate that the result of both 1st
nonzero eigenvalues depict alike inequalities and ultimately have identical upper bounds
[12, 13]. This result is valid for both Dirichlet and Neumann conditions. For an ambi-
ent manifold, it is obvious from the literature that Laplace and �-Laplace operators on
Riemannian submanifolds helped to acquire different breakthroughs in Riemannian ge-
ometry (see [5, 8, 9, 11, 14, 17, 20, 21, 23, 26, 29]) through the work of [22]. To define the
�-Laplacian that is a second-order quasilinear elliptic operator on Nm (compact Rieman-
nian manifold Nm having m-dimension), we have

��f = div
(|∇f |�–2∇f

)

, (1.4)

where � > 1 to satisfy the above equation. We have the usual Laplacian for � = 2. On
the other hand, the eigenvalue of �� has similarity with the Laplacian. For instance, if a
nonzero function f satisfies the subsequent equation with the Dirichlet boundary condi-
tion (1.1) (or Neumann boundary condition (1.2)) then � (any real number) is a Dirichlet
eigenvalue. Similarly, the above criteria also hold for Neumann boundary conditions (1.2)

��f = –�|f |�–2f . (1.5)
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Let us study a Riemannian manifold Nm with no boundary. The Rayleigh-type variational
characterization is observed in the first nonzero eigenvalue of �� that is given by �1,�.
From (cf. [27]):

�1,� = inf

{
∫

N |∇f |q
∫

N ‖f ‖q

∣

∣

∣f ∈ W 1,�(

N l){0},
∫

N
|f |�–2f = 0

}

. (1.6)

This naturally raises the question: Is it possible to generalize the Reilly-type inequalities for
submanifolds in spheres through the class of almost contact manifolds that were proved
in [1, 13, 15]? In Sasakian space form, our aim is to derive the 1st eigenvalue for the �-
Laplacian on a slant submanifold. Following this opinion and motivated by the historical
development in the analysis of the first nonnull eigenvalue of the �-Laplacian on a sub-
manifold in various space forms, by using the Gauss equation and influenced by the stud-
ies of [12, 13, 16], our goal is to give a general view of the above Reilly conclusion for the
�-Laplace operator and we going to provide a sharp estimate of the first eigenvalue for
the �-Laplacian on a semislant submanifold of Sasakian space form M

2k+1(ε). The main
finding of this paper will be announced in the following theorem.

Theorem 1.1 Let Nm be an m(≥ 2)-dimensional closed orientated semislant submanifold
in a Sasakian space form ˜M

2k+1(ε). Then,
(1) The first nonnull eigenvalue �1,� of the �-Laplacian satisfies:

�1,� ≤
(

2(1– �
2 )(k + 1)(1– �

2 )m �
2

(Vol(N ))�/2

)

×
{∫

Nm

{(

ε + 3
4

)

+
(

ε – 1
4

)(

2d2 + d3(6 cos2 ϑ – 4)
m(m – 1)

)

+ |H|2
}

dV
}�/2

for 1 < � ≤ 2, (1.7)

and

�1,� ≤
(

2(1– �
2 )(k + 1)( �

2 –1)m �
2

Vol(N )

)

×
∫

Nm

{∣

∣

∣

∣

(

ε + 3
4

)

+
(

ε – 1
4

)(

2d2 + d3(6 cos2 ϑ – 4)
m(m – 1)

)

+ |H|2
∣

∣

∣

∣

}�/2

dV

for 2 < � ≤ m
2

+ 1. (1.8)

(2) The equality carries in (1.7) and (1.8) if and only if � = 2 and Nm is minimally
immersed in a geodesic sphere of radius rε of ˜M

2k+1(ε) with the following equalities

r0 =
(

m
��

1

)1/2

,

r1 = sin–1 r0,

r–1 = sinh–1 r0.

Remark 1.1 For an immediate consequence of the above, we put � = 2 in our estimate to
find the corollary.
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Corollary 1.1 Let Nm be an m-dimensional closed orientated semislant submanifold in
Sasakian space form ˜M

2k+1(ε). Then, ��
1 satisfies the following inequality for the Laplacian

��
1 ≤ m

Vol(N )

∫

N

{

|H|2 +
(

ε + 3
4

)

+
(

ε – 1
4

)(

2d2 + d3(6 cos2 ϑ – 4)
m(m – 1)

)}

dV . (1.9)

The equality’s cases are the same as in Theorem 1.1 (2).

This is an immediate application of Theorem 1.1 by using 1 < � ≤ 2, as the Sasakian
space form.

