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Abstract
In a real normed linear space, when the quasirelative interior is not empty, a class of
order relation is introduced with Minkowski difference. Two classes of nonlinear
functions are introduced, and their properties are discussed. A class of approximately
efficient solutions and approximate weakly efficient solutions are introduced for set
optimization. With nonlinear functions, optimality conditions are established for
approximate solutions. Some examples are given to illustrate our main results.
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1 Introduction
Set-valued optimization is the promotion of vector optimization that has applications in
many aspects, such as engineering, cybernetics, military, finance, etc. The research on set-
valued optimization has achieved fruitful results (see [6, 9, 13, 15]). The study of set opti-
mization has been investigated by some authors (see [11, 12, 14, 21, 23]). Kuroiwa [14] con-
sidered the criteria of solutions of set optimization, showed some examples with respect
to the criteria, introduced some type of semicontinuities for set-valued maps, and showed
existence theorems of solutions. Karaman and Soyertem [11] used the Minkowski differ-
ence to define new order relations on the set family, and discussed the relations among
these orders.

In the research of vector-optimization problems, different kinds of solutions defined
by the ordering cone of the image space play an important role, mainly including effi-
cient solutions, weakly efficient solutions, various properly efficient solutions, and corre-
sponding approximate solutions. Among them, the weakly efficient solution defined by
the nonempty interior based on an ordered cone has good properties. However, in many
cases, the interior of the order cone is an empty set. For example, for any 1 < p < +∞, the
normed space lp, partially ordered by the positive cone, is an important space in applica-
tions, however, the positive cone has an empty interior. Therefore, it is a very worthwhile
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topic to use the generalized interior such as the relative topological interior, quasiinte-
rior, and quasirelative interior to define the corresponding weakly efficient solution for the
vector-optimization problem. In this research, there have been many results, such as Adan
and Novo [1] who used a relative topological interior to propose corresponding weakly ef-
ficient solutions, etc. Therefore, when the interior of the topology is an empty set, using a
generalized interior to propose different approximate solutions and study some properties
is also a very meaningful direction.

As is known, the efficient solution set may be empty, but approximate solutions always
exist under weak assumptions. Therefore, it is very meaningful to introduce the concept
of approximate solutions (see [5, 16, 22, 26]). Loridan [17] presented some properties of ε-
solutions for vector-minimization problems where the function to be optimized takes its
values in the Euclidean space Rp. Qiu and Yang [19] studied the approximate solutions for
the vector-optimization problem with set-valued functions, and discussed the relation-
ships between approximate solutions and weak efficient solutions. Based on the set order
relation introduced by Karaman et al. [2], Gupta et al. [7] defined a new concept of approx-
imate weakly minimal solution for constrained set-optimization problems. Jahn and Ha
[10] studied a new set-optimization problem, which is to minimize a set-valued map that
takes a value in a real linear space; this set-valued map also has a preorder induced by a
convex cone, and used the Minkowski difference to define a new order, and some of their
properties were obtained. Zhao et al. [24] established a new nonlinear separation theo-
rem to study the vector-optimization problem in which the topological interior or even
the relative topological interior of the ordered cone may be empty.

Optimality conditions are important parts of vector-optimization problems and impor-
tant foundations for establishing modern optimization algorithms [18, 20, 25]. Tung et
al. [20] considered the set-optimization problem with mixed constraints, and investigated
necessary and sufficient Karush–Kuhn–Tucker optimality conditions for strict minimal
solutions. Zhao et al. [25] proposed a projected subgradient method for solving con-
strained nondifferentiable, quasiconvex, multiobjective optimization problems, and pre-
sented numerical results to illustrate their findings.

When the interior of the ordered cone is empty, but the quasirelative interior is
nonempty, how do we introduce approximate solutions of set optimization? How do we
establish the optimality conditions?

The paper is organized as follows. Section 2 gives some preliminaries. In Sect. 3, we
give definitions of two kinds of nonlinear functions and investigate their properties. In
Sect. 4, we give several kinds of approximate solutions for set optimization and study their
properties. In Sect. 5, we establish optimality conditions for approximate solutions. Finally,
Sect. 6 draws some conclusions from the paper.

2 Preliminaries
Let X be a linear space, Y be a real normed linear space, and K be a proper pointed convex
cone in Y . Denote by P(Y ) and B(Y ) the families of nonempty subsets and nonempty
bounded subsets of Y , respectively. Let A be a nonempty subset of Y , int A and clA denote
the interior and closure of A, respectively. The generated cone of A is defined as

cone A = {αa|α ≥ 0, a ∈ A}.
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Suppose that A is a nonempty convex subset of Y , the quasirelative interior [24] of A is
defined as

qriA :=
{

y ∈ A : clcone(A – y) is a linear subspeace of Y
}

.

Remark 2.1 ([3, 24]) Let A ⊂ Y be a convex subset with a nonempty interior, then intA =
qriA.

