
Moghimi and Najati Journal of Inequalities and Applications         (2022) 2022:97 
https://doi.org/10.1186/s13660-022-02837-6

R E S E A R C H Open Access

Some hyperstability and stability results for
the Cauchy and Jensen equations
Mohammad Bagher Moghimi1* and Abbas Najati1

*Correspondence:
mbfmoghimi@yahoo.com
1Department of Mathematics,
Faculty of Sciences, University of
Mohaghegh Ardabili, Ardabil, Iran

Abstract
In this paper we give some hyperstability and stability results for the Cauchy and
Jensen functional equations on restricted domains. We provide a simple and short
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1 Introduction
Let V and W be linear spaces. A function f : V → W is called

• additive if f (x + y) = f (x) + f (y) for all x, y ∈ V ;
• Jensen if 2f ( x+y

2 ) = f (x) + f (y) for all x, y ∈ V .
The main motivation for the investigation of the stability of functional equations orig-

inated from a question of Ulam [21] concerning the stability of group homomorphisms.
Hyers [9] gave an affirmative answer to the question of Ulam. The stability and hyper-
stability problems for various functional equations have been investigated by numerous
mathematicians. For more information on this area of research and further references, see
[1, 2, 4, 7, 10, 11, 13–15, 20].

Let us state the following theorem that is one of the classical results concerning the
stability problem for the Cauchy functional equation f (x + y) = f (x) + f (y).

Theorem 1.1 ([3, 5, 8, 9, 18, 19]) Let ε ≥ 0 and f : X → Y , where X is a normed space and
Y is a Banach space. Let p �= 1 be a real number and

∥
∥f (x + y) – f (x) – f (y)

∥
∥ ≤ ε

(‖x‖p + ‖y‖p), x, y ∈ X \ {0}.

Then, there exists a unique additive function A : X → Y such that

∥
∥f (x) – A(x)

∥
∥ ≤ 2ε

|2 – 2p| ‖x‖p, x ∈ X \ {0}.

Rassias [16, 17] considered the case ‖f (x + y) – f (x) – f (y)‖ ≤ ε‖x‖p‖y‖q, where p, q are
real numbers with p + q ∈ [0, 1). Brzdȩk [6, Theprem 1.3] provided a complement for this
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result in the case p + q < 0. His proof was based on a fixed-point theorem. We provide a
simple and short proof for Brzdȩk’s result. In addition, some further results on the hyper-
stability of the Cauchy and Jensen functional equations are investigated.

2 Superstability
Denote by N the set of positive integers. A version of the following theorem is introduced
by Brzdȩk [6, Theorem 1.3] and its proof is based on a fixed-point theorem. A simple and
brief proof is given here.

Theorem 2.1 Let X and Y be normed spaces, and E ⊆ X \ {0} be a nonempty set. Take
ε ≥ 0 and let p, q be real numbers with p + q < 0. Assume that for each x ∈ E there exists
a positive integer mx such that nx ∈ E for all n ∈ N with n ≥ mx. Then, every function
f : X → Y satisfying the inequality

∥
∥f (x + y) – f (x) – f (y)

∥
∥ ≤ ε‖x‖p‖y‖q, x, y ∈ E, x + y ∈ E, (2.1)

is additive on E, that is

f (x + y) = f (x) + f (y), x, y ∈ E, x + y ∈ E.

Proof Without loss of generality, we may assume that q < 0. Let x, y ∈ E with x + y ∈ E. By
assumption, there exists a positive integer m such that nx, ny, n(x + y) ∈ E for all n ≥ m.
Then, (2.1) yields

∥
∥f (x + nx) – f (x) – f (nx)

∥
∥ ≤ εnq‖x‖p+q,

∥
∥f (y + ny) – f (y) – f (ny)

∥
∥ ≤ εnq‖y‖p+q,

∥
∥f

(

x + y + n(x + y)
)

– f (x + y) – f
(

n(x + y)
)∥
∥ ≤ εnq‖x + y‖p+q.