Theorem 1.2 Let Nm be an m(≥ 2)-dimensional closed orientated semislant submanifold
in Sasakian space form ˜M

2k+1(ε). Then, �1,� satisfies the following inequality for the �-
Laplacian

�1,p ≤
(

21– �
2 (m + 1)(1– �

2 )m �
2

(Vol(N ))(�–1)

)

×
{∫

Nm

((

ε + 3
4

)

+
(

ε – 1
4

)(

2d2 + d3(6 cos2 ϑ – 4)
m(m – 1)

)

+ |H|2
) �

2(�–1)
dV

}(�–1)

(1.10)

for 1 < � ≤ 2.

Remark 1.2 Consider the inequality (1.10) and put � = 2, then inequality (1.10) general-
izes the Reilly-type inequality (1.9). This shows that the Reilly-type inequality calculates
the first eigenvalue for the Laplace operator on a slant submanifold in Euclidean sphere
S

2k+1 (see Theorem 1.2 in [15] and Theorem 1.3 in [13]), are the same in the case of our
Theorem 1.1 for ε = 1 and � = 2.

2 Preliminaries and notations
An almost contact manifold is an odd-dimensional C∞-manifold (˜M2k+1, g) with almost
contact structure (ψ , ξ ,η) that satisfies the following properties, i.e.,

ψ2 = –I + η ⊗ ξ ,

η(ξ ) = 1,

ψ(ξ ) = 0,

η ◦ ψ = 0, (2.1)

g(ψU2,ψV2) = g(U2, V2) – η(U2)η(V2),

η(U2) = g(U2, ξ ) (2.2)

for any U2, V2 belong to ˜M
2k+1. The three parameters of an almost contact structure can be

individually elaborated as ψ is a (1, 1)-type tensor field, whereas ξ is the structure vector
field and η is dual 1-form. In the perspective of the Riemannian connection, an almost
contact manifold can be a Sasakian manifold [2, 24] if

(˜∇U2ψ)V2 = g(U2, V2)ξ – η(V2)U2. (2.3)
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This indicates that

˜∇U2ξ = –ψU2, (2.4)

where ∇ indicates the Riemannian connection in regard to g and U2, V2 are any vector
fields on ˜M

2k+1. With this, we consider that ˜M
2k+1 converts into a Sasakian space form if

it has a ψ-sectional constant curvature ε and is represented by ˜M
2k+1(ε). Thus, we can

represent the curvature tensor ˜R of ˜M
2m+1(ε) as:

˜R(X2, Y2, Z2, W2) =
ε + 3

4
{

g(Y2, Z2)g(X2, W2) – g(X2, Z2)g(Y2, W2)
}

+
ε – 1

4
{

η(X2)η(Z2)g(Y2, W2) + η(W2)η(Y2)g(X2, Z2)

– η(Y2)η(Z2)g(X2, W2) – η(X2)g(Y2, Z2)η(W2)

+ g(ψY2, Z2)g(ψX2, W2) – g(ψX2, Z2)g(ψY2, W2)

+ 2g(X2,ψY2)g(ψZ2, W2)
}

, (2.5)

for any arbitary X2, Y2, Z2, W2 belonging to ˜M
2k+1. For more details, see [2, 10, 24].

Assuming that Nm is an m-dimensional submanifold isometrically immersed in a
Sasakian space form ˜M

2k+1(ε), if ∇ and ∇⊥ are induced connections on the tangent bun-
dle TN and the normal bundle T⊥N of N , respectively, then, the Gauss and Weingarten
formulas are given by:

(i) ˜∇U2 V2 = ∇U2 V2 + h(U2, V2), (ii) ˜∇U2ζ = –Aζ U2 + ∇⊥
U2ζ (2.6)

for each U2, V2 ∈ 
(TN ) and ζ ∈ 
(T⊥N ), where h and Aζ are the second fundamen-
tal form and shape operator (analogous to the normal vector field ζ ), respectively, for
the immersion of Nm into ˜M

2k+1(ε). They are connected as: g(h(U2, V2), ζ ) = g(Aζ U2, V2).
Throughout the structure vector field ξ is assumed to be tangential to N , otherwise N is
simply antiinvariant. Now, for any U ∈ 
(TN ) and N ∈ 
(T⊥N ), we have:

(i) ψU2 = TU2 + FU2, (ii) ψζ = tζ + f ζ , (2.7)

where TU2(tζ ) and FU2(f ζ ) are the tangential and normal components of ψU2(ψζ ), re-
spectively. From (2.7) it is not difficult to check that for each U2, V2 ∈ 
(TN )

g(TU2, V2) = –g(U2, TV2).

A submanifold Nm is defined to be a slant submanifold if for any x ∈ N and for any vec-
tor field U2 ∈ 
(TNm), linearly independent on ξ , the angle between ψU2 and TN is a
constant angle ϑ(U2) that lies between zero and π/2.