Definition 2.1 ([11]) Let A, B ∈P(Y ). The Minkowski difference of A and B is defined as

A –̇ B = {y ∈ Y : y + B ⊂ A} =
⋂

b∈B

(A – b).

Lemma 2.1 ([11]) Let A, B ∈P(Y ) and c ∈ Y . Then,
(i) (c + A) –̇ B = c + (A –̇ B);

(ii) A –̇ (c + B) = –c + (A –̇ B).

Lemma 2.2 ([11]) If A ∈ B(Y ), then A –̇ A = {0Y }.

Lemma 2.3 ([4]) Let C be a nonempty convex subset of Y and α ∈R. Then,
(i) qri(αC) = αqriC;

(ii) tqriC + (1 – t)C ⊂ qriC, ∀t ∈ (0, 1].

Remark 2.2 From Lemma 2.3, it follows that if C is a nonempty convex cone of Y , then
C + qriC ⊂ qriC.

In the rest of the paper, we assume that K and S are nonempty pointed convex cones of
Y , intK �= ∅ and qriS �= ∅, respectively.

Definition 2.2 ([7]) Let A, B ∈P(Y ). If (A –̇ B) ∩ (–S) �= ∅, then we note that A is less than
or equal to B with respect to S, denoted by A 
m

S B.

Remark 2.3 The order relation that A 
m
S B in [7] is equivalent to that A 
m2

S B in [11].

In the following, by using qriS, we introduce a new type of relationship.

Definition 2.3 Let A, B ∈P(Y ). If (A –̇ B) ∩ (–qriS) �= ∅, then we note that A is less than B
with respect to qriS, denoted by A ≺m

qriS B.

Definition 2.4 ([8]) Let A, B ∈P(Y ). If (
⋂

a∈A (a + K)) ∩ B �= ∅, then we note that A is less
than or equal to B with respect to K under the h relation, denoted by A 
h

K B.

Definition 2.5 ([8]) Let A, B ∈ P(Y ). If A = B, then A 
p
K B; if A �= B, then A 
p

K B ⇐⇒
A 
h

K B, then we note that A is less than or equal to B with respect to K under the p relation.

Definition 2.6 ([8]) Let A, B ∈ P(Y ). If (
⋂

a∈A (a + K) + intK) ∩ B �= ∅, then we note that
A is weakly less than B with respect to K under the p relation, denoted by A �p

K B.

Proposition 2.1 Let A, B ∈P(Y ). If A = B, then A ��p
K B.
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Proof Suppose to the contrary that A �p
K B, then (

⋂
a∈A (a + K) + intK) ∩ A �= ∅. There

exists a1 ∈ A such that a1 ∈ ⋂
a∈A (a + K) + intK , therefore a1 ∈ a1 + K + intK ⊂ a1 + intK .

Then, we obtain 0 ∈ intK, which leads to a contradiction. Therefore, A ��p
K B. �

Proposition 2.2 If A 
h
K B, then A 
p

K B.

Proof It follows from the definition that the conclusion is true. �

Remark 2.4 The converse of Proposition 2.2 does not hold, as is shown in the following
examples.

Example 1 Let A = B = {(x, y)|x2 + y2 ≤ 1} and K = R
2
+. It is clear that A 
p

K B. On the other
hand, (

⋂
a∈A (a + K)) ∩ B = ∅. Hence, A �

h
K B.

Example 2 Let Y = l2, K = l2
+ = {y = (yn)n∈N+ ∈ Y |yn ≥ 0, n ∈ N

+} and A = B = {y =
(yn)n∈N+ ∈ K |∑∞

n=1 yn ≤ 1, n ∈ N
+}. It is clear that A 
p

K B. In the following, we prove
(
⋂

a∈A (a + K)) ∩ B = ∅. Suppose to the contrary that (
⋂

a∈A (a + K)) ∩ B �= ∅, then there
exists a1 ∈ B = A such that a1 ∈ a + K , ∀a ∈ A, that is a1 – a ∈ K for any a ∈ A, this obvi-
ously does not hold. Hence, A �

h
K B.

Proposition 2.3 If A �p
K B, then A 
h

K B and A 
p
K B.

Proof Let A �p
K B, then (

⋂
a∈A (a + K) + intK) ∩ B �= ∅. Since

⋂
a∈A (a + K) + intK ⊂

⋂
a∈A (a + K), we obtain A 
h

K B. We obtain A �= B from Proposition 2.1, therefore A 
p
K

B. �

3 Nonlinear functional
Let ê ∈ qriS and η ∈ Y , we construct the function Im

ê (·, ·) : P(Y ) ×P(Y ) → R̄ as

Im
ê (A, B) = inf

{
t ∈R | A 
m

S tê + B – η
}

, ∀A, B ∈P(Y ).