Letting n → ∞ in the above inequalities, we obtain

f (x) = lim
n→∞

[

f (x + nx) – f (nx)
]

,

f (y) = lim
n→∞

[

f (y + ny) – f (ny)
]

,

f (x + y) = lim
n→∞

[

f
(

x + y + n(x + y)
)

– f
(

n(x + y)
)]

.

Then,

∥
∥f (x + y) – f (x) – f (y)

∥
∥

= lim
n→∞

∥
∥
[

f
(

(n + 1)(x + y)
)

– f
(

n(x + y)
)]

–
[

f
(

(n + 1)x
)

– f (nx)
]

–
[

f
(

(n + 1)y
)

– f (ny)
]∥
∥

≤ lim sup
n→∞

∥
∥f

(

(n + 1)(x + y)
)

– f
(

(n + 1)x
)

– f
(

(n + 1)y
)∥
∥

+ lim sup
n→∞

∥
∥f

(

n(x + y)
)

– f (nx) – f (ny)
∥
∥ (by (2.1))
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≤ lim sup
n→∞

ε
[

(n + 1)p+q + np+q]‖x‖p‖y‖q = 0.

Hence, f (x + y) = f (x) + f (y) for all x, y ∈ E with x + y ∈ E. This completes the proof. �

Remark 2.2 The assumption p + q < 0 is necessary in Theorem 2.1. For example, the func-
tion f : R → R given by f (x) = x2 fulfilling |f (x + y) – f (x) – f (y)| = 2|x||y| for all x, y ∈ R.
However, f is not additive.

The following theorem states a hyperstability result for the Jensen functional equation
on a restricted domain.

Theorem 2.3 Let X and Y be normed spaces, and E ⊆ X \ {0} be a nonempty set. Take
ε ≥ 0 and let p, q be real numbers with p + q < 0. Assume that for each x ∈ E there exists
a positive integer mx such that nx

2 ∈ E for all n ∈ N with n ≥ mx. Then, every function
f : X → Y satisfying the inequality

∥
∥
∥
∥

2f
(

x + y
2

)

– f (x) – f (y)
∥
∥
∥
∥

≤ ε‖x‖p‖y‖q, x, y ∈ E,
x + y

2
∈ E, (2.2)

is Jensen on E, that is

2f
(

x + y
2

)

= f (x) + f (y), x, y ∈ E,
x + y

2
∈ E.

Proof Without loss of generality, we may assume that q < 0. Let x, y ∈ E with x+y
2 ∈ E. By

assumption, there exists a positive integer m such that { nx
2 , nx

2 , n(x+y)
4 } ⊆ E for all n ≥ m.

Then, (2.2) yields
∥
∥
∥
∥

2f
(

x + nx
2

)

– f (x) – f (nx)
∥
∥
∥
∥

≤ εnq‖x‖p+q,
∥
∥
∥
∥

2f
(

y + ny
2

)

– f (y) – f (ny)
∥
∥
∥
∥

≤ εnq‖y‖p+q,

∥
∥
∥
∥

2f
(

x + y + n(x + y)
4

)

– f
(

x + y
2

)

– f
(

n(x + y)
2

)∥
∥
∥
∥

≤ εnq
∥
∥
∥
∥

x + y
2

∥
∥
∥
∥

p+q

.

Letting n → ∞ in the above inequalities, we obtain

f (x) = lim
n→∞

[

2f
(

x + nx
2

)

– f (nx)
]

,

f (y) = lim
n→∞

[

2f
(

y + ny
2

)

– f (ny)
]

,

f
(

x + y
2

)

= lim
n→∞

[

2f
(

x + y + n(x + y)
4

)

– f
(

n(x + y)
2

)]

.