This follows from the definition of slant immersions, where Cabrerizo [7] obtained the
necessary and sufficient condition that a submanifold Nm is said to be a slant submanifold
if and only if there exists a constant C ∈ [0,π/2] and one tensor fled T is satisfied by the
following:

T2 = –C(I – η ⊗ ξ ), (2.8)
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such that C = cos2 ϑ . Also, we have a consequence of the above formula

g(TU2, TV2) = cos2 ϑ
{

g(U2, V2) – η(U2)η(V2)
}

. (2.9)

With the help of the moving-frame method, we explore some of the interesting features
of conformal geometry and slant submanifolds. The specific convection has been applied
on indices range, though we exclude in a way that:

1 ≤ i, j, s, . . . ≤ m; m + 1 ≤ α,β ,γ , . . . ≤ 2k + 1, 1 ≤ a, b, c, . . . ≤ 2k + 1.

The mean curvature and squared norm of the mean curvature vector HN of a Riemannian
submanifold Nm are defined by:

H =
1
m

n
∑

i=1

h(ei, ei) and, ‖H‖2 =
1

m2

k
∑

r=m+1

( m
∑

i=1

hr
ii

)2

. (2.10)

Similarly, the length of the second fundamental form h is given by

hr
ij = g

(

h(ei, ej), er
)

, and S = ‖h‖2 =
k

∑

r=m+1

n
∑

i,j=1

(

hr
ij
)2. (2.11)

In addition, we denote the following:

‖T‖2 =
m

∑

i,j=1

g2(Tei, ej). (2.12)

Our main motivation comes from the following example:

Example 2.1 ([7]) Let (R2k+1,ϕ, ξ ,η, g) denote the Sasakian manifold with Sasakian struc-
ture

η =
1
2

(

dz1 –
k

∑

i=1

yi
1 dxi

1

)

, ξ = 2
∂

∂z1
,

g = η ⊗ η +
1
4

( k
∑

i=1

(

dxi
1 ⊗ dxi

1 ⊗ dyi
1 ⊗ dyi

1
)

)

,

ϕ

( k
∑

i=1

(

Xi
∂

∂xi
1

+ Yi
∂

∂yi
1

)

+ Z
∂

∂z1

)

=
k

∑

i=1

(

Yi
∂

∂yi
1

– Xi
∂

∂xi
1

)

+
k

∑

i=1

Yiyi
1

∂

∂z1
,

where (xi
1, yi

1, z1), i = 1 · · ·k are the coordinates system. It is easy to explain that (R2k+1,
ϕ, ξ ,η, g) is an almost contact metric manifold. Now, consider the 3-dimensional subman-
ifold in R

5 with Sasakian structure. For any ϑ ∈ [0, π
2 ] such that:

ψ(u1, v1, t) = 2(u1 cosϑ , u1 sinϑ , v1, 0, t). (2.13)

Under the above immersion N 3 is a three-dimensional minimal slant submanifold con-
taining slant angle ϑ and scalar curvature τ = – cos2 ϑ

3 .
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Similarly, we give more examples for a nonminimal submanifold.

Example 2.2 ([7]) For any constant λ, we define an immersion:

ψ(u1, v1, t) = 2
(

eλu1 cos u1 cos v1, eλu1 sin u1 cos v1, eλu1 cos u1 sin v1, eλu1 sin u1 sin v1, t
)

.
(2.14)

It is easy to see that the above immersion is a three-dimensional slant submanifold with
slant angle ϑ = cos–1( |λ|√

1+λ2 ). Moreover, scalar curvature τ = – λ2

3(1+λ2) and mean curvature

|H| = 2e–λu1

3
√

1+λ2 .

A Riemannian submanifold Nm of an almost contact manifold ˜M is said to be a semis-
lant submanifold if there exist two orthogonal distributions D and Dϑ such that TN =
D⊕Dϑ ⊕ ζ , the distribution D is invariant, i.e., ϕD = D and the distribution Dθ is slanted
with slant angle ϑ 
= π

2 . If we denote the dimensions of D and Dθ by d2 and d3, respec-
tively, then it is clear that contact CR-submanifolds and slant submanifolds are semislant
submanifolds with θ = π

2 and d2 = 0, respectively. If neither d2 = 0 nor θ = π
2 , then Nm is

a proper semislant submanifold.

Remark 2.1 It is clear that a semislant submanifold is generalized to a slant submanifold
with d2 = 0.

Remark 2.2 A totally real submanifold is a particular case of a semislant submanifold with
slant angle ϑ = π

2 and d2 = 0.