Let k̂ ∈ intK , ξ ∈ Y , we construct the function Ip
k̂

(·, ·) : P(Y ) ×P(Y ) → R̄ as

Ip
k̂

(A, B) = inf
{

t ∈R | A 
p
K tk̂ + B – ξ

}
, ∀A, B ∈P(Y ).

Proposition 3.1 Let A, B ∈P(Y ). If A = rk̂ + B – ξ , then Ip
k̂

(A, B) = r.

Proof If A = rk̂ + B – ξ , then it is clear that A 
p
K rk̂ + B – ξ , hence Ip

k̂
(A, B) ≤ r. In the

following, we prove A �
p
K (r – ε)k̂ + B – ξ , ∀ε > 0. Otherwise, there exists ε1 > 0 such that

A 
p
K (r – ε1)k̂ + B – ξ , hence A 
h

K (r – ε1)k̂ + B – ξ , that is
⋂

a∈A (a + K) ∩ ((r – ε1)k̂ +
B – ξ ) �= ∅. Therefore,

⋂
a∈A (a + K) ∩ (A – ε1k̂) �= ∅. Hence, there exists a1 ∈ A such that

a1 – ε1k̂ ∈ a + K , ∀a ∈ A, thus –ε1k̂ ∈ K , hence k̂ ∈ –K , which leads to a contradiction.
Then, Ip

k̂
(A, B) ≥ r. Hence, we have Ip

k̂
(A, B) = r. �

Proposition 3.2 Let A, B ∈P(Y ). If A 
h
K rk̂ + B – ξ , then A 
h

K (r + ε)k̂ + B – ξ , ∀ε > 0.
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Proof If A 
h
K rk̂ + B – ξ , then

⋂
a∈A (a + K) ∩ (rk̂ + B – ξ ) �= ∅. Hence, there exists b1 ∈

B such that rk̂ + b1 – ξ ∈ ⋂
a∈A (a + K). Hence, (r + ε)k̂ + b1 – ξ ∈ ⋂

a∈A (a + K) + εk̂ ⊂
⋂

a∈A (a + K)+ intK ⊂ ⋂
a∈A (a + K), ∀ε > 0. Therefore,

⋂
a∈A (a + K)∩ ((r +ε)k̂ +B–ξ ) �= ∅,

that is A 
h
K (r + ε)k̂ + B – ξ . �

Remark 3.1 The following example indicates that the above proposition is not necessarily
true for 
p

K .

Example 3 Let Y = R
2, K = R

2
+, A = B = {(x, y)|x2 + y2 ≤ 1}, r = 1, ξ = (1, 1) and k̂ = (1, 1).

It is clear that A 
p
K rk̂ + B – ξ . When 0 < ε <

√
2 – 1, we obtain that

⋂
a∈A (a + K) ∩ ((r +

ε)k̂ + B – ξ ) = ∅. Hence, A �
p
K (r + ε)k̂ + B – ξ .

Proposition 3.3 Let A, B ∈P(Y ), r ∈R and ê ∈ qriS. Then, the following statements hold:
(i) If Im

ê (A, B) < r, then A ≺m
qriS rê + B – η.

(ii) Let A –̇ B be compact. If Im
ê (A, B) = r, then A 
m

clS rê + B – η and
A �

m
S (r – λ)ê + B – η, ∀λ > 0.

(iii) If A 
m
S rê + B – η and A �

m
S (r – λ)ê + B – η, ∀λ > 0, then Im

ê (A, B) = r.

Proof (i) Assume that Im
ê (A, B) = inf{t ∈ R | A 
m

S tê + B –η} = α < r and let μ = r –α. Then,
there exists t1 ∈ R such that A 
m

S t1ê + B – η and α ≤ t1 < α + μ = r, that is (A –̇ (t1ê + B –
η)) ∩ (–S) �= ∅. Hence, there exists s1 ∈ –S such that s1 ∈ A –̇ B – t1ê + η. Hence,

s1 – (r – t1)ê ∈ A –̇ B – rê + η

and

s1 – (r – t1)ê ∈ –S – qriS ⊂ –qriS.

Hence, we obtain (A –̇ (rê + B – η)) ∩ (–qriS) �= ∅, that is A ≺m
qriS rê + B – η.

(ii) Let Im
ê (A, B) = r. Since Im

ê (A, B) < r + 1
n for all n ∈N

+, we have A ≺m
qriS (r + 1

n )ê + B – η

from (i). Hence, we obtain A 
m
S (r + 1

n )ê + B – η for all n ∈N
+, that is

(
A –̇ B –

(
r +

1
n

)
ê + η

)
∩ (–S) �= ∅.

Hence, there exists xn ∈ A –̇ B such that

xn –
(

r +
1
n

)
ê + η ∈ –S, ∀n ∈N

+. (3.1)

Since A –̇ B is compact, it follows that there exists a convergent subsequence of {xn}. With-
out loss of generality, we let xn → x0 ∈ A –̇ B. From (3.1), we obtain

xn –
(

r +
1
n

)
ê + η → x0 – rê + η ∈ –clS.

