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1 Introduction
The study of several variables of commuting operators has received great interest on the
part of many researchers during recent years, and the reader is referred to the papers
[3–6, 10–12, 17, 19–21, 24, 26, 27]. In this framework, our present aim in this paper is to
give a new concept of multivariable operators, namely the left (m, C)-invertible p-tuple of
operators. It should be noted that some developments on this subject for single variable
operators have been carried out in [1, 8, 9, 13–15, 18, 22, 25, 28–30].

First, we introduce some concepts and symbols used in this work.
Let Bb[Y] be the algebra of bounded linear operators on a separable complex Hilbert

space Y . We use N = {1, 2, . . .}, N0 = N ∪ {0}, and C the set of complex numbers. For
p ∈ N, let A = (A1, . . . , Ap) ∈ Bb[Y]p be a commuting p-tuple of operators (Aj : Y −→ Y is
a bounded operator ). Let μ = (μ1, . . . ,μp) ∈ N

p
0 and set |μ| :=

∑
1≤j≤p |μj|, μ! := μ1! · · ·μp!.

Further, denote by Aμ := Aμ1
1 Aμ2

2 · · ·Aμd
p where Aμj

j = Aj.Aj · · · .Aj
︸ ︷︷ ︸

μj-times

(1 ≤ j ≤ p) and A∗ =

(A∗
1, . . . , A∗

p). Recall that an antilinear transformation C ∈ Bb[Y] is a conjugation if C sat-
isfies 〈Cx | Cy〉 = 〈x | y〉 ∀x, y ∈ Y and C2 = IY (see [16]). It should be noted that if C is a
conjugation on Y , then

⎧
⎨

⎩

(CAC)k = CAkC, ∀k ∈N,

(CAC)∗ = CA∗C.
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Let (A, B) ∈ Bb[Y]2 and define the map ψA,B : Bb[Y] −→ Bb[Y] by ψA,B(X) = BXA. More-
over ψ

(k)
A,B(IY ) = BkAk for all positive integer k, and consider the following quantity,

Qq(B, A) =
∑

0≤k≤q

(–1)q–k

(
q
k

)

BkAk , q ∈N0. (1.1)

Equation (1.1) was the starting point of some authors to define classes of operators as
follows:

(1) If A ∈ Bb[Y] satisfies Qm(A∗, A) = 0 for some positive integer m,
A is said to be an m-isometric operator ([1]). If A satisfying Qm(A∗, CAC) = 0 for some

positive integer m and a conjugation C, A is said to be an (m, C)-isometric operator ( [8] ).
(2) Let A ∈ Bb[Y] satisfying A∗nQm(A∗, A)An = 0 for some positive integers m and n,

then A is called an n-quasi-m-isometric operator ([23, 27] ). If A satisfies

A∗nQm
(
A∗, CAC

)
An = 0,

for some positive integers m, n, and a conjugation C, then A is called an n-quasi-(m, C)-
isometric operator ( [22, 28] ).

(3) Let A ∈ Bb[Y] for which there exists B ∈ Bb[Y] such that Qm(B, A) = 0 for some
positive integer m, then A is called left m-invertible ( [14, 15, 18, 25] ). If A and B satisfy
A∗nQm(B, A)An = 0, for some positive integers n and, m, then A is called an n-quasileft
m-invertible operator ([13] ).

Very recently, the authors of the present paper introduced the concepts of left (m, C)-
invertible and right (m, C)-invertible operators. Let A ∈ Bb[Y] for which there exists B ∈
Bb[Y] such that Qm(B, CAC) = 0 for some positive integer m and conjugation operator C,
then A is called a left (m, C)-invertible operator. If A and B satisfy Qm(CAC, B) = 0, then
A is called right (m, C)-invertible ([2] ).

Let A = (A1, . . . , Ap) ∈ Bb[Y]p and B = (B1, . . . , Bp) ∈ Bb[Y]p be commuting p-tuples of
operators. By the same idea as in [17], we define the map ψA,B : Bb[Y] −→ Bb[Y] by
ψA,B(X) =

∑
1≤j≤m BjXAj. It is easy to check that

ψ
(k)
A,B(IY ) =

∑

|μ|=k

k!
μ!

BμAμ, k = 0, 1, . . . .

We set

Qq(B, A) :=
∑

0≤k≤q

(–1)q–k

(
q
k

)(∑

|μ|=k

k!
μ!

BμAμ

)

. (1.2)

The concept of an m-isometric p-tuple of operators was introduced by Gleason et al. in
[17] as follows: A p-tuple of commuting operators A = (A1, . . . , Ap) ∈ Bb[Y]p is called an
m-isometric p-tuple if A satisfies Qm(A∗, A) = 0 for some positive integer m. However, the
concept of an (m, C)-isometric tuple was introduced by Sid Ahmed et al. in [27] as: A is
called an (m, C)-isometric p-tuple if Qm(A∗, CAC) = 0 for some positive integer m and a
conjugation C.
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Recall that the concepts of left m-invertible and right m-invertible p-tuples of opera-
tors was introduced and studied by the second named author in [26]. A p-tuple of com-
muting operators A = (A1, . . . , Ap) ∈ Bb[Y]p is called a left m-invertible p-tuple if there
exists a commuting p-tuple B = (B1, . . . , Bp) ∈ Bb[Y]p such that Qm(B, A) = 0. However, if
Qm(A, B) = 0, then A is called a right m-invertible p-tuple.

In continuation of these studies that have been carried out by many researchers, in-
cluding our previous works in this field, our aim in this paper is to describe the class of
left (m, C)-invertible p-tuples of commuting operators, a generalization of the class of left
(m, C)-invertible of single operator on Hilbert spaces.

The outline of the paper is as follows. The second section is concerned with the main
themes of the study. Namely, after several examples and interesting remarks, which try to
clarify the context, we give some necessary, or even equivalent, conditions in order for a
tuple of operators to be a left (m, C)-invertible p-tuple (Theorem 2.13). Section three con-
tains the main results of the paper, namely Theorem 3.7, Theorem 3.9, and Theorem 3.11.
In Theorem 3.7 we are interested if the perturbation of a left (m, C)-invertible tuple of
operators by a nilpotent tuple remains a (r, C)-invertible p-tuple, where r depends on m
and on the order of nilpotency. On the other hand, Theorem 3.9 proves that if A is a
left (m, C)-invertible p-tuple and Ã is a left (n, C)-invertible p-tuple, then A ∗ Ã is a left
(m+n–1, C)-invertible p-tuple under suitable conditions. These results are used to obtain
some properties on the tensor product of left (m, C)-invertible p-tuples (Corollary 3.10
and Corollary 3.10 ). Theorem 3.11 proves that if A is a left (m, C)-invertible p-tuple and
Ã = (Ã1, . . . , Ãp) is such that each Ãk is a left (nk , C)-left invertible for k = 1, . . . , p, then
A • Ã is a left (m +

∑
1≤k≤p nk – p, C)-invertible p-tuple.