Then,
∥
∥
∥
∥

2f
(

x + y
2

)

– f (x) – f (y)
∥
∥
∥
∥

= lim
n→∞

∥
∥
∥
∥

[

4f
(

x + y + n(x + y)
4

)

– 2f
(

n(x + y)
2

)]

–
[

2f
(

x + nx
2

)

– f (nx)
]



Moghimi and Najati Journal of Inequalities and Applications         (2022) 2022:97 Page 4 of 12

–
[

2f
(

y + ny
2

)

– f (ny)
]∥
∥
∥
∥

≤ 2 lim sup
n→∞

∥
∥
∥
∥

2f
(

x + y + n(x + y)
4

)

– f
(

x + nx
2

)

– f
(

y + ny
2

)∥
∥
∥
∥

+ lim sup
n→∞

∥
∥
∥
∥

2f
(

n(x + y)
2

)

– f (nx) – f (ny)
∥
∥
∥
∥

(by (2.2))

≤ lim sup
n→∞

ε

[

2
(

n + 1
2

)p+q

+ np+q
]

‖x‖p‖y‖q = 0.

Therefore, 2f ( x+y
2 ) = f (x) + f (y) for all x, y ∈ E with x+y

2 ∈ E. This ends the proof. �

Example 2.4 Let E = [1, +∞) and define f : R →R by f (x) = x2. It is easy to see that

∣
∣
∣
∣
2f

(
x + y

2

)

– f (x) – f (y)
∣
∣
∣
∣

=
|x – y|2

2
≤ |x|2|y|2, x, y ∈ E.

Then, f satisfies (2.2) with p + q > 0. However, f is not Jensen on E.

In the following, we obtain other hyperstability results for the Cauchy and Jensen func-
tional equations.

Theorem 2.5 Let X and Y be normed spaces, and E ⊆ X \ {0} be a nonempty set. Take
θ , ε ≥ 0 and let p, q, r be real numbers with p + q + r < 0 and p + q + 2r < 0. Assume that
for each x ∈ E there exists a positive integer mx such that nx ∈ E for all n ∈N with n ≥ mx.
Then, every function f : X → Y satisfying the inequality

∥
∥f (x + y) – f (x) – f (y)

∥
∥ ≤ ‖x‖p‖y‖q(ε‖x + y‖r + θ‖x – y‖r), x, y ∈ E, x + y ∈ E, (2.3)

is additive on E.

Proof Put

ϕ(x, y) := ‖x‖p‖y‖q(ε‖x + y‖r + θ‖x – y‖r).

Since p + q + 2r < 0, we may assume that q + r < 0 without loss of generality. Let x, y ∈ E
with x + y ∈ E. By assumption, there exists a positive integer m such that nx, ny, n(x + y) ∈ E
for all n ≥ m. By a similar argument as in the proof of Theorem 2.1, we obtain

f (x) = lim
n→∞

[

f (x + nx) – f (nx)
]

,

f (y) = lim
n→∞

[

f (y + ny) – f (ny)
]

,

f (x + y) = lim
n→∞

[

f
(

x + y + n(x + y)
)

– f
(

n(x + y)
)]

.

Then,

∥
∥f (x + y) – f (x) – f (y)

∥
∥

= lim
n→∞

∥
∥
[

f
(

(n + 1)(x + y)
)

– f
(

n(x + y)
)]
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–
[

f
(

(n + 1)x
)

– f (nx)
]

–
[

f
(

(n + 1)y
)

– f (ny)
]∥
∥

≤ lim sup
n→∞

∥
∥f

(

(n + 1)(x + y)
)

– f
(

(n + 1)x
)

– f
(

(n + 1)y
)∥
∥

+ lim sup
n→∞

∥
∥f

(

n(x + y)
)

– f (nx) – f (ny)
∥
∥ (by (2.3))

≤ lim sup
n→∞

[

(n + 1)p+q+r + np+q+r]ϕ(x, y) = 0.