It is necessary to clarify the definition of the curvature tensor ˜R for a slant submanifold
in the Sasakian space form ˜M

2k+1(ε) and is given by:

˜R(ei, ej, ei, ej) =
(

ε + 3
4

)

(

m2 – m
)

+
(

ε – 1
4

)

{

3
m

∑

ii,j=1

g2(ϕei, ej) – 2(m – 1)

}

. (2.15)

On the other hand, let {e1, . . . ed2 , . . . em = ζ } be an orthonormal basis of TxN such that

e1, e2 = ϕe1, . . . , e2d2–1, e2d2 = ϕe2d2–1,

e2d2+1, e2d2+2 = secϑTe2d2+1, . . . , e2d2+2d3–1, e2d2+2d3 = secϑTe2d2+2d3–1, . . . ,

...

e2d2+2d3 , e2d2+2d2+1 = ζ .

Thus, we have

g(ϕe1, e2) = g(ϕe1, secϑTe1) = secϑg(ϕe1, Te1) = secϑg(Te1, Te1). (2.16)
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It is clear that the dimension of Nm can be decomposed as m = 2d2 + 2d3 + 1. Then, from
(2.9), we derive that:

g(ϕe1, e2) = cosϑ . (2.17)

In similar way, we repeat that then:

g2(ϕei, ei+1) = cos2 ϑ �⇒
m

∑

i,j=1

g2(ϕei, ej) = 2
(

d2 + d3 cos2 ϑ
)

. (2.18)

Merging (2.15) and (2.18) implies that

˜R(ei, ej, ei, ej) =
(

ε + 3
4

)

(

m2 – m
)

+
(

ε – 1
4

)

{

2d2 + d3
(

6 cos2 ϑ – 4
)}

. (2.19)

2.1 Structure equations for semislant submanifolds
Let x be a totally real embedding from Nm to an 2k + 1-dimensional Riemannian manifold
(˜M, g̃). Then, Nm has an induced metric gN = x∗̃g . Let us consider ˜M

2k+1 = ˜M
2k+1(ε), then

pulling back [[1] Eq. (12)] by x and using [[1] Eqs. (13), (14)], we obtain the Gauss equations
for a slant submanifold in Sasakian space form ˜M

2k+1(ε) and taking into account (2.15)

Rijtl =
(

ε + 3
4

)

(δitδjl – δilδjt) +
(

ε – 1
4

)

{

3(ϕei, ej) – 2(m – 1)
}

+
∑

α

(

hα
ith

α
jl – hα

ilh
α
jt
)

. (2.20)

Taking the trace of the above equation and using (2.19), we obtain:

R = m2|H|2 – S +
(

ε + 3
4

)

m(m – 1) +
(

ε – 1
4

)

{

2d2 + d3
(

6 cos2 ϑ – 4
)}

, (2.21)

where R is the scalar curvature ofNm and S is the length of the second fundamental form h.

2.2 Conformal relations
In this section, we will look at how the conformal transformation affects the curvature and
the second fundamental form. Although these relationships are well known (cf. [1]), we
use the moving-frame method to provide a quick proof for the readers’ convenience.

Assume that ˜M
2k+1 has a new metric g̃ = e2ρ g̃ , that is conformal to g̃, and where ρ ∈

C∞(˜M). Then, �̃a = eρ�a is the dual coframe of (˜M, g̃), and ẽa = eρea is the orthogonal
frame of (˜M, g̃). The equality’s equations of (˜M, g̃) are given in ([1], Eqs. (20), (21), (22)
(23)) by:

�̃ab = �ab + ρa�b – ρb�a, (2.22)

where ρa is the covariant derivative of ρ with respect to ea, that is, dρ =
∑

a ρaea.

e2ρ
˜Rijtl = Rijtl – (ρitδjl + ρjlδit – ρilδjt – ρjtδil)
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+ (ρiρtδjl + ρjρlδit – ρjρtδil – ρiρlδjt)

– |∇α|2(δitδjl – δilδjt). (2.23)

By pulling back (2.22) to Nm by x, we have:

h̃α
ij = e–ρ

(

hα
ij – ραδji

)

,

˜H
α = e–α

(

H
α – ρα

)

, (2.24)

from this, it is easy to obtain the useful relation:

e2ρ
(

˜S – m|˜H|2) + m|H|2 = S. (2.25)

3 Proof of main result
In this section we shall prove Theorem 1.1 announced in a previous section. First, some
fundamental formulas will be presented and some useful lemmas from [20] will be recalled
to our setting. For the proposes of this paper, we are going to provide an important lemma
that was essentially motivated by the study in [1, 20].

Remark 3.1 A simply connected Sasakian space form M
2k+1 is a (2k + 1)-sphere S

2k+1 and
Euclidean space R

2k+1 with constant ϕ-sectional curvature ε = 1 and ε = –3, respectively.

Based on the above arguments, we have a lemma.