2 Left (m, C)-invertible tuple of commuting operators
This section is concerned with the same themes of the study. Namely, we give some prop-
erties and several examples and interesting remarks, which try to clarify the concept.

Let A = (A1, . . . , Ap) ∈ Bb[Y]p, B = (B1, . . . , Bp) ∈ Bb[Y]p and D = (D1, . . . , Dp) ∈ Bb[Y]p

be commuting p-tuples of operators, we set

Q(l)
m (B, A) :=

∑

0≤k≤m

(–1)m–k

(
m
k

)(∑

|μ|=k

k!
μ!

BμCAμC
)

, (2.1)

and

Q(r)
m (A, D) :=

∑

0≤k≤m

(–1)m–k

(
m
k

)(∑

|μ|=k

k!
μ!

CAμCDμ

)

. (2.2)

Definition 2.1 Let A = (A1, . . . , Ap) ∈ Bb[Y]p be a commuting p-tuple of operators. A is
said to be a left (m, C)-invertible p-tuple if there exists a p-tuple of commuting operators
B = (B1, . . . , Bp) ∈ Bb[Y]p and a conjugation C on Y such that

∑

0≤k≤m

(–1)m–k

(
m
k

)(∑

|μ|=k

k!
μ!

BμCAμC
)

= 0 (2.3)

or equivalently if Q(l)
m (B, A) = 0. However, A = (A1, . . . , Ap) is said to be a right-(m, C)-

invertible tuple if there exists a p-tuple of commuting operators D = (D1, . . . , Dp) ∈ Bb[Y]p



Al Dohiman and Ould Ahmed Mahmoud Journal of Inequalities and Applications        (2022) 2022:105 Page 4 of 21

and a conjugation C on Y such that

∑

0≤k≤m

(–1)m–k

(
m
k

)(∑

|μ|=k

k!
μ!

CAμCDμ

)

= 0 (2.4)

or equivalently if Q(r)
m (A, D) = 0.

Remark 2.2 (1) When p = 1 this definition coincides with the definition of a left (m, C)-
invertible for a single variable operator introduced in [2].

(2) Note that if AjC = CAj for all j = 1, . . . , p, then A is a left (m, C)-invertible operator
p-tuple if and only if A is a left-m-invertible p-tuple.

Remark 2.3 (1) Since AiAj = AjAi for i, j ∈ {1, . . . , p} it is easy to see that every permutation
of a left (m, C)-invertible p-tuple is also a left (m, C)-invertible p-tuple.

(2) For A = (A1, . . . , Ap) ∈ Bb[Y]p and B = (B1, . . . , Bp) ∈ Bb[H]p such that AiAj = AjAi and
BiBj = BjBi for i, j ∈ {1, . . . , p}, we have

∑

0≤k≤m

(–1)m–k

(
m
k

)(∑

|μ|=k

k!
μ!

BμAμ

)

=
∑

0≤k≤m

(–1)m–k

(
m
k

)(∑

|μ|=k

k!
μ!

BμC(CAC)μC
)

.

From the above identity, it follows that a p-tuple A = (A1, . . . , Ap) is a left (m, C)-invertible
p-tuple with conjugation C if and only if CAC := (CA1C, . . . , CApC) is a left-(m, C)-
invertible p-tuple with conjugation C.

We mention this relationship for commuting variables y = (y1, . . . , yp) (y1 + · · · + yp)k =
∑

|μ|=k
( k

μ

)
yμ. In particular, we have

∑
|μ|=k

( k
μ

)
= pk .

Remark 2.4 (1) For p = 2 and let A = (A1, A2) ∈ Bb[H]2 be a commuting pair of operators,
then A is a left-(1, C)-invertible pair for some conjugation C if

B1CA1C + B2CA2C – IY = 0, (2.5)

for some B = (B1, B2) ∈ Bb[H]2. However, it is a left (2, C)-invertible pair if

B2
1CA2

1C + B2
2CA2

2C + 2B1B2CA1A2C – 2(B1CA1C + B2CA2C) + IY = 0, (2.6)

for some B = (B1, B2) ∈ Bb[Y]2.
(2) Let A = (A1, . . . , Ap) ∈ Bb[Y]p be a commuting p-tuple of operators. A is a left (1, C)-

invertible p-tuple if and only if

∑

1≤j≤p

BjCAjC – IY = 0, (2.7)

and it is a left (2, C)-invertible p-tuple if and only if

IY – 2
∑

1≤j≤d

BjCAjC +
∑

1≤j≤p

B2
j CA2

j C + 2
∑

1≤j<k≤p

BjBkCAjAkC = 0 (2.8)

for some B = (B1, . . . , Bp) ∈ Bb[H]p.
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Example 2.5 Every (m, C)-isometric p-tuple A = (A1, . . . , Ap) is a left (m, C)-invertible p-
tuple and its adjoint A∗ is a right (m, C)-invertible p-tuple.

Example 2.6 Let C be a conjugation on Y = C
2 defined by C(z1, z2) = (z2, z1). Consider

A1 =
1√
2

(
1

√
3

0 1

)

∈ Bb
[
C

2] and A2 =
1√
2

(
1 –

√
3

0 1

)

∈ Bb
[
C

2].

Then, A = (A1, A2) is a left-(1, C)-invertible 2-tuple.
Indeed, observe that A1A2 = A2A1 and, moreover, consider

B1 =
1√
2

(
1 0√
3 1

)

∈ Bb
(
C

2) and B2 =
1√
2

(
1 0

–
√

3 1

)

∈ Bb
(
C

2).

A direct calculation shows that B1CA1C = 1
2 ( 1 0

2
√

3 1) and B2CA2C = 1
2 ( 1 0

–2
√

3 1).
Using these equalities, we now have Q(l)

1 (B, A) = B1CA1C + B2CA2C – IC2 = 0, and we
are done.

Example 2.7 Let C be a conjugation on Y = l2(C) defined by Cek = ek , where (ek)k is an
orthonormal basis. Define A1 ∈ Bb[l2(C)] and A2 ∈ Bb[l2(C)] by

A1ek =
√

k + 2
k + 1

ek+1 and A2ek =
√

k + m
k + 1

ek+1.

It was explained in [7] that A1 is a (2, C)-isometric operator and A2 is a (m, C)-isometric
operator. Let A = (A1, 0, . . . , 0) ∈ Bb[l2(C)]p and Ã = (0, . . . , A2) ∈ Bb[l2(C)]p.

By elementary calculation we show that A is a left (2, C)-invertible p-tuple with conju-
gation C and Ã is a left (m, C)-invertible p-tuple with conjugation C.

Example 2.8 Let C be a conjugation on Y and A ∈ Bb[Y] be a left (m, C)-invertible oper-
ator. Then, the operator tuple A = (A1, . . . , Ap), where Aj = A for every j = 1, . . . , p, is a left
(m, C)-invertible p-tuple of operators.

In fact, it is clear that AiAj = AjAi for all 1 ≤ i; j ≤ p. Since A is left (m, C)-invertible, then
there exists B ∈ Bb[Y] such that

∑
0≤k≤m(–1)m–k( m

k
)
BkCAkC = 0.