Hence, f (x + y) = f (x) + f (y) for all x, y ∈ E with x + y ∈ E. This completes the proof. �

Example 2.6 Let E = [1, +∞) and f be a function defined by f (x) = x3. It is clear that

∣
∣f (x + y) – f (x) – f (y)

∣
∣ = 3|x||y||x + y| ≤ 3|x||y|(|x + y| + |x – y|), x, y ∈ E.

Then, f satisfies (2.3) with p = q = r = 1. However, f is not additive on E.

Theorem 2.7 Let X and Y be normed spaces, and E ⊆ X \ {0} be a nonempty set. Take
θ , ε ≥ 0 and let p, q, r be real numbers with p + q + r < 0 and p + q + 2r < 0. Assume that
for each x ∈ E there exists a positive integer mx such that nx

2 ∈ E for all n ∈ N with n ≥ mx.
Suppose that a function f : X → Y satisfies the inequality

∥
∥
∥
∥

2f
(

x + y
2

)

– f (x) – f (y)
∥
∥
∥
∥

≤ ‖x‖p‖y‖q(ε‖x + y‖r + θ‖x – y‖r) (2.4)

for all x, y ∈ E with x+y
2 ∈ E. Then, f is Jensen on E.

Proof Put

ϕ(x, y) := ‖x‖p‖y‖q(ε‖x + y‖r + θ‖x – y‖r).

Without loss of generality we may assume that q + r < 0. Let x, y ∈ E with x+y
2 ∈ E. By

assumption, there exists a positive integer m such that { nx
2 , ny

2 , n(x+y)
4 } ⊆ E for all n ≥ m. By

a similar argument as in the proof of Theorem 2.3, we obtain

f (x) = lim
n→∞

[

2f
(

x + nx
2

)

– f (nx)
]

,

f (y) = lim
n→∞

[

2f
(

y + ny
2

)

– f (ny)
]

,

f
(

x + y
2

)

= lim
n→∞

[

2f
(

x + y + n(x + y)
4

)

– f
(

n(x + y)
2

)]

.

Then,
∥
∥
∥
∥

2f
(

x + y
2

)

– f (x) – f (y)
∥
∥
∥
∥

= lim
n→∞

∥
∥
∥
∥

[

4f
(

x + y + n(x + y)
4

)

– 2f
(

n(x + y)
2

)]

–
[

2f
(

x + nx
2

)

– f (nx)
]

–
[

2f
(

y + ny
2

)

– f (ny)
]∥
∥
∥
∥
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≤ 2 lim sup
n→∞

∥
∥
∥
∥

2f
(

x + y + n(x + y)
4

)

– f
(

x + nx
2

)

– f
(

y + ny
2

)∥
∥
∥
∥

+ lim sup
n→∞

∥
∥
∥
∥

2f
(

n(x + y)
2

)

– f (nx) – f (ny)
∥
∥
∥
∥

(by (2.4))

≤ lim sup
n→∞

[

2
(

n + 1
2

)p+q+r

+ np+q+r
]

ϕ(x, y) = 0.

Therefore, 2f ( x+y
2 ) = f (x) + f (y) for all x, y ∈ E with x+y

2 ∈ E. This completes the proof. �

Example 2.8 Let E = [1, +∞) and f be a function defined by f (x) = x2. It is clear that

∣
∣
∣
∣
2f

(
x + y

2

)

– f (x) – f (y)
∣
∣
∣
∣

=
|x – y|2

2
≤ |x|2|y|2(|x + y| + |x – y|), x, y ∈ E.

Then, f satisfies (2.4) with p = q = 2 and r = 1. However, f is not Jensen on E.