Lemma 3.1 ([1]) Let Nm be a slant submanifold of Sasakian space form ˜M
2k+1(ε) that is

closed and oriented with dimension m. If x : Nm → ˜M
2k+1(ε) is an embedding from Nm

into ˜M
2k+1(ε), then there exists a regular conformal map 
 : ˜M

2k+1(ε) → S
2k+1(1) ⊂ R

2k+2

such that the embedding � = 
 ◦ x = (� 1, . . .� 2k+2) satisfies that:

∫

Nm

∣

∣� a∣
∣

�–2
� a dVN = 0, a = 1, . . . 2(k + 1), (3.1)

for � > 1.

In the above Lemma 3.1 by the constructed test function, we produce an upper bound
for �1,� in the form of the conformal function that is comparable with Lemma 2.7 in [20].

Proposition 3.1 Let N n be an m ≥ 2-dimensional closed orientated slant submanifold
into Sasakian space form ˜M

2k+1(ε). Then we have,

�1,�Vol
(

Nm) ≤ 2|1– �
2 |(k + 1)|1– �

2 |m
�
2

∫

Nm

(

e2ρ
)�

2 dV , (3.2)

where 
 is the conformal map in Lemma 3.1 and for all � > 1. Identified by ϒε is the
standard metric on ˜M

2k+1(ε) and it is considered that 
∗ϒ1 = e2ρϒε ,

Proof Considering � a as a test function along with Lemma 3.1, we derive

�1,�

∫

Nm

∣

∣� a∣
∣

� ≤ ∣

∣∇� a∣
∣

� dV , 1 ≤ a ≤ 2(k + 1). (3.3)
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Observe that
∑2k+2

a=1 |� a|2 = 1, then |� a| ≤ 1. We accomplish:

2k+2
∑

a=1

∣

∣∇� a∣
∣

2 =
m

∑

i=1

|∇ei� |2 = me2ρ . (3.4)

By using 1 < � ≤ 2, then we derive:

∣

∣� a∣
∣

2 ≤ ∣

∣� a∣
∣

�. (3.5)

Using the Holder inequality along with (3.3), (3.4), and (3.5), we are able to obtain

�1,�Vol(N ) = �1,�

2k+2
∑

a=1

∫

Nm

∣

∣� a∣
∣

2 dV ≤ �1,�

2k+2
∑

a=1

∫

Nm

∣

∣� a∣
∣

� dV

≤ �1,�

∫

Nm

2k+2
∑

a=1

∣

∣∇� a∣
∣

� dV ≤ (2k + 2)1–�/2
∫

Nm

( m
∑

a=1

∣

∣∇� a∣
∣

2
)�

2

dV

= 21– �
2 (k + 1)1– �

2

∫

Nm

(

me2ρ
)�

2 dV .

This gives us the desired outcome (3.2). On the contrary, if we assume � ≥ 2, then by
applying the Holder inequality we have

1 =
2k+2
∑

a=1

∣

∣� a∣
∣

2 ≤ (2k + 2)1– 2
�

(2k+2
∑

a=1

∣

∣� a∣
∣

�

) 2
�

. (3.6)

The outcome we obtain is

�1,�Vol
(

Nm) ≤ (2k + 2)
�
2 –1

(2k+2
∑

a=1

�1,�

∫

Nm

∣

∣� a∣
∣

� dV

)

. (3.7)

The Minkowski inequality gives

2k+2
∑

a=1

∣

∣∇� a∣
∣

� ≤
(2k+2

∑

a=1

∣

∣∇� a∣
∣

2
)�

2

=
(

me2ρ
)�

2 . (3.8)

Hence, (3.2) follows from (3.3), (3.7), and (3.8). This completes the proof of the proposi-
tion. �

We are now in a position to prove Theorem 1.1.

3.1 Proof of Theorem 1.1
To begin with 1 < � ≤ 2, then �

2 ≤ 1. Taking help from Proposition 3.1 and implementing
the Hölder inequality, we have:

�1,�Vol
(

Nm) ≤ 21– �
2 (k + 1)1– �

2 m
�
2

∫

Nm

(

e2ρ
)�

2 dV
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≤ 21– �
2 (k + 1)1– �

2 |m
�
2
(

Vol(N )
)1– �

2

(∫

Nm
e2ρ dV

)�
2

.