Consider B = (B, . . . , B) ∈ Bb[Y]p and applying the multinomial expansion, we obtain

∑

0≤j≤m

(–1)m–j

(
m
j

)(∑

|μ|=j

j!
μ!

BμCAμC
)

=
∑

0≤j≤m

(–1)m–j

(
m
j

)(∑

|μ|=j

j!
μ!

B|μ|CA|μ|C
)

=
∑

0≤j≤m

(–1)m–j

(
m
j

)

BjCAjC

= 0.

Hence, Q(l)
m (B, A) = 0 and therefore, B is a left-(m, C)-inverse of A.
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Remark 2.9 It should be noted that the question about left (m, C)-invertibility for a p-
tuple of commuting operators is nontrivial. There exists a p-tuple of commuting operators
A = (A1, . . . , Ap) ∈ Bb[Y]p such that each Aj is a left (m, C)-invertible for all j = 1, . . . , p,
however, A = (A1, . . . , Ap) is not a left (m, C)-invertible p-tuple. (We refer the reader to
[27, Example 2.4].)

Lemma 2.10 Let A = (A1, . . . , Ap) ∈ Bb[Y]p and B = (B1, . . . , Bp) ∈ Bb[Y]p be commuting
p-tuples of operators. Then, the following identity holds

∑

|μ|=n+1

(
n + 1

μ

)

BμCAμC =
∑

|μ|=n

(
n
μ

)( ∑

1≤j≤p

BjBμCAμC(CAjC)
)

, (2.9)

for all n ∈N0 and where
( n

μ

)
= n!

μ! .

Proof

∑

|μ|=n+1

(
n + 1

μ

)

BμCAμC =
∑

|μ|=n+1

(n + 1)!
μ!

BμCAμC

=
∑

|μ|=n+1

n!(n + 1)
μ!

BμCAμC

=
∑

|μ|=n+1

n!(μ1 + · · · + μp)
μ1! · · ·μp!

BμCAμC

=
∑

1≤j≤p

∑

|μ|=n+1

n!(μj)
μ1! · · ·μp!

BμCAμC

=
∑

1≤j≤p

∑

|μ|=n+1

n!
μ1! · · · (μj – 1)! · · ·μp!

BμCAμC

=
∑

1≤j≤p

∑

|μ|=n

n!
μ1! · · · (μj)! · · ·μp!

BjBμCAμAjC

=
∑

1≤j≤p

∑

|μ|=n

n!
μ1! · · ·μj! · · ·μp!

BjBμCAμC(CAjC)

=
∑

1≤j≤p

∑

|μ|=n

(
n
μ

)

BjBμCAμC(CAjC).
�

Proposition 2.11 Let A = (A1, . . . , Ap) ∈ Bb[Y]p and B = (B1, . . . , Bp) ∈ Bb[Y]p be commut-
ing tuples of operators and C be a conjugation on Y .

(1) The maps Q(l)
m , Q(r)

m : Bb[Y]p ×Bb[Y]p −→ Bb[Y] satisfy the recursive relations

Q(l)
m+1(B, A) =

∑

1≤j≤p

BjQ(l)
m (B, A)(CAjC) – Q(l)

m (B, A), (2.10)

Q(r)
m+1(A, D) =

∑

1≤j≤p

(CAjC)Q(r)
m (A, D)(Dj) – Q(r)

m (A, D). (2.11)

(2) If A is a left (m, C)-invertible p-tuple, then A is a left (n, C)-invertible operator p-tuple
for all n ≥ m.
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(3) If A is a right (m, C)-invertible p-tuple, then A is a right (n, C)-invertible operator
p-tuple for all n ≥ m.

Proof (1) According to Eq. (2.1) and Lemma 2.10, we have

Q(l)
m+1(B, A)

=
∑

0≤k≤m+1

(–1)m+1–k

(
m + 1

k

)(∑

|μ|=k

k!
μ!

BμCAμC
)

= (–1)m+1IY –
∑

1≤k≤m

(–1)m–k
[(

m
k

)

+

(
m

k – 1

)](∑

|μ|=k

k!
μ!

BμCAμC
)

+
∑

|μ|=m+1

(m + 1)!
μ!

BμCAμC

= –Q(l)
m (B, A) +

∑

0≤k≤m–1

(–1)m–k

(
m
k

)( ∑

|μ|=k+1

(k + 1)!
μ!

BμCAμC
)

+
( ∑

|μ|=m+1

(m + 1)!
μ!

BμCAμC
)

= –Q(l)
m (B, A)

+
∑

1≤j≤p

∑

0≤k≤m–1

(–1)m–k

(
m
k

)
∑

|μ|=k

(
m
k

)
k!
μ!

BjBμCAμC(CAjC)

+
∑

1≤j≤p

∑

|μ|=m

m!
μ!

BjBμCAμC(CAjC)

= –Q(l)
m (B, A) +

∑

1≤j≤p

Bj

( ∑

0≤k≤m

(–1)m–k

(
m
k

)
∑

|μ|=k

k!
μ!

BμCAμC
)

(CAjC)

= –Q(l)
m (B, A) +

∑

1≤j≤p

BjQ(l)
m (B, A)(CAjC).

The statement in (2) follows immediately from (2.10). �

Proposition 2.12 Let A = (A1, . . . , Ap) ∈ Bb[Y]p be a commuting p-tuple and C be a con-
jugation operator on Y .

(1) If A is a left (2, C)-invertible p-tuple with its left (2, C)-inverse p-tuple B = (B1, . . . , Bp),
then the following identities hold

∑

|μ|=n

n!
μ!

BμCAμC = (1 – n)IY + n
( ∑

1≤j≤p

BjCAjC
)

, ∀n ∈N0, (2.12)

lim
n→∞

1
n

(∑

|μ|=n

n!
μ!

BμCAμC
)

= Q(l)
1 (B, A). (2.13)
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(2) If A is a right (2, C)-invertible p-tuple with its right (2, C)-inverse p-tuple D =
(D1, . . . , Dp), then the following identities hold

∑

|μ|=n

n!
μ!

CAμCDμ = (1 – n)IY + n
( ∑

1≤j≤p

CAjCDj

)

, ∀n ∈N0, (2.14)

lim
n→∞

1
n

(∑

|μ|=n

n!
μ!

CAμCDμ

)

= Q(r)
1 (A, D). (2.15)

Proof (1) Eq. (2.12) is proved by induction. When n = 0 or n = 1 the statement is trivially
true. Assume that the statement is true for some integer n and prove it for n + 1. Indeed,
according to Lemma 2.10, we have

∑

|μ|=n+1

(n + 1)!
μ!

BμCAμC =
∑

1≤k≤p

Bk

(∑

|μ|=n

n!
μ!

BμCAμC
)

CAkC.

From the induction hypothesis, we have

∑

|μ|=n+1

(n + 1)!
μ!