Theorem 2.9 Assume that X is a linear space over the field F, and Y is a normed space
over the field K. Let a, b ∈ F \ {0} and ϕ : X × X → [0, +∞) be a function such that

lim
m→∞ϕ

(

a–1(m + 1)x, –b–1mx
)

= 0, lim
m→∞ϕ(mx, my) = 0 (2.5)

for all x, y ∈ X \ {0}. Let A, B ∈K, C ∈ Y and f : X → Y satisfy

∥
∥f (ax + by) – Af (x) – Bf (y) – C

∥
∥ ≤ ϕ(x, y) (2.6)

for all x, y ∈ Ed = {z ∈ X : ‖z‖ ≥ d} for some d > 0. Then, f satisfies

f (ax + by) = Af (x) + Bf (y) + C, (2.7)

for all x, y ∈ X. Moreover,

(A + B)f (0) = Af (x) + Bf
(

–ab–1x
)

(2.8)

for all x ∈ X.

Proof Replacing x by a–1(m + 1)x and y by –b–1mx in (2.6), we obtain

∥
∥f (x) – Af

(

a–1(m + 1)x
)

– Bf
(

–b–1mx
)

– C
∥
∥ ≤ ϕ

(

a–1(m + 1)x, –b–1mx
)

, (2.9)

for all x ∈ X \ {0} and positive integers m ≥ n, where a–1(n + 1)x, b–1nx ∈ Ed . Letting m →
∞ in (2.9) and using (2.5), we obtain

f (x) = lim
m→∞

[

Af
(

a–1(m + 1)x
)

+ Bf
(

–b–1mx
)

+ C
]

, x ∈ X \ {0}. (2.10)

Let x ∈ X \ {0}, then (2.5) and (2.10) yield

∥
∥(A + B)f (0) – Af (x) – Bf

(

–ab–1x
)∥
∥

= lim
m→∞

∥
∥(A + B)f (0) – A2f

(

a–1(m + 1)x
)

– ABf
(

–b–1mx
)

– AC
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– ABf
(

–b–1(m + 1)x
)

– B2f
(

ab–2mx
)

– BC
∥
∥

≤ |A| lim
m→∞

∥
∥f (0) – Af

(

a–1(m + 1)x
)

– Bf
(

–b–1(m + 1)x
)

– C
∥
∥

+ |B| lim
m→∞

∥
∥f (0) – Af

(

–b–1mx
)

– Bf
(

ab–2mx
)

– C
∥
∥

≤ |A| lim
m→∞ ϕ

(

a–1(m + 1)x, –b–1(m + 1)x
)

+ |B| lim
m→∞ϕ

(

–b–1mx, ab–2mx
)

= 0.

Hence, we obtain

(A + B)f (0) = Af (x) + Bf
(

–ab–1x
)

, x ∈ X. (2.11)

If we replace x by bmx and y by –amx in (2.6), we obtain

∥
∥f (0) – Af (bmx) – Bf (–amx) – C

∥
∥ ≤ ϕ(bmx, –amx), (2.12)

for all x ∈ X \ {0} and positive integers m ≥ n, where anx, bnx ∈ Ed . Therefore,

f (0) = lim
m→∞

[

Af (bmx) + Bf (–amx) + C
]

(2.13)

for all x ∈ X \ {0}. Replacing x by bmx in (2.11) and letting m → ∞, we obtain from (2.13)
that

(1 – A – B)f (0) = C.

Therefore, (2.7) holds true for x = y = 0, and (2.10) holds for all x ∈ X. To prove (2.7), let
x, y ∈ X with (x, y) �= (0, 0). Then,

∥
∥f (ax + by) – Af (x) – Bf (y) – C

∥
∥

= lim
m→∞

∥
∥Af

(

a–1(m + 1)(ax + by)
)

+ Bf
(

–b–1m(ax + by)
)

– A2f
(

a–1(m + 1)x
)

– ABf
(

–b–1mx
)

– AC

– ABf
(

a–1(m + 1)y
)

– B2f
(

–b–1my
)

– BC
∥
∥

≤ |A| lim
m→∞

∥
∥f

(

a–1(m + 1)(ax + by)
)

– Af
(

a–1(m + 1)x
)

– Bf
(

a–1(m + 1)y
)

– C
∥
∥

+ |B| lim
m→∞

∥
∥f

(

–b–1m(ax + by)
)

– Af
(

–b–1mx
)

– Bf
(

–b–1my
)

– C
∥
∥

≤ |A| lim
m→∞ ϕ

(

a–1(m + 1)x, –a–1(m + 1)y
)

+ |B| lim
m→∞ϕ

(

–b–1mx, –b–1my
)

= 0.