By using both conformal relations and Gauss equations, it is possible to calculate e2ρ . Let
˜M

2k+1 = ˜M
2k+1(ε), and g̃ = e–2ρϒε , g̃ = 
∗ϒ1 in the above. From (2.21), the Gauss equations

for the embedding x and the slant embedding � = 
 ◦ x are, respectively:

R =
(

ε + 3
4

)

m(m – 1) +
(

ε – 1
4

)

{

2d2 + d3
(

6 cos2 ϑ – 4
)}

+ m(m – 1)|H|2 +
(

m|H|2 – S
)

, (3.9)

R̃ = m(m – 1) + m(m – 1)|H̃|2 +
(

m|H̃|2 – S̃
)

. (3.10)

Tracing (2.23), it can be established that:

e2ρ R̃ = R – (m – 2)(m – 1)|∇ρ |2 – 2(m – 1)�ρ , (3.11)

which together with replacement of (3.9) and (3.10) into (3.11) gives:

e2ρ
(

m(m – 1) + m(m – 1)|H̃|2 +
(

m|H̃|2 – S̃
))

=
(

ε + 3
4

)

m(m – 1)

+
(

ε – 1
4

)

{

2d2 + d3
(

6 cos2 ϑ – 4
)}

+ m(m – 1)|H|2 +
(

m|H|2 – S
)

– (m – 2)(m – 1)|∇ρ |2 – 2(m – 1)�ρ .

This implies the following:

e2ρ S̃ – S – (m – 2)(m – 1)|∇ρ |2 – 2(m – 1)�ρ

= m(m – 1)
{{

e2ρ –
(

ε + 3
4

)

–
(

ε – 1
4

)(

2d2 + d3(6 cos2 ϑ – 4)
m(m – 1)

)}

+
(

e2ρ |H̃|2 – |H|2)
}

+ m
(

e2ρ |˜H|2 – |H|2).

Now, from (2.24) and (2.25), we derive:

m(m – 1)
{

e2ρ –
(

ε + 3
4

)

–
(

ε – 1
4

)(

2d2 + d3(6 cos2 ϑ – 4)
m(m – 1)

)}

+ m(m – 1)
∑

α

(

H
α – ρα

)2

= m(m – 1)|H|2 – (m – 2)(m – 1)|∇ρ |2 – 2(m – 1)�ρ .

Dividing by m(m – 1) in the above equation, it implies that

e2ρ =
{(

ε + 3
4

)

+
(

ε – 1
4

)(

2d2 + d3(6 cos2 ϑ – 4)
m(m – 1)

)

+ |H|2
}



Li et al. Journal of Inequalities and Applications        (2022) 2022:102 Page 12 of 17

–
2
m

�ρ –
m – 2

m
|�ρ |2 –

∣

∣(∇̃ρ)⊥ – H
∣

∣

2. (3.12)

Taking integration along dV , it is not complicated to obtain the following

�1,�Vol
(

Nm)

≤ 21– �
2 (k + 1)1– �

2 |m
�
2
(

Vol
(

Nm))1– �
2

(∫

Nm
e2ρ dV

)�
2

≤ (2k + 2)1– �
2 |m �

2

(Vol(N )) �
2 –1

×
{∫

Nm

{(

ε + 3
4

)

+
(

ε – 1
4

)(

2d2 + d3(6 cos2 ϑ – 4)
m(m – 1)

)

+ |H|2
}

dV
}�

2
.

The above result is comparable to (1.7) as we desired to prove. In the case where � >
2, it is not possible to apply the Holder inequality directly to govern

∫

N (e2ν) �
2 by using

∫

N (e2ρ). We did multiply both sides of (3.12) with the factor e(�–2)ρ and then solve by
using integration on Nm (cf. [11])

∫

Nm
e�ρ dV ≤

∫

Nm

{(

ε + 3
4

)

+
(

ε – 1
4

)(

2d2 + d3(6 cos2 ϑ – 4)
m(m – 1)

)

+ |H|2
}

e(�–2)ρ dV

–
(

m – 2 – 2� + 4
m

)∫

N
e(�–2)|�ρ |2 dV

≤
∫

Nm

{(

ε + 3
4

)

+
(

ε – 1
4

)(

2d2 + d3(6 cos2 ϑ – 4)
m(m – 1)

)

+ |H|2
}

e(�–2)ρ dV .

(3.13)

Next, it follows from the assumption that m ≥ 2� – 2, and we apply Young’s inequality,
then

∫

Nm

{(

ε + 3
4

)

+
(

ε – 1
4

)(

2d2 + d3(6 cos2 ϑ – 4)
m(m – 1)

)

+ |H|2
}

e(�–2)ρ dV

≤ 2
�

∫

Nm

{∣

∣

∣

∣

(

ε + 3
4

)

+
(

ε – 1
4

)(

2d2 + d3(6 cos2 ϑ – 4)
m(m – 1)

)

+ |H|2
∣

∣

∣

∣

}�
2

dV

+
(� – 2)

�

∫

Nm
e

�
ρ dV . (3.14)

From (3.13) and (3.14) we deduce the following inequality:

∫

Nm
epρ dV ≤

∫

Nm

(∣

∣

∣

∣

(

ε + 3
4

)

+
(

ε – 1
4

)(

2d2 + d3(6 cos2 ϑ – 4)
m(m – 1)

)

+ |H|2
∣

∣

∣

∣

)�
2

dV .