BμCAμC

=
∑

1≤k≤p

Bk

(

(1 – n)IY + n
∑

1≤j≤p

BjCAjC
)

CAkC

= (1 – n)
∑

1≤k≤p

BkCAkC + n
∑

1≤j,k≤p

BkBjCAkAjC

= (1 – n)
∑

1≤k≤p

BkCAkC + n
∑

1≤j≤p

B2
j CA2

j C

+ 2n
( ∑

1≤j<k≤p

BjBkCAjAkC
)

.

Since A is a left (2, C)-invertible p-tuple with its left (2, C) inverse B, we have by (2.8)

∑

|μ|=n+1

(n + 1)!
μ!

BμCAμC

= (1 – n)
∑

1≤k≤p

BkCAkC + n
(

–IY + 2
∑

1≤j≤p

BjCAjC
)

= –nIY + (n + 1)
( ∑

1≤k≤p

BkCAkC
)

.

This shows the claim is true in the case of n + 1. The identity (2.13) follows from the first
one by taking n → ∞.

The results and techniques for proving (2.14) and (2.15) are very similar. �

Theorem 2.13 Let A = (A1, . . . , Ap) ∈ Bb[Y]p and B = (B1, . . . , Bp) ∈ Bb[Y]p be commuting
p-tuples of operators. The following statements hold
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(i)

∑

|μ|=n

n!
μ!

BμCAμC =
∑

0≤j≤n

(
n
j

)

Q(l)
j (B, A), (2.16)

for every n ∈N0.
(ii) A is a left (m, C)-invertible p-tuple if and only if there exists a p-tuple of operators

B = (B1, . . . , Bp) ∈ Bb[Y]p such that

∑

|μ|=n

n!
μ

BμCAμC =
∑

0≤j≤m–1

(
n
j

)

Q(l)
j (B, A); ∀n ∈N0. (2.17)

(iii) If A is a left (m, C)-invertible p-tuple with its left (2, C)-inverse B
¯

= (B1, . . . , Bp), then

Q(l)
m–1(B, A) = lim

n−→∞
1

( n
(m–1)

)

(∑

|μ|=n

n!
μ!

BμCAμC
)

. (2.18)

Proof (i) Observe that when n = 0 or n = 1 the identity (2.16) is valued. Assume the state-
ment (2.16) is true for n. We shall deduce it at step n + 1. By virtue of (2.1) and (2.16) we
obtain

∑

|μ|=n+1

n!
μ!

BμCAμC = Q(l)
n+1(B, A) –

∑

0≤j≤n

(–1)n+1–j

(
n + 1

j

)
∑

|μ|=j

n!
μ!

BμCAμC

= Q(l)
n+1(B, A) –

∑

0≤j≤n

(–1)n+1–j

(
n + 1

j

)
∑

0≤k≤j

(
j
k

)

Q(l)
k (B, A)

= Q(l)
n+1(B, A) –

∑

0≤k≤n

Q(l)
k (B, A)

∑

k≤j≤n

(–1)n+1–j

(
n + 1

j

)

n(j)

= Q(l)
n+1(B, A) –

∑

0≤k≤n

(
n + 1

k

)

Q(l)
k (B, A)

×
( ∑

k≤j≤n

(–1)n+1–j

(
n + 1 – j

j – k

)

︸ ︷︷ ︸
=–1

)

=
∑

0≤k≤n+1

(
n + 1

k

)

Q(l)
k (B, A).

This shows the claim is true in the case of n + 1.
(ii) If we assume that A is a left (m, C)-invertible p-tuple with its left (m, C)-inverse p-

tuple B, then Q(l)
q (B, A) = 0 for all q ≥ m (by Proposition 2.11). Therefore, (2.17) follows

from (2.16).
On the other hand, if (2.17) holds for all n ≥ 1, then Q(l)

q (B, A) = 0 for q ≥ m by (2.16).
Therefore, A is a left (m, C)-invertible p-tuple.
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(iii) By (2.16) if A is a left (m, C)-invertible p-tuple, we obtain

∑

|μ|=n

n!
μ!

BμCAμC =
∑

0≤j≤m–2

(
n
j

)

Q(l)
j (B, A) +

(
n

m – 1

)

Q(l)
m–1(B, A).

and moreover,

1
( n

m–1
)

∑

|μ|=n

n!
μ!

BμCAμC =
∑

0≤j≤m–2

1
( n

m–1
)

(
n
j

)

Q(l)
j (B, A) + Q(l)

m–1(B, A).

By taking n → ∞ we obtain the desired result. �

3 Perturbation, product, and tensor product
This section is devoted to the study of some questions related to the perturbation, product
and tensor product of a left (m, C)-invertible p-tuple of operators. In order to examine
these questions we introduce the following powerful lemmas.

Lemma 3.1 Let μ = (μ1, . . . ,μp) ∈ N
p
0, k ∈ N and n ∈ N be such that |μ| + k = n + 1. For

1 ≤ r ≤ p, let 1r = (0, . . . , 1︸︷︷︸
r

, . . . , 0) ∈N
p. Then,

(
n + 1
μ, k

)

=
∑

1≤r≤p

(
n

μ – 1r , k

)

+

(
n

μ, k – 1

)

, (3.1)

where
( n

μ,k
)

= n!
μ!k! .

Proof The proof is similar to the proof of [12, Lemma 2.3], hence we omit it. �

Lemma 3.2 Let A = (A1, . . . , Ap) ∈ Bb[Y]p, B = (B1, . . . , Bp) ∈ Bb[Y]p, and N = (N1, . . . ,
Np) ∈ Bb[Y]p be commuting tuples operators such that [Bj, Nk] = 0 for all (j, k) ∈ {1, . . . , p}2.
Then, the following identities hold:

Q(l)
n (B + N, A) =

∑

|μ|+k=n

(
n

μ, k

)

NμQ(l)
k (B, A)CAμC, (3.2)

Q(r)
n (A, B + N) =

∑

|μ|+k=n

(
n

μ, k

)

CAμCQ(r)
k (A, B)Nμ. (3.3)

Proof We prove the identity (3.2) by induction on n. When n = 1, we have

∑

|μ|+k=1

(
1

μ, k

)

(N)μQ(l)
k (B, A)CAμC

=
∑

1≤j≤p

NjCAjC +
∑

1≤j≤p

BjCAjC – I

=
∑

1≤j≤p

(Bj + Nj)CAjC – I
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=
∑

1≤j≤p

(Bj + Nj)Q(l)
0 (B + N, A)(CTjC) – Q(l)

0 (B + N, A)

= Q(l)
1 (B + N, A) (by Proposition 2.11).