Hence, we obtain (A –̇ (rê + B) + η) ∩ (–clS) �= ∅, that is A 
m
clS rê + B – η. Since Im

ê (A, B) = r,
we obtain A �

m
S (r – λ)ê + B – η for any λ > 0 from the definition.

(iii) It follows that Im
ê (A, B) = r from the definition. �
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The converse of Proposition 3.3(i) is not true. The following example justifies this.

Example 4 Let Y = l2, ‖y‖2 = (
∑∞

n=1 y2
i ) 1

2 , ∀y = (yn)n∈N and S = l2
+ = {y = (yn)n∈N ∈ Y |yn ≥

0, n ∈ N}. We obtain qriS = {y ∈ Y |yn > 0, n ∈ N} from [24]. Let a1 = (– 1
4 , – 1

42 , – 1
43 , . . . ,

– 1
4n , . . .), a2 = (– 1

5 , – 1
52 , – 1

53 , . . . – 1
5n , . . .), A = {a1, a2}, ê = ( 1

3 , 1
32 , 1

33 , . . . , 1
3n , . . .), B = {0Y },

η = 0Y . We obtain (A –̇ B) ∩ (–qriS) �= ∅, hence, A ≺m
qriS B + r0ê for r0 = 0.

Next, we verify Im
ê (A, B) ≥ r0 = 0. Suppose to the contrary that there exists t0 < 0 such

that A 
m
S t0ê + B, then A 
m

S t0ê. We obtain a1 – t0ê ∈ –S or a2 – t0ê ∈ –S. If a1 – t0ê ∈ –S,
then – 1

4n – t0
1

3n ≤ 0, for n → ∞ we obtain t0 ≥ 0; if a2 – t0ê ∈ –S, similarly, we obtain
t0 ≥ 0.

Proposition 3.4 Let A, B ∈ P(Y ), r ∈ R and k̂ ∈ intK . Then, the following statements are
true:

(i) If A �p
K rk̂ + B – ξ , then Ip

k̂
(A, B) < r.

(ii) Let B be compact, then Ip
k̂

(A, B) = r if and only if A 
p
clK rk̂ + B – ξ and

A �
p
K (r – ε)k̂ + B – ξ , ∀ε > 0.

Proof (i) If A �p
K rk̂ +B–ξ , then (

⋂
a∈A (a + K) + intK)∩(rk̂ +B–ξ ) �= ∅, hence, there exists

b1 ∈ B such that rk̂ + b1 – ξ ∈ ⋂
a∈A (a + K) + intK . Hence, there is y1 ∈ ⋂

a∈A (a + K) such
that rk̂ + b1 – ξ ∈ y1 + intK , then there exists ε1 > 0 such that rk̂ + b1 – ξ – ε1k̂ ∈ y1 + intK ,
that is (

⋂
a∈A (a + K) + intK) ∩ ((r – ε1)k̂ + B – ξ ) �= ∅. Then, we obtain (

⋂
a∈A (a + K)) ∩

((r – ε1)k̂ + B – ξ ) �= ∅, i.e., A 
h
K (r – ε1)k̂ + B – ξ . We obtain A 
p

K (r – ε1)k̂ + B – ξ from
Proposition 2.2. Hence, Ip

k̂
(A, B) ≤ r – ε1 < r.

(ii) Let Ip
k̂

(A, B) = r. Case 1: if A = rk̂ +B–ξ , then A 
p
clK rk̂ +B–ξ ; Case 2: if A �= rk̂ +B–ξ ,

from the definition of infimum, it follows that there exists tn ∈ [r, r + 1
n ) such that A 
p

K

tnk̂ + B – ξ for n ∈ N. We further assert that A �= tnk̂ + B – ξ for any n ∈ N. Otherwise,
if there is n1 ∈ N such that A = tn1 k̂ + B – ξ , which together with A �= rk̂ + B – ξ gives
that tn1 �= r. On the other hand, from Proposition 3.1, it follows that Ip

k̂
(A, B) = tn1 . This

contradicts Ip
k̂

(A, B) = r. Therefore, A 
h
K tnk̂ + B – ξ . We obtain A 
h

K (r + 1
n )k̂ + B – ξ from

Proposition 3.2, ∀n ∈N. Hence, there exists xn ∈ B such that

(
r +

1
n

)
k̂ + xn – ξ ∈

⋂

a∈A

(a + K), ∀n ∈N. (3.2)

Since B is compact, there exists a convergent subsequence of {xn}. Without loss of gener-
ality, let xn → x0 ∈ B. From (3.2), we have

(
r +

1
n

)
k̂ + xn – ξ → rk̂ + x0 – ξ ∈

⋂

a∈A

(a + clK).