(3.15)

Now, putting (3.15) into (3.2) we obtain (1.8). In the case of slant submanifolds, the equality
case holds in (1.7), then considering the cases in (3.3) and (3.5), we obtain:

∣

∣� a∣
∣

2 =
∣

∣� a∣
∣

�,
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��� a = –�1,�
∣

∣� a∣
∣

�–2
� a,

for each a = 1, . . . , 2k + 2. If 1 < � < 2 then |� a| = 0 or 1. Hence, there would be only one
a for which |� a| = 1 and �1,� = 0, which seems to be a contradiction as the eigenvalue is
nonzero. Hence, we consider � = 2 and we are only restricted to the Laplacian case. Then,
we are able to apply Theorem 1.5 from [15].

Let � > 2 and the equality remains valid in (1.8), then it shows that (3.7) and (3.8) become
the equalities that indicates

∣

∣� 1∣
∣

� = · · · =
∣

∣� 2k+2∣
∣

�

and condition |∇� a| = 0 holds for existing a. This shows that � a is a constant value and
�1,� is also equal to zero. This last result again represents a conflict in that �1,� is a nonnull
eigenvalue. This completes the proof of the theorem.

3.2 Proof of Theorem 1.2
Suppose that 1 < � ≤ 2, we have �

2(�–1) ≥ 1. Then, by the Hölder inequality, we have:

∫

Nm

{(

ε + 3
4

)

+
(

ε – 1
4

)(

2d2 + d3(6 cos2 ϑ – 4)
m(m – 1)

)

+ |H|2
}

dV

≤ ((

Vol(N )
)1– 2(�–1)

�
)

×
{∫

Nm

{(

ε + 3
4

)

+
(

ε – 1
4

)(

2d2 + d3(6 cos2 ϑ – 4)
m(m – 1)

)

+ |H|2
} �

2(�–1)
dV

}
2(�–1)

�

.

(3.16)

Thus, combining the equations (1.7) with (3.16), we obtain the desired result (1.10). This
completes the proof of the theorem.

Remark 3.2 As a result of the observations in Remark 3.1, the next result will be specified
as a special version of Theorem 1.1. To be precise, we determine the following result by
replacing ε = 1 in (1.7) and (1.8), respectively.

Corollary 3.1 Assume Nm is an m(≥ 2)-dimensional closed orientated semislant sub-
manifold in (2k + 1)-sphere S

2k+1(1), then, �1,� satisfies the following inequality for the
�-Laplacian

�1,� ≤ 21– �
2 (k + 1)(1– �

2 )m �
2

(Vol(N ))p/2

{∫

Nm

(

1 + |H|2)dV
}�

2

for 1 < � ≤ 2, (3.17)

and

�1,� ≤ 21– �
2 (k + 1)(1– �

2 )m �
2

Vol(N )

∫

N k

(∣

∣1 + |H|2∣∣)�
2 dV

for 2 < � ≤ m
2

+ 1. (3.18)
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There is another corollary based on Corollary 1.2 and it is as follows:

Corollary 3.2 Assuming that Nm is an m(≥ 2)-dimensional closed orientated semislant
submanifold in (2k + 1)-sphere S2k+1(1), then, �1,� satisfies the following inequality for the
�-Laplacian

�1,� ≤ (2k + 2)(1– �
2 )m �

2

(Vol(N ))(�–1)

{∫

Nm

(

1 + |H|2) �
2(�–1) dV

}(�–1)

(3.19)

for 1 < � ≤ 2.

3.3 Application to slant submanifolds of Sasakian space forms
Using Remark 2.1 and Theorem 1.1, we have the following results:

Corollary 3.3 ([18]) Let Nm be an m(≥ 2)-dimensional closed orientated slant submani-
fold in a Sasakian space form ˜M

2k+1(ε), then, �1,� satisfies the following inequality for the
�-Laplacian

�1,� ≤
(

2(1– �
2 )(k + 1)(1– �

2 )m �
2

(Vol(N ))�/2

)

×
{∫

Nm

{(

ε + 3
4

)

+
(

ε – 1
4

)(

3 cos2 ϑ – 2
m

)

+ |H|2
}

dV
}�/2

for 1 < � ≤ 2, (3.20)

and

�1,� ≤
(

2(1– �
2 )(k + 1)( �

2 –1)m �
2

Vol(N )

)

×
∫

Nm

{∣

∣

∣

∣

(

ε + 3
4

)

+
(

ε – 1
4

)(

3 cos2 ϑ – 2
m

)

+ |H|2
∣

∣

∣

∣

}�/2

dV

for 2 < � ≤ m
2

+ 1. (3.21)