Therefore, f satisfies (2.7) for all x, y ∈ X. �

In the following corollaries X and Y are normed spaces.

Corollary 2.10 Let a, b ∈ F \ {0}, A, B ∈ K, C ∈ Y and let f : X → Y be a function. Take
θ , ε ≥ 0 and let p, q, r be real numbers. Then, f satisfies

f (ax + by) = Af (x) + Bf (y) + C, (A + B)f (0) = Af (x) + Bf
(

–ab–1x
)

, x, y ∈ X

if one of the following conditions holds:
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(i) p + q + r < 0 and

∥
∥f (ax + by) – Af (x) – Bf (y) – C

∥
∥ ≤ ‖x‖p‖y‖q(ε‖x + y‖r + θ‖x – y‖r);

(ii) p + r < 0, q + r < 0 and

∥
∥f (ax + by) – Af (x) – Bf (y) – C

∥
∥ ≤ (‖x‖p + ‖y‖q)(ε‖x + y‖r + θ‖x – y‖r);

(iii) p, q < 0 and

∥
∥f (ax + by) – Af (x) – Bf (y) – C

∥
∥ ≤ ε‖x‖p + θ‖y‖q;

for all x, y ∈ Ed = {z ∈ X : ‖z‖ ≥ d} for some d > 0.

Corollary 2.11 Every function f : X → Y satisfies one of the following assertions:
(i) f (ax + by) = Af (x) + Bf (y) + C, x, y ∈ X .

(ii) lim supmin{‖x‖,‖y‖}→∞ ‖f (ax + by) – Af (x) – Bf (y) – C‖‖x‖r‖y‖s = +∞ for all real num-
bers r, s with r + s > 0.

Corollary 2.12 Every function f : X → Y satisfies one of the following assertions:
(i) f (ax + by) = Af (x) + Bf (y) + C, x, y ∈ X .

(ii) lim supmin{‖x‖,‖y‖}→∞
‖x‖r‖y‖s

‖x‖r+‖y‖s ‖f (ax + by) – Af (x) – Bf (y) – C‖ = +∞ for all real non-
negative numbers r, s.

3 Stability on restricted domains
Jung [12] proved the stability of Jensen’s functional equation on a restricted and un-
bounded domain. In the following theorem, we improve the bound and thus the result
of Jung [12] by obtaining sharper estimates.

Theorem 3.1 Let X be a normed space and Y a Banach space. Take ε ≥ 0 and let a func-
tion f : X → Y satisfy the inequality

∥
∥
∥
∥

2f
(

x + y
2

)

– f (x) – f (y)
∥
∥
∥
∥

≤ ε (3.1)

for all x, y ∈ Ed = {z ∈ X : ‖z‖ ≥ d} for some d > 0. Then, there exists a unique additive
function T : X → Y such that

∥
∥f (x) – T(x) – f (0)

∥
∥ ≤ 3

2
ε, x ∈X .

Proof Letting y = –x in (3.1), we obtain

∥
∥2f (0) – f (x) – f (–x)

∥
∥ ≤ ε, ‖x‖ ≥ d. (3.2)

Letting y = –3x in (3.1), we obtain

∥
∥2f (–x) – f (x) – f (–3x)

∥
∥ ≤ ε, ‖x‖ ≥ d. (3.3)
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Now, adding (3.2) and (3.3), we have

∥
∥f (–3x) – 3f (–x) + 2f (0)

∥
∥ ≤ 2ε, ‖x‖ ≥ d.