Hence, we obtain
⋂

a∈A (a + clK) ∩ (rk̂ + B – ξ ) �= ∅, hence, A 
h
clK rk̂ + B – ξ . Therefore,

A 
p
clK rk̂ +B–ξ . We obtain A �

p
K (r –ε)k̂ +B–ξ for ε > 0 from the definition of Ip

k̂
(A, B) = r.

Conversely, let A 
p
clK rk̂ + B – ξ . Case 1: if A = rk̂ + B – ξ , then A 
p

K rk̂ + B – ξ ,
then Ip

k̂
(A, B) ≤ r; Case 2: if A �= rk̂ + B – ξ , then A 
h

clK rk̂ + B – ξ , there exists y1 ∈
⋂

a∈A (a + clK) ∩ (rk̂ + B – ξ ). Then, y1 ∈ a + clK for all a ∈ A and y1 ∈ rk̂ + B – ξ . Hence,
y1 + 1

n k̂ ∈ a + clK + intK ⊂ a + intK for n ∈ N, then y1 + 1
n k̂ ∈ ⋂

a∈A (a + intK), so y1 + 1
n k̂ ∈
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⋂
a∈A (a + intK) ∩ [(r + 1

n )k̂ + B – ξ ]. Hence,

⋂

a∈A

(a + intK) ∩
[(

r +
1
n

)
k̂ + B – ξ

]
�= ∅, ∀n ∈N.

We obtain A 
h
intK (r + 1

n )k̂ +B–ξ , thus A 
h
K (r + 1

n )k̂ +B–ξ , we obtain A 
p
K (r + 1

n )k̂ +B–ξ

from Proposition 2.2. Hence, we have Ip
k̂

(A, B) ≤ r + 1
n . Then, Ip

k̂
(A, B) ≤ r for n → ∞. From

the assumption we have Ip
k̂

(A, B) ≥ r. Hence, we have Ip
k̂

(A, B) = r. �

The following example shows that the converse of Proposition 3.4(i) is false.

Example 5 Let A = {(x, y)|x2 + y2 ≤ 1}, B = A, K = R
2
+, k̂ = (1, 1) and ξ = (1, 1). We can

obtain A = tk̂ + B – ξ for t = 1, and
⋂

a∈A (a + K) ∩ (tk̂ + B – ξ ) = ∅ for t < 1, respectively.
Then, Ip

k̂
(A, B) = 1. However, when 1 < r ≤ √

2, we have (
⋂

a∈A (a + K) + intK) ∩ (rk̂ + B –
ξ ) = ∅. Hence, A ��p

K rk̂ + B – ξ .

Definition 3.1 A function T(·) : P(Y ) → R̄ is called m-increasing (p-increasing) on P(Y )
if A, B ∈P(Y ) and A 
m

S B(A 
p
K B) implies T(A) ≤ T(B).

Proposition 3.5 Let A ∈P(Y ). Then, Im
ê (·, A) is m-increasing on P(Y ).

Proof It can be proved similarly to [11, Proposition 15]. �

Corollary 3.1 Let A ∈ B(Y ), then Im
ê (A – η, A) = 0.

Proof Im
ê (A – η, A) = inf{t ∈ R|A – η 
m

S A + tê – η} = inf{t ∈ R|A 
m
S A + tê} = inf{t ∈

R|A –̇ A 
m
S tê} = inf{t ∈R|tê ∈ S} = 0. �

Proposition 3.6 Let A ∈P(Y ). Then, Ip
k̂

(·, A) is p-increasing on P(Y ).

Proof Let D, E ∈P(Y ) and D 
p
K E. Case 1: if Ip

k̂
(E, A) = α ∈R, then E 
p

K (α + ε)k̂ + A – ξ ,
∀ε > 0. Since D 
p

K E and 
p
K is transitive, we have D 
p

K (α + ε)k̂ + A – ξ . Hence, Ip
k̂

(D, A) ≤
α + ε. We obtain Ip

k̂
(D, A) ≤ α = Ip

k̂
(E, A) for ε → 0+.

Case 2: If Ip
k̂

(E, A) = –∞, then E 
p
K tk̂ + A – ξ ,∀t ∈R. Since D 
p

K E and 
p
K is transitive,

we have D 
p
K tk̂ + A – ξ ,∀t ∈R. Then, Ip

k̂
(D, A) = –∞.

Case 3: If Ip
k̂

(E, A) = +∞, then it is clear that Ip
k̂

(D, A) ≤ Ip
k̂

(E, A). �

Proposition 3.7 Let A, B ∈ P(Y ) and Im
ê (A, B) be finite. If A –̇ B is compact and S is closed,

then A 
m
S B – η if and only if Im

ê (A, B) ≤ 0.

Proof It can be proved similarly to [11, Proposition 19(i)]. �

Proposition 3.8 Let A ∈ B(Y ), then Ip
k̂

(A – ξ , A) = 0.