From Corollary 1.1 for � = 2 and Remark 2.1, we have

Corollary 3.4 ([18]) Assuming that Nm is an m-dimensional closed orientated slant sub-
manifold in a Sasakian space form ˜M

2k+1(ε), then, ��
1 satisfies the following inequality for

the Laplacian

��
1 ≤ m

Vol(N )

∫

N

{

|H|2 +
(

ε + 3
4

)

+
(

ε – 1
4

)(

3 cos2 ϑ – 2
m

)}

dV . (3.22)

Similarly, from Theorem 1.2, we find that:

Corollary 3.5 ([18]) Assuming that Nm is an m(≥ 2)-dimensional closed orientated slant
submanifold in a Sasakian space form ˜M

2k+1(ε), then �1,� satisfies the following inequality
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for the �-Laplacian

�1,� ≤
(

21– �
2 (k + 1)(1– �

2 )m �
2

(Vol(N ))(�–1)

)

×
{∫

Nm

((

ε + 3
4

)

+
(

ε – 1
4

)(

3 cos2 ϑ – 2
m

)

+ |H|2
) �

2(�–1)
dV

}(�–1)

(3.23)

for 1 < � ≤ 2.

3.4 Application to antiinvariant submanifolds of Sasakian space forms
Using Remark 2.2 and Theorem 1.1, we have the following results:

Corollary 3.6 Let Nm be an m(≥ 2)-dimensional closed orientated antiinvariant sub-
manifold in a Sasakian space form ˜M

2k+1(ε), then �1,� satisfies the following inequality
for the �-Laplacian

�1,� ≤
(

2(1– �
2 )(k + 1)(1– �

2 )m �
2

(Vol(N ))�/2

){∫

Nm

{(

ε + 3
4

)

–
(

ε – 1
2m

)

+ |H|2
}

dV
}p/2

for 1 < � ≤ 2, (3.24)

and

�1,� ≤
(

2(1– �
2 )(k + 1)( �

2 –1)m �
2

Vol(N )

)∫

Nm

{∣

∣

∣

∣

(

ε + 3
4

)

–
(

ε – 1
2m

)

+ |H|2
∣

∣

∣

∣

}�/2

dV

for 2 < � ≤ m
2

+ 1. (3.25)

From Corollary 1.1 for � = 2 and Remark 2.2, we have:

Corollary 3.7 Assuming that Nm is an m-dimensional closed orientated antiinvariant
submanifold in a Sasakian space form ˜M

2k+1(ε), then ��
1 satisfies the following inequality

for the Laplacian

��
1 ≤ m

Vol(N )

∫

N

{

|H|2 +
(

ε + 3
4

)

–
(

ε – 1
2m

)}

dV . (3.26)

Similarly, from Theorem 1.2, we find that:

Corollary 3.8 Assuming that Nm is an m(≥ 2)-dimensional closed orientated antiinvari-
ant submanifold in a Sasakian space form ˜M

2k+1(ε), then �1,� satisfies the following in-
equality for the �-Laplacian

�1,� ≤
(

21– �
2 (k + 1)(1– �

2 )m �
2

(Vol(N ))(�–1)

){∫

Nm

((

ε + 3
4

)

–
(

ε – 1
2m

)

+ |H|2
) �

2(�–1)
dV

}(�–1)

(3.27)

for 1 < � ≤ 2.
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3.5 Application to contact CR-submanifolds of Sasakian space forms
Corollary 3.9 Let Nm be an m(≥ 2)-dimensional closed orientated contact CR-submani-
fold in a Sasakian space form ˜M

2k+1(ε), then �1,� satisfies the following inequalities for the
�-Laplacian

(1) The first nonnull eigenvalue �1,� of the �-Laplacian satisfies:

�1,� ≤
(

2(1– �
2 )(k + 1)(1– �

2 )m �
2

(Vol(N ))�/2

)

×
{∫

Nm

{(

ε + 3
4

)

+
(

ε – 1
4

)(

2d2 – 4)
m(m – 1)

)

+ |H|2
}

dV
}�/2

for 1 < � ≤ 2, (3.28)

and

�1,� ≤
(

2(1– �
2 )(k + 1)( �

2 –1)m �
2

Vol(N )

)

×
∫

Nm

{∣

∣

∣

∣

(

ε + 3
4

)

+
(

ε – 1
4

)(

2d2 – 4)
m(m – 1)

)

+ |H|2
∣

∣

∣

∣

}�/2

dV

for 2 < � ≤ m
2

+ 1. (3.29)

(2) The equality carries in (1.7) and (1.8) if and only if � = 2 and Nm is minimally
immersed in a geodesic sphere of radius rε of ˜M

2k+1(ε) with the following equalities

r0 =
(

m
��

1

)1/2

,

r1 = sin–1 r0,

r–1 = sinh–1 r0.
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