Then,

∥
∥f (3x) – 3f (x) + 2f (0)

∥
∥ ≤ 2ε, ‖x‖ ≥ d. (3.4)

It is easy to see that

∥
∥
∥
∥
∥

f (3nx)
3n –

f (3mx)
3m +

n–1
∑

i=m

2f (0)
3i+1

∥
∥
∥
∥
∥

≤
n–1
∑

i=m

2ε

3i+1 , ‖x‖ ≥ d. (3.5)

This implies that the sequence { f (3nx)
3n }n is Cauchy for all x ∈X . Define T : X → Y by

T(x) := lim
n→∞

f (3nx)
3n , x ∈X .

It is clear that T(0) = 0 and T(3x) = 3T(x) for all x ∈X . In view of the definition of T , (3.1)
yields

2T
(

x + y
2

)

= T(x) + T(y), x, y ∈X \ {0}. (3.6)

Putting y = 3x in (3.6) and using T(3x) = 3T(x), we infer that T(2x) = 2T(x) for all x ∈ X .
Hence, (3.6) implies that T is Jensen (additive) on X . Letting m = 0 and taking the limit as
n → ∞ in (3.5), one obtains

∥
∥T(x) – f (x) + f (0)

∥
∥ ≤ ε, ‖x‖ ≥ d. (3.7)

To extend (3.7) to the whole X , let z ∈ X \ {0} and choose a positive integer n such that
‖nz‖ ≥ d. Take x = 2(n + 1)z and y = –2nz. Then, (3.7) yields

∥
∥f (y) – T(y) – f (0)

∥
∥ ≤ ε and

∥
∥f (x) – T(x) – f (0)

∥
∥ ≤ ε.

Using these inequalities together with (3.1), we obtain

∥
∥
∥
∥

2f
(

x + y
2

)

– T(x) – T(y) – 2f (0)
∥
∥
∥
∥

≤ 3ε.

Since T is Jensen and z = x+y
2 , we obtain

∥
∥f (z) – T(z) – f (0)

∥
∥ ≤ 3

2
ε.

This inequality is valid for z = 0 because of T(0) = 0. The uniqueness of T follows easily
from the last inequality. �
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Remark 3.2 Since Ed × Ed ⊆ {(x, y) ∈ X × X : ‖x‖ + ‖y‖ ≥ d}, Theorems 2.9 and 3.1 are
valid when (2.6) and (3.1) hold for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ d.

Theorem 3.3 Let X be a normed space and Y a Banach space. Take ε ≥ 0 and let a func-
tion f : X → Y satisfy the inequality (3.1) for all x, y ∈ X with ‖x + y‖ ≥ d for some d > 0.
Then, there exists a unique additive function T : X → Y such that

∥
∥f (x) – T(x) – f (0)

∥
∥ ≤ 3

2
ε, x ∈X .

Proof Letting y = 0 in (3.1), we obtain

∥
∥
∥
∥

2f
(

x
2

)

– f (x) – f (0)
∥
∥
∥
∥

≤ ε, ‖x‖ ≥ d.

It is easy to see that

∥
∥
∥
∥
∥

f (2nx)
2n –

f (2mx)
2m +

n–1
∑

i=m

f (0)
2i+1

∥
∥
∥
∥
∥

≤
n–1
∑

i=m

ε

2i+1 , ‖x‖ ≥ d. (3.8)

Then, the sequence { f (2nx)
2n }n is Cauchy for all x ∈X . Define T : X → Y by

T(x) := lim
n→∞

f (2nx)
2n , x ∈X .