Proof Ip
k̂

(A – ξ , A) = inf{t ∈ R|A – ξ 
p
K A + tk̂ – ξ} = inf{t ∈ R|A 
p

K A + tk̂}. When t = 0,
A 
p

K A is obviously true, that is Ip
k̂

(A – ξ , A) ≤ 0. Now, we prove that A �
p
K A + tk̂, ∀t < 0.

Suppose to the contrary that A 
p
K A + t1k̂ for some t1 < 0. Since A �= A + t1k̂, we obtain
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A 
h
K A + t1k̂, that is

⋂
a∈A (a + K) ∩ (t1k̂ + A) �= ∅. Then, there is a1 ∈ A such that t1k̂ + a1 ∈

⋂
a∈A (a + K), that is t1k̂ + a1 ∈ a + K , ∀a ∈ A. Let a = a1, then t1k̂ ∈ K . Since t1 < 0, we have

k̂ ∈ –K . Therefore intK ∩ (–K) �= ∅, which contradicts that K is a pointed convex cone.
Hence, A �

p
K A + tk̂ for t < 0, i.e., Ip

k̂
(A – ξ , A) ≥ 0. Hence, Ip

k̂
(A – ξ , A) = 0. �

Corollary 3.2 Let A, B ∈ P(Y ). If B is compact, K is closed and Ip
k̂

(A, B) is finite, then
Ip

k̂
(A, B) = min{t ∈R|A 
p

K tk̂ + B – ξ}.

Proof We have {t ∈ R|A 
p
K tk̂ + B – ξ} = {t ∈ R|Ip

k̂
(A, B) ≤ t} = [Ip

k̂
(A, B),∞) from Propo-

sition 3.4(ii). Hence, Ip
k̂

(A, B) = min{t ∈R|A 
p
K tk̂ + B – ξ}. �

4 Approximately efficient solutions and approximate weakly efficient
solutions for set-optimization problems

We consider a set-valued mapping F : X ⇒ Y and a nonempty set T ⊂ X where F(x) ∈
P(Y ) for each x ∈ X. We deal with the constrained set-optimization problem (P) defined
by

(P) min F(x),

s.t. x ∈ T .

Definition 4.1 ([7]) An element x0 ∈ T is called an m-efficient solution of (P), if F(x) �m
S

F(x0) or F(x) = F(x0) for any x ∈ T . Let m-ES(F , T) denote the set of m-efficient solutions
of (P).

In what follows, we introduce a new class of approximate solutions.

Definition 4.2 Let η ∈ Y . An element x0 ∈ T is called an η-m-efficient solution of (P), if
F(x) + η �

m
S F(x0) or F(x) + η = F(x0) for x ∈ T . Let η-m-ES(F , T) denote the set of η-m-

efficient solutions of (P).

In the following, by using qriS, we introduce another new class of weakly efficient solu-
tions.

Definition 4.3 Let η ∈ Y . An element x0 ∈ T is called
(i) an m-weakly efficient solution of (P) with respect to qriS, if F(x) ⊀m

qriS F(x0) for
x ∈ T ;

(ii) an η-m-weakly efficient solution of (P) with respect to qriS, if F(x) + η ⊀
m
qriS F(x0)

for x ∈ T .

Let m-WqriS(F , T) and η-m-WqriS(F , T) denote the sets of m-weakly efficient solutions
and η-m-weakly efficient solutions of (P) with respect to qriS, respectively.

Remark 4.1 If η = 0, then η-m-weakly efficient solutions reduce to m-weakly efficient so-
lutions and η-m-efficient solutions reduce to m-efficient solutions of (P), respectively.

Theorem 4.1 Let η ∈ S. Then, the following statements are true:
(i) Let F(x0) ∈ B(Y ) and x0 ∈ m-ES(F , T), then x0 ∈ η-m-ES(F , T).
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(ii) Let S be closed, F(x0) ∈ B(Y ) and x0 ∈ η-m-ES(F , T), then x0 ∈ η-m-WqriS(F , T).
(iii) m-WqriS(F , T) ⊂ ⋂

η∈S\{0} η-m-WqriS(F , T).
(iv) Let S be closed, then

⋂
η∈S\{0} η-m-WqriS(F , T) ⊂ m-WqriS(F , T).

Proof (i) 1© If η = 0, then the conclusion holds obviously.
2© If η ∈ S\{0}, suppose that x0 ∈ m-ES(F , T). ∀x ∈ T , we consider two cases.

Case 1: when F(x) = F(x0), we prove ((F(x) + η) –̇ F(x0)) ∩ (–S) = ∅. In fact

(
F(x) + η

)
–̇ F(x0) = η + F(x) –̇ F(x0) = η + 0Y = η.