Assume that (3.2) holds for n. According to Proposition 2.11, it holds that

Q(l)
n+1(B + N, A)

=
∑

1≤r≤p

(Bl + Nl)Q(l)
n (B + N, A)(CAjC) – Q(l)

n (B + N, A)

=
∑

1≤r≤p

(Bl + Nl)
( ∑

|μ|+k=n

(
n

μ, k

)

NμQ(l)
k (B, A)CAμ

)

–
∑

|μ|+k=n

(
n

μ, k

)

NμQ(l)
k (B, A)CAμC

=
∑

|μ|+k=n

(
n

μ, k

)

Nμ

( ∑

1≤r≤p

(Br + Nr)Q(l)
k (B, A)(CArC) – Q(l)

k (B, A)
)

CAμC

=
∑

|μ|+k=n

(
n

μ, k

)

Nμ

( ∑

1≤r≤p

BrQ(l)
k (B, A)(CArC) +

∑

1≤r≤p

NrQ(l)
k (B, A)

– Q(l)
k (B, A)

)
(
CAμC

)

=
( ∑

|μ|+k=n

(
n

μ, k

)

NμQ(l)
k+1(B, A) +

∑

|μ|+k=n

(
n

μ, k

)
∑

1≤r≤p

NμNrQ(l)
k (B, A)

)

× (
CAμC

)

=
( ∑

|μ|+k=n

(
n

μ, k

)

NμQ(l)
k+1(B, A) +

∑

|μ|+k=n

(
n

μ, k

)

×
∑

1≤r≤p

Nμ1
1 · · ·Nμr+1

r · · ·Nμp
p Q(l)

k (B, A)
)

(
CAμC

)

=
( ∑

|μ|+k=n+1

((
n

μ, k – 1

)

+
∑

1≤r≤p

(
n

μ – 1r , k

))

NμQ(l)
k (B, A)

(
CAμC

)

=
∑

|μ|+k=n+1

(
n + 1
μ, k

)

NμQ(l)
k (B, A)

(
CAμC

)
. �

Remark 3.3 When p = 1, Lemma 3.2 coincides with [18, Lemma 1].

Let A = (A1, . . . , Ap) ∈ Bb[Y]p and B = (B1, . . . , Bp) ∈ Bb[Y]p. We set

A ∗ B = (A1B1, . . . , A1Bp, . . . , A2B1, . . . , A2Bp, . . . , ApB1, . . . , ApBp).
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Lemma 3.4 Let A = (A1, . . . , Ap) ∈ Bb[Y]p, B = (B1, . . . , Bp) ∈ Bb[Y]p, Ã = (̃A1, . . . , Ãp) ∈
Bb[Y]p, and B̃ = (B̃1, . . . , B̃p) ∈ Bb[Y]p be commuting tuples of operators such that

[Bj, B̃r] = [Aj, Ãr] = [B̃j, CArC] = 0 for all j, r ∈ {1, . . . , p},

then

Q(l)
n (B ∗ B̃, A ∗ Ã) =

∑

|μ|+k=n

(
n

μ, k

)

BμQ(l)
k (B, A)CAμCQ(l)

n–k(B̃, Ã) (3.4)

=
∑

|μ|+k=n

(
n

μ, k

)

Q(l)
k (B, A)B̃μQ(l)

n–k(B̃, Ã)(CÃC). (3.5)

Proof For n = 1 we have,

∑

|μ|+k=1

(
1

μ, k

)

BμQ(l)
k (B, A)CAμCQ(l)

1–k(B̃, Ã)

=
∑

1≤j≤p

BjCAjCQ(l)
1 (B̃, Ã) + Q(l)

1 (B, A)Q(l)
0 (B̃, Ã)

=
( ∑

1≤j≤p

BjCAjC
)( ∑

1≤j≤p

B̃jCÃjC – IY
)

+
∑

1≤j≤p

BjCAjC – IY

=
∑

1≤j,k≤p

BjCAjC .̃BkCÃkC – IY

=
∑

1≤j,k≤p

Bj .̃BkCAjÃkC – IY

= Q(l)
1 (B ∗ B̃, A ∗ Ã).

Assume that (3.4) is true for n and prove it for n + 1. In fact, from Proposition 2.11, we
have

Q(l)
n+1(B ∗ B̃, A ∗ Ã)

=
∑

1≤j,r≤p

(BjB̃r)Q(l)
n (B ∗ B̃, A ∗ Ã)(CAjÃrC) – Q(l)

n (B ∗ B̃, A ∗ Ã)

=
∑

1≤j,r≤p

(BjB̃r)
[ ∑

|μ|+k=n

(
n

μ, k

)

BμQ(l)
k (B, A)CAμCQ(l)

n–k(B̃, Ã)
]

(CAjÂrC)

–
∑

|μ|+k=n

(
n

μ, k

)

BμQ(l)
k (B, A)CAμCQ(l)

n–k(B̃, Ã).

Under the assumptions [Bj, B̃r] = [Aj, Ãr] = [B̃j, CArC] = 0 for all j, r ∈ {1, . . . , p}, we obtain

Q(l)
n+1(B ∗ B̃, A ∗ Ã)

=
∑

|μ|+k=n

(
n

μ, k

)[ ∑

1≤j,r≤p

BμBjQ(l)
k (B, A)

(
CAμAjC

)
B̃rQ(l)

n–k(B̃, Ã)(CÃrC
]



Al Dohiman and Ould Ahmed Mahmoud Journal of Inequalities and Applications        (2022) 2022:105 Page 13 of 21

–
∑

|μ|+k=n

(
n

μ, k

)

BμQ(l)
k (B, A)CAμCQ(l)

n–k(B̃, Ã)

=
∑

|μ|+k=n

(
n

μ, k

)

Bμ
(
BjQ(l)

k (B, A)(CAjC)
)
CAμC

( ∑

1≤r≤p

B̃rQ(l)
n–k(B̃, Ã)(CÃrC)

)

–
∑

|μ|+k=n

(
n

μ, k

)

BμQ(l)
k (B, A)CAμCQ(l)

n–k(B̃, Ã)

=
∑

|μ|+k=n

(
n

μ, k

)

Bμ
[
Q(l)

k+1(B, A) + Q(l)
k (B, A)

]
CAμC

[
Q(l)

n+1–k(B̃, Ã) + Q(l)
n–k(B̃, Ã)

]

–
∑

|μ|+k=n

(
n

μ, k

)

BμQ(l)
k (B, A)CAμCQ(l)

n–k(B̃, Ã)

=
∑

|μ|+k=n

(
n

μ, k

)

BμQ(l)
k+1(B, A)CAμCQ(l)

n+1–k(B̃, Ã)

+
∑

|μ|+k=n

(
n

μ, k

)

BμQ(l)
k+1(B, A)CAμCQ(l)

n–k(B̃, Ã)

+
∑

|μ|+k=n

(
n

μ, k

)

BμQ(l)
k (B, A)CAμCQ(l)

n+1–k(B̃, Ã).