It is clear that T(0) = 0 and T(2x) = 2T(x) for all x ∈X . In view of the definition of T , (3.1)
yields

2T
(

x + y
2

)

= T(x) + T(y), x + y �= 0. (3.9)

Let Te and To be the even part and the odd part of T . Then, Te and To satisfy (3.9) for all
x, y ∈X with x + y �= 0. Since To is odd, (3.9) yields that To is additive on X . It follows from
(3.9) that 2T( x

2 ) = T(x) for all x �= 0, and then

Te(x – y) = 2Te

(
x – y

2

)

= Te(x) + Te(y) = 2Te

(
x + y

2

)

= Te(x + y), x ± y �= 0.

Putting y = 3x and using Te(2x) = 2Te(x), we infer that Te(x) = 0 for all x ∈X . Hence, (3.9)
implies that T is Jensen (additive) on X . Letting m = 0 and taking the limit as n → ∞ in
(3.8), one obtains

∥
∥T(x) – f (x) + f (0)

∥
∥ ≤ ε, ‖x‖ ≥ d. (3.10)

To extend (3.7) to the whole X , let z ∈ X \ {0} and choose a positive integer n such that
‖nz‖ ≥ d. Take x = 2(n + 1)z and y = –2nz. Then, (3.7) yields

∥
∥f (y) – T(y) – f (0)

∥
∥ ≤ ε and

∥
∥f (x) – T(x) – f (0)

∥
∥ ≤ ε.
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Using these inequalities together with (3.1), we obtain

∥
∥
∥
∥

2f
(

x + y
2

)

– T(x) – T(y) – 2f (0)
∥
∥
∥
∥

≤ 3ε.

Since T is Jensen and z = x+y
2 , we obtain

∥
∥f (z) – T(z) – f (0)

∥
∥ ≤ 3

2
ε.

This inequality is valid for z = 0 because of T(0) = 0. The uniqueness of T follows easily
from the last inequality. �

Corollary 3.4 Let X and Y be linear normed spaces. For a function f : X → Y the follow-
ing conditions are equivalent:

(i) lim‖x+y‖→∞[2f ( x+y
2 ) – f (x) – f (y)] = 0;

(ii) lim‖x‖+‖y‖→∞[2f ( x+y
2 ) – f (x) – f (y)] = 0;

(iii) limmin{‖x‖,‖y‖}→∞[2f ( x+y
2 ) – f (x) – f (y)] = 0;

(iv) limmax{‖x‖,‖y‖}→∞[2f ( x+y
2 ) – f (x) – f (y)] = 0;

(v) 2f ( x+y
2 ) = f (x) + f (y), x, y ∈ X .

Proof The implications (v) ⇒ (ii) ⇒ (iii) and (v) ⇒ (iv) ⇒ (i) are obvious. It is enough to
prove the implications (i) ⇒ (v) and (iii) ⇒ (v).

To prove (i) ⇒ (v), let ε > 0 be an arbitrary real number. By (i) there exists dε > 0 such
that

∥
∥
∥
∥

2f
(

x + y
2

)

– f (x) – f (y)
∥
∥
∥
∥

≤ ε, ‖x + y‖ ≥ dε .

Let Ỹ be the completion of Y . In view of Theorem 3.3 there exists a unique additive func-
tion Aε : X → Ỹ such that

∥
∥f (x) – Aε(x) – f (0)

∥
∥ ≤ 3

2
ε, x ∈X .

Then,
∥
∥
∥
∥

2f
(

x + y
2

)

– f (x) – f (y)
∥
∥
∥
∥

≤
∥
∥
∥
∥

2f
(

x + y
2

)

– 2Aε

(
x + y

2

)

– 2f (0)
∥
∥
∥
∥

+
∥
∥f (x) – Aε(x) – f (0)

∥
∥ +

∥
∥f (y) – Aε(y) – f (0)

∥
∥

≤ 6ε, x, y ∈X .

Since ε is arbitrary, we obtain that f satisfies (v). Using a similar argument, the implication
(iii) ⇒ (v) is obtained by Theorem 3.1. Hence, the proof is complete. �
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