Since η ∈ S\{0} and S is a proper pointed convex cone, then η /∈ –S. Hence, we obtain
((F(x) + η) –̇ F(x0)) ∩ (–S) = ∅, thus F(x) + η �

m
S F(x0);

Case 2: when F(x) �= F(x0). Since x0 ∈ m-ES(F , T), we obtain F(x) �m
S F(x0), that is

(
F(x) –̇ F(x0)

) ∩ (–S) = ∅. (4.1)

If F(x) + η = F(x0), then x0 ∈ η-m-ES(F , T) holds obviously. If F(x) + η �= F(x0), then we
prove ((F(x) + η) –̇ F(x0)) ∩ (–S) = ∅. Suppose to the contrary that there exists x1 such
that ((F(x1) + η) –̇ F(x0)) ∩ (–S) �= ∅, then there exist s1 ∈ –S and y0 ∈ F(x1) –̇ F(x0) such
that s1 = η + y0. Then, y0 = s1 – η ∈ –S – S ⊂ –S. Thus, y0 ∈ (F(x1) –̇ F(x0)) ∩ (–S), which
contradicts (4.1).

Therefore, we obtain x0 ∈ η-m-ES(F , T).
(ii) Let x0 ∈ η-m-ES(F , T). ∀x ∈ T , we consider two cases. Case 1: when F(x)+η �

m
S F(x0),

that is ((F(x) + η) –̇ F(x0)) ∩ (–S) = ∅. It follows from qriS ⊂ S that

((
F(x) + η

)
–̇ F(x0)

) ∩ (–qriS) = ∅.

Case 2: when F(x) + η = F(x0), we obtain (F(x) + η) –̇ F(x0) = {0} from F(x0) ∈ B(Y ). On
the other hand, we obtain 0 /∈ qriS from [24, Lemma 4.1], then

((
F(x) + η

)
–̇ F(x0)

) ∩ (–qriS) = ∅.

Thus, F(x) + η ⊀
m
qriS F(x0), ∀x ∈ T . Hence, x0 ∈ η-m-WqriS(F , T).

(iii) Let x0 ∈ m-WqriS(F , T), then F(x) ⊀m
qriS F(x0) for ∀x ∈ T , that is

(
F(x) –̇ F(x0)

) ∩ (–qriS) = ∅, ∀x ∈ T . (4.2)

Suppose to the contrary that x0 /∈ ⋂
η∈S\{0} η-m-WqriS(F , T), then x0 /∈ η1-m-WqriS(F , T) for

some η1 ∈ S\{0}. Then, there exists x1 ∈ T such that ((η1 + F(x1)) –̇ F(x0)) ∩ (–qriS) �= ∅.
Then, there exists s1 ∈ –qriS and y0 ∈ F(x1) –̇ F(x0) such that s1 = η1 + y0. Hence, y0 =
s1 – η1 ∈ –qriS – S ⊂ –qriS, we obtain y0 ∈ (F(x1) –̇ F(x0)) ∩ (–qriS), which contradicts
(4.2).

(iv) Let x0 ∈ T and x0 /∈ m-WqriS(F , T). Then, there exists x2 ∈ T such that (F(x2) –̇
F(x0)) ∩ (–qriS) �= ∅. Hence, there is s2 ∈ qriS such that –s2 ∈ F(x2) –̇ F(x0), and – s2

2 =
–s2 + s2

2 ∈ F(x2) –̇ F(x0) + s2
2 . It follows that s2

2 ∈ qriS from the fact that S is a convex cone.
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Therefore,

(
F(x2) –̇ F(x0) +

s2

2

)
∩ (–qriS) �= ∅.

Hence, x0 /∈ s2
2 -m-WqriS(F , T). We obtain 0 /∈ qriS from [24, Lemma 4.1], then s2 �= 0.

Therefore, s2
2 ∈ S\{0}. Hence, x0 /∈ ⋂

η∈S\{0} η-m-WqriS(F , T). �

Remark 4.2 In the following, let e ∈ S\{0}, we consider a special class of approxi-
mate weakly efficient solutions, where η = εe, ε > 0. From Theorem 4.1(iii), we obtain
m-WqriS(F , T) ⊂ ⋂

ε>0 εe-m-WqriS(F , T). However, the converse inclusion may not hold.
The following example illustrates the case.

Example 6 Let X = R, T = [–1, 1], Y = l2, e = ( 1
2 , 1

22 , 1
23 , . . . , 1

2n , . . .), ‖y‖2 = (
∑∞

i=1 y2
i ) 1

2 , ∀y =
(yn)n∈N, and S = l2

+ = {y = (yn)n∈N ∈ Y |yn ≥ 0, n ∈N}. We obtain qriS = {y ∈ Y |yn > 0, n ∈N}
from [24]. Consider F : T ⇒ Y defined as

F(x) =

⎧
⎨

⎩
{( x

2 , x
22 , x

23 , . . . , x
2n , . . .)}, 0 ≤ x ≤ 1,

{(– 1
3 , – 1

32 , – 1
33 , . . . , – 1

3n , . . .)}, –1 ≤ x < 0.