By observing that

∑

|μ|+k=n+1

(
n + 1
μ, k

)

BμQ(l)
k (B, A)CAμCQ(l)

n+1–k(B̃, Ã)

= Q(l)
n+1(B, A) +

∑

|μ|+k=n+1

(
n + 1
μ, k

)

BμQ(l)
k (B, A)CAμCQ(l)

n+1–k(B̃, Ã)

+
∑

|μ|=n+1

(
n + 1

μ

)

BμCAμCQ(l)
n+1(B̃, Ã)

= Q(l)
n+1(B, A) +

∑

|μ|+k=n+1

( ∑

1≤r≤p

(
n

μ – 1r , k

)

+

(
n

μ, k – 1

))

BμQ(l)
k (B, A)CAμC

× Q(l)
n+1–k(B̃, Ã)

+
∑

|μ|=n+1

(
n + 1

μ

)

BμCAμCQ(l)
n+1(B̃, Ã)

= Q(l)
n+1(B, A) +

∑

|μ|+k=n+1

(
n

μ, k – 1

)

BμQ(l)
k (B, A)CAμCQ(l)

n+1–k(B̃, Ã)

+
∑

|μ|=n+1

(
n + 1

μ

)

BμCAμCQ(l)
n+1(B̃, Ã)+

+
∑

|μ|+k=n+1

∑

1≤r≤p

(
n

μ – 1r , k

)

BμQ(l)
k (B, A)CAμCQ(l)

n+1–k(B̃, Ã)
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= Q(l)
n+1(B, A) +

∑

|μ|+k=n

(
n

μ, k

)

BμQ(l)
k+1(B, A)(CAC)Q(l)

n–k(B̃, Ã)

+
∑

|μ|=n

(
n
μ

)

(
∑

1≤r≤p

Br
(
Bμ

(
CAμC

)
(CArC)

)
Q(l)

n+1(B̃, Ã)

+
∑

|μ|+k=n

(
n
μ

)

Bμ

( ∑

1≤r≤p

BrQ(l)
k (B, A)(CArC)

)
(
CAμC

)
Q(l)

n+1–k(B̃, Ã)

= Q(l)
n+1(B, A) +

∑

|μ|+k=n

(
n

μ, k

)

BμQ(l)
k+1(B, A)(CAC)Q(l)

n–k(B̃, Ã)

+
∑

|μ|=n

(
n
μ

)( ∑

1≤r≤p

Br
(
Bμ

(
CAμC

)
(CArC)

)
Q(l)

n+1(B̃, Ã)

+
∑

|μ|+k=n

(
n
μ

)

Bμ
(
Q(l)

k+1(B, A) + Q(l)
k (B, A)

)(
CAμC

)
)

Q(l)
n+1–k(B̃, Ã)

= Q(l)
n+1(B ∗ B̃, A ∗ Ã). �

Remark 3.5 When p = 1, Lemma 3.4 coincides with [18, Lemma 12].

For A = (A1, . . . , Ap) ∈ Bb[Y]p and B = (B1, . . . , Bp) ∈ Bb[Y]p, we set

A • B = (A1B1, A2B2, . . . , ApBp).

Lemma 3.6 Let A = (A1, . . . , Ap) ∈ Bb[Y]p, B = (B1, . . . , Bp) ∈ Bb[Y]p, Ã = (̃A1, . . . , Ãp) ∈
Bb[Y]p, and B̃ = (B̃1, . . . , B̃p) ∈ Bb[Y]p be commuting tuples of operators such that

[Bj, B̃r] = [Aj, Ãr] = [B̃j, CArC] = 0 for all j, r ∈ {1, . . . , p},

then

Q(l)
n (B • B̃, A • Ã) =

∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
μ!

BμQ(l)
n–k(B, A)

(
CAμC

)
p∏

i=1

Q(l)
μi

(B̃i, Ãi), (3.6)

for all n ∈N.

Proof We will prove (3.6) by mathematical induction. For n = 1, we have

Q(l)
1 (B • B̃, A • Ã) =

∑

0≤k≤1

∑

|μ|=k

(
1
k

)
k!
μ!

BμQ(l)
1–k(B, A)

(
CAμC

)
p∏

i=1

Q(l)
μi

(B̃i, Ãi)

= Q(l)
1 (B, A) +

∑

1≤j≤p

Bj(CAjC)Q(l)
1 (B̃j, Ãj)

= Q(l)
1 (B, A) +

∑

1≤j≤p

Bj(CAjC)(̃BjCÃjC – I)

=
∑

1≤j≤p

BjCAjCB̃jCÃjC – I.
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Therefore, by Proposition 2.11, we obtain that

Q(l)
1 (B • B̃, A • Ã) =

∑

1≤j≤p

(BjB̃jQ(l)
0 (B • B̃, A • Ã)(CAjÃjC) – Q(l)

0 (B • B̃, A • Ã)

=
∑

1≤j≤p

BjCAjCB̃jCÃjC – I.

Hence, (3.6) is true for n = 1. Assume it is true for n and prove it for n + 1.
Following the conditions

[Bj, B̃r] = [Aj, Ãr] = [B̃j, CArC] = 0 for all j, r ∈ {1, . . . , p},

and Proposition 2.11 we obtain

Q(l)
n+1(B • B̃, A • Ã)

=
∑

1≤j≤p

(BjB̃j)Q(l)
n (B • B̃, A • Ã)(CAjÃjC) – Q(l)

n (B • B̃, A • Ã)

=
∑

1≤j≤p

(BjB̃j)
( ∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
μ!

BμQ(l)
n–k(B, A)CAμC

∏

1≤i≤p

Q(l)
μi

(B̃i, Ãi)
)

× (CAjÃjC) –
∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
μ!

BμQ(l)
n–k(B, A)CAμC

∏

1≤i≤p

Q(l)
μi

(B̃i, Ãi)

=
∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
β !

(
∑

1≤j≤p

BjBμQ(l)
n–k(B, A)CAμAjCB̃j

p∏

i=1

Q(l)
μi

(B̃i, Ãi)

)

× (CÃjC) –
∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
μ!

BμQ(l)
n–k(B, A)CAμC

p∏

i=1

Q(l)
μi

(B̃i, Ãi)

=
∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
μ!

∑

1≤j≤p

BjBμQ(l)
n–k(B, A)CAμAjCQ(l)

μ1 (B̃1, Ã1)

· · · B̃jQ(l)
μj

(B̃j, Ãj)CÃjC · · ·Q(l)
μp (B̃p, Ãp)

︸ ︷︷ ︸

–
∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
μ!

BμQ(l)
n–k(B, A)CAμC

p∏

i=1

Q(l)
μi

(B̃i, Ãi)

=
∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
μ!

∑

1≤j≤p

BjBμQ(l)
n–k(B, A)CAμAjCQ(l)

μ1 (B̃1, Ã1)

· · · (Q(l)
μj+1(B̃j, Ãj) + Q(l)

μj
(B̃j, Ãj)

)

︸ ︷︷ ︸
· · · Q(l)

μp (B̃p, Ãp)

–
∑

0≤k≤n

∑

|β|=k

(
n
k

)
k!
μ!

BμQ(l)
n–k(B, A)CAμC

p∏

i=1

Q(l)
μi

(B̃i, Ãi)

=
∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
μ!

∑

1≤j≤p

BjBμQ(l)
n–k(B, A)(CAjC)

︸ ︷︷ ︸

CAμC
p∏

i=1

Q(l)
μi

(B̃i, Ãi)
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+
∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
μ!

∑

1≤j≤p

BjBμQ(l)
n–k(B, A)CAμAjCQ(l)

μ1 (B̃1, Ã1) · · · Q(l)
μj+1(B̃j, Ãj)

· · · Q(l)
μp (B̃p, Ãp) –

∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
μ!

BμQ(l)
n–k(B, A)CAμC

p∏

i=1

Q(l)
μi

(B̃i, Ãi)

=
∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
μ!

Bμ
(
Q(l)

n+1–k(B, A) + Q(l)
n–k(B, A)

)
CAμC

p∏

i=1

Q(l)
μi

(B̃i, Ãi)

+
∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
μ!

∑

1≤j≤p

BjBμQ(l)
n–k(B, A)CAμAjCQ(l)

μ1 (B̃1, Ãi) · · ·Q(l)
μj+1(B̃j, Ãj)

· · · Q(l)
μp (B̃p, Ãp) –

∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
μ!

BμQ(l)
n–k(B, A)CAμC

p∏

i=1

Q(l)
μi

(B̃i, Ãi)

=
∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
μ!

BμQ(l)
n+1–k(B, A)CAμC

p∏

i=1

Q(l)
μi

(B̃i, Ãi)

+
∑

0≤k≤n

∑

|μ|=k+1

(
n
k

)
(k + 1)!

μ!
BμQ(l)

n–k(B, A)CAμC
p∏

i=1

Q(l)
μi

(B̃i, Ãi).

On the other hand,

∑

0≤k≤n+1

∑

|μ|=k

(
n + 1

k

)
k!
μ!

BμQ(l)
n+1–k(B, A)CAμC

p∏

i=1

Q(i)
μi

(B̃i, Ãi)

= Q(l)
n+1(B, A) +

∑

1≤k≤n

∑

|μ|=k

(
n + 1

k

)
k!
μ!

BμQ(l)
n+1–k(B, A)CAμC

p∏

i=1

Q(l)
μi

(B̃i, Ãi)

+
∑

|μ|=n+1

(n + 1)!
μ!

BμQ(l)
0 (B, A)CAμC

p∏

i=1

Q(l)
μi

(B̃i, Ãi)

= Q(l)
n+1(B, A) +

∑

1≤k≤n

∑

|μ|=k

((
n
k

)

+

(
n

k – 1

))
k!
μ!

BμQ(l)
n+1–k(B, A)CAμC

×
p∏

i=1

Q(l)
μi

(B̃i, Ãi) +
∑

|μ|=n+1

(n + 1)!
μ!

BμQ(l)
0 (B, A)CAμC ×

p∏

i=1

Q(l)
μi

(B̃i, Ãi)

=
∑

0≤k≤n

∑

|μ|=k

(
n
k

)
k!
μ!

BμQ(l)
n+1–k(B, A)CAμC

p∏

i=1

Q(l)
μi

(B̃i, Ãi)

+
∑

0≤k≤n

∑

|μ|=k+1

(
n
k

)
(k + 1)!

μ!
BμQ(l)

n–k(B, A)CAμC
p∏

i=11

Q(l)
μi

(B̃i, Ãi).

Hence, we obtain this result. �

Let N = (N1, . . . , Np) ∈ Bb[Y]p be a commuting p-tuple, we say that N is q-nilpotent if
Nμ = Nμ1

1 ...Nμp
p = 0 for all μ = (μ1, . . . ,μp) ∈N

p
0 with μ1 + · · · + μp = q ([19] ).
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Theorem 3.7 Let A = (A1, . . . , Ap) ∈ Bb[Y]p, B = (B1, . . . , Bp) ∈ Bb[Y]p, and N = (N1, . . . ,
Np) ∈ Bb[Y]p be commuting tuples of operators. Assume that [Bk , Nj] = 0 for all (k, j) ∈
{1, . . . , p}2 and N is a nilpotent tuple of order q. If B is a left (m, C)-inverse of A, then B + N =
(B1 + N1, . . . , Bp + Np) is a left (m + q – 1, C)-inverse of A.

Proof According to Lemma 3.2, we have

Q(l)
m+q–1(B + N, A) =

∑

|μ|+k=m+q–1

(
m + q – 1

μ, k

)

NμQ(l)
k (B, A)CAμC.

If |μ| ≥ q, then Nμ = 0. If |μ| ≤ q – 1, then k ≥ m and, hence, Q(l)
k (B, A) = 0.

Hence, Q(l)
m+q–1(B + N, A) = 0 and therefore, B + N is a left-(m + q – 1, C)-inverse of A. �

For A = (A1, . . . , Ap) ∈ Bb[Y]p and B = (B1, . . . , Bp) ∈ Bb[Y]p. Set

A ⊗ B = (A1 ⊗ B1, . . . , Ap ⊗ Bp) ∈ Bb[Y⊗Y]p

the tensor product of A and B. It should be noted that the following corollary is an inter-
esting consequence of Theorem 3.7.

Corollary 3.8 Let A = (A1, . . . , Ap) ∈ Bb[Y] be a left (m, C)-invertible p-tuple of commuting
operators with its left (m, C)-inverse B = (B1, . . . , Bp) and let N = (N1, . . . , Np) ∈ Bb[Y]p be a
q-nilpotent p-tuple of commuting operators. Then,

B⊗I + I ⊗ N := (B1 ⊗ I + I ⊗ N1, . . . , Bp ⊗ I + I ⊗ Np) ∈ Bb[Y⊗Y]p

is a left (m + q – 1, C ⊗ C)-inverse p-tuple.

Proof By observing that (Bj ⊗ I)(I ⊗ Nk) = (I ⊗ Nk)(Bj ⊗ I) for all j, k ∈ {1, . . . , p} and
moreover B ⊗ I ∈ Bb[H⊗Y]p is a left (m, C ⊗ C)-inverse p-tuple of A ⊗ I ∈ Bb[H⊗Y]p.
I ⊗ N ∈ Bp[Y⊗Y]p is a nilpotent p-tuple of order q. Hence, B ⊗ I and I ⊗ N satisfy the
conditions of Theorem 3.7. Therefore, B⊗I + I ⊗ N is a left (m + q – 1, C ⊗ C)-inverse
p-tuple. �

Theorem 3.9 Let A = (A1, . . . , Ap) ∈ Bb[Y]p, B = (B1, . . . , Bp) ∈ Bb[Y]p, Ã = (̃A1, . . . , Ãp) ∈
Bb[Y]p, and B̃ = (B̃1, . . . , B̃p) ∈ Bb[Y]p be commuting tuples of operators such that

[Bj, B̃r] = [Aj, Ãr] = [B̃j, CArC] = 0 for all j, r ∈ {1, . . . , p}.

If B is a left (m, C)-inverse of A and B̃ is a left (n, C)-inverse of Ã, then B∗B̃ is a (m+n–1, C)-
left inverse of A ∗ Ã.

Proof In view of Lemma 3.4, we have

Q(l)
m+n–1(B ∗ B̃, A ∗ Ã)

=
∑

|μ|+k=m+n–1

(
n + m – 1

μ, k

)

BμQ(l)
k (B, A)CAμCQ(l)

m+n–1–k(B̃, Ã).
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If k ≥ m, then Q(l)
k (B, A) = 0 and if k < m then m + n – 1 – k > n – 1 and so

Q(l)
m+n–1–k(B̃, Ã) = 0.

Therefore, Q(l)
m+n–1(B ∗ B̃, A ∗ Ã) = 0. �

Corollary 3.10 Let A = (A1, . . . , Ap) ∈ Bb[Y]p be a left (m, C)-invertible p-tuple and Ã =
(Ã1, . . . , Ãp) ∈ Bb[Y]p be a left (n, D)-invertible k-tuple. If B = (B1, . . . , Bp) is a left (m, C)-
inverse p-tuple of A and B̃ = (B̃1, . . . , B̃p) is a left (n, D)-inverse p-tuple of Ã. Then,

A⊗∗Ã = (A1 ⊗ Ã1, . . . , A1 ⊗ Ãp, . . . , Ap ⊗ Ã1, . . . , Ap ⊗ Ãp)

is a left (m + n – 1, C ⊗D)-invertible p2-tuple with its left (m + n – 1, C ⊗C)-inverse p2-tuple

B⊗∗B̃ = (B1 ⊗ B̃1, . . . , B1 ⊗ B̃p, . . . , Bp ⊗ B̃1, . . . , Bp ⊗ B̃p),

where C and D are conjugations on Y , respectively.

Proof Since A = (A1, . . . , Ap) is a left (m, C)-invertible p-tuple and Ã = (Ã1, . . . , Ãp) is a left
(n, D)-isometric tuple of operators, it follows that A⊗I = (A1 ⊗I, . . . , Ap ⊗I) is a left (m, C⊗
D)-invertible p-tuple with its left (m, C)-inverse p-tuple B ⊗ I = (B1 ⊗ I1, . . . , Bp ⊗ I) and
I ⊗ Ã = (I ⊗ Ã1, · · · , I ⊗ Ãp) is a left (n, C ⊗ D)-invertible p-tuple with its left (n, C ⊗ D)-
inverse p-tuple I ⊗ B̃ = (I ⊗ B̃1, . . . , I ⊗ B̃p)-p- tuple. However,

[Bj ⊗ I, I ⊗ B̃r] = [Aj ⊗ I, I ⊗ Ãr] =
[
I ⊗ B̃r , (C ⊗ D)(Aj ⊗ I)(C ⊗ D)

]
= 0,

for 1 ≤ j ≤ p and 1 ≤ r ≤ p.
Since

A⊗∗Ã = (R11, . . . , R1p, R21, . . . , R2p, . . . Rp1, . . . , Rpp),

where

Rjr = (Aj⊗)(I ⊗ Ãr) for all j = 1, . . . , p and r = 1, . . . , p,

and

B⊗∗B̃ = (S11, . . . , S1p, S21, . . . , S2p, . . . Sp1, . . . , Sp2 ),

where

Sjr = (Bj ⊗ I)(I ⊗ B̃r) for all j = 1, . . . , p and r = 1, . . . , p.

According to Theorem 3.9 we deduce that A⊗∗Ã is a left (m + n – 1, C ⊗ D) invertible
p2-tuple with its left (m + n – 1, C ⊗ D)-inverse p2-tuple B⊗∗B̃. �
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Theorem 3.11 Let A = (A1, . . . , Ap) ∈ Bb[Y]p, B = (B1, . . . , Bp) ∈ Bb[Y]p, Ã = (̃A1, . . . , Ãp) ∈
Bb[Y]p, and B̃ = (B̃1, . . . , B̃p) ∈ Bb[Y]p be commuting tuples of operators that satisfy the
following conditions

[Bj, B̃r] = [Aj, Ãr] = [B̃j, CArC] = 0 for all j, r ∈ {1, . . . , p}.

If B is a left (m, C)-inverse of A and B̃k is a left (nk , C)-inverse of Ãk for k = 1, . . . , p, then
B • B̃ is a left (m +

∑
1≤k≤p nk – p, C)-inverse of A • Ã.

Proof Set d = m + n – p, where n = n1 + · · · + np. According to Lemma 3.6, we have

Q(l)
d (B • B̃, A • Ã) =

∑

0≤k≤d

∑

|μ|=k

(
d
k

)
k!
μ!

BμQ(l)
d–k(B, A)

(
CAμC

)
p∏

i=1

Q(l)
μi

(B̃i, Ãi).

When k ∈ {0, . . . , n – p} we have d – k ≥ m and therefore Q(l)
d–k(B, A) = 0.

When k > n–p and |μ| = k, then there exists i0 ∈ {1, . . . , p} such that μi0 ≥ ni0 and, hence,
Q(l)

μi0
(B̃i0 , Ãi0 ) = 0. �

The following Corollary is a useful application of Theorem 3.11.

Corollary 3.12 Let A = (A1, . . . , Ap), Ã = (Ã1, . . . , Ãp), B = (B1, . . . , Bp) and B̃ = (B̃1, . . . , B̃p)
be commuting p-tuples of operators. Assume that B is a left (m, C)-inverse p-tuple of A and
B̃k is a left (nk , C)-inverse of Ãk for k = 1, . . . , p. Then, B ⊗ B̃ = (B1 ⊗ B̃1, . . . , Bp ⊗ B̃p) is a left
(m +

∑
1≤k≤p nk – p, C ⊗ C)-inverse p-tuple of A ⊗ Ã = (A1 ⊗ Ã1, . . . , Ap ⊗ Ãp).

Proof We will use the elementary identities,

B ⊗ B̃ = (B1 ⊗ B̃1, . . . , Bp ⊗ B̃p)

=
(
(B1 ⊗ I)(I ⊗ B̃1), . . . , (Bp ⊗ I)(I ⊗ B̃p)

)

= (B ⊗ I) • (I ⊗ B̃)

and similarly

A ⊗ Ã = (A ⊗ I) • (I ⊗ Ã).

Since B is a left (m, C)-inverse p-tuple of A and B̃k is a left (nk , C)-inverse of Ãk for k =
1, . . . , p, it is easily seen that B ⊗ I is a left (m, C ⊗ C)-left inverse p-tuple of A ⊗ I and
I ⊗ B̃k is a left (nk , C ⊗ C)-left inverse of I ⊗ Ãk for each k = 1, . . . , p.

In addition, it is obvious that

[Bj ⊗ I, I ⊗ B̃r] = [Aj ⊗ I, I ⊗ Ãr] =
[
I ⊗ B̃j, (C ⊗ C)(Ar ⊗ I)(C ⊗ C)

]
= 0,

for all j, r ∈ {1, . . . , p}. By applying Theorem 3.11 we deduce that B ⊗ B̃ = (B ⊗ I) • (I ⊗ B̃)
is a left (m +

∑
1≤k≤p nk – p, C ⊗ C)-inverse p-tuple of A ⊗ Ã = (A ⊗ I) • (I ⊗ Ã). The proof

is achieved. �
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6. Chō, M., Jeon, I.H., Lee, J.I.: Joint spectra of doubly commuting n-tuples of operators and their Aluthge transforms.

Nihonkai Math. J. 11(1), 87–96 (2000)
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