A direct calculation gives that m-WqriS(F , T) = [–1, 0), thus [–1, 0) ⊂ ⋂
ε>0 εe-m-WqriS(F ,

T).
Let us verify 0 ∈ εe-m-WqriS(F , T) for ∀ε > 0. In fact, F(x) –̇ F(0) + εe = F(x) + εe. We

consider two cases. Case 1: when x ∈ [0, 1], F(x) + εe = ( x+ε
2 , x+ε

22 , . . . , x+ε
2n , . . .) /∈ –qriK ; Case

2: when x ∈ [–1, 0), F(x) + εe = (– 1
3 + ε

2 , – 1
32 + ε

22 , . . . , – 1
3n + ε

2n , . . .). Since

–
1
3n +

ε

2n =
1
2n

(
–
(

2
3

)n

+ ε

)
→ 0+,

therefore F(x) + εe /∈ –qriS. It follows from the above two cases that (F(x) –̇ F(0) + εe) ∩
(–qriS) = ∅ for ∀x ∈ T . Thus, 0 ∈ εe-m-WqriS(F , T).

It follows from Theorem 4.1(iii) that

[–1, 0] ⊂
⋂

ε>0

εe-m-WqriS(F , T). (4.3)

In the following, we prove

x0 /∈ x0e-m-WqriK (F , T), ∀x0 ∈ (0, 1]. (4.4)

In fact, take x1 = –1 ∈ T , (F(x1) + x0e) –̇ F(x0) = F(–1) ∈ –qriS. Hence, x0 /∈ ε0e-m-WqriS(F ,
T), where ε0 = x0 > 0. Hence, we obtain x0 /∈ ∩ε>0εe-m-WqriS(F , T). From

⋂
ε>0 εe-m-

WqriS(F , T) ⊂ [–1, 1] and (4.4) we obtain
⋂

ε>0 εe-m-WqriS(F , T) ⊂ [–1, 0], which together
with (4.3) gives

⋂

ε>0

εe-m-WqriS(F , T) = [–1, 0].
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Next, we introduce the efficient solution and approximately efficient solution under the

p

K and �p
K order relation, respectively.

Definition 4.4 Let x0 ∈ T and ξ ∈ K . An element x0 ∈ T is called
(i) an efficient solution of (P) under order relation 
p

K , if F(x) �p
K F(x0) or F(x) = F(x0)

for ∀x ∈ T ;
(ii) a ξ -efficient solution of (P) under order relation 
p

K , if F(x) + ξ �
p
K F(x0) or

F(x) + ξ = F(x0) for ∀x ∈ T ;
(iii) a weakly efficient solution of (P) under order relation �p

K , if F(x) ��p
K F(x0) for

∀x ∈ T ;
(iv) a ξ -weakly efficient solution of (P) under order relation �p

K , if F(x) + ξ ��p
K F(x0)

for ∀x ∈ T .

Let Ep
K (F , T), ξ -Ep

K (F , T), W p
K (F , T), and ξ -W p

K (F , T) denote the sets of efficient solu-
tions, ξ -efficient solutions, weakly efficient solutions, and ξ -weakly efficient solutions of
(P), respectively.

Theorem 4.2 Let ξ ∈ K , then the following statements are true:
(i) Ep

K (F , T) ⊂ W p
K (F , T);

(ii) Ep
K (F , T) ⊂ ξ -Ep

K (F , T);
(iii) W p

K (F , T) =
⋂

ξ∈K\{0} ξ -W p
K (F , T).

Proof (i) Let x0 ∈ T and x0 /∈ W p
K (F , T), then there exists x1 ∈ T such that F(x1) �p

K F(x0).
It follows from Propositions 2.1 and 2.3 that F(x1) �= F(x0) and F(x1) 
p

K F(x0). Hence,
x0 /∈ Ep

K (F , T).
(ii) If ξ = 0, then the conclusion is obviously true. If ξ �= 0, let x0 ∈ Ep

K (F , T). ∀x ∈ T , we
consider two cases. Case 1: if F(x) + ξ = F(x0), then x0 ∈ ξ -Ep

K (F , T) is obvious; Case 2: if
F(x) + ξ �= F(x0), in the following, we prove

⋂
y∈F(x) (y + ξ + K) ∩ F(x0) = ∅.

(1) When F(x) �= F(x0), it follows from x0 ∈ Ep
K (F , T) that F(x) �

p
K F(x0). Hence,

⋂
y∈F(x) (y + K) ∩ F(x0) = ∅. From y+ξ +K ⊂ y+K we obtain

⋂
y∈F(x) (y + ξ + K)∩F(x0) = ∅.

Hence, F(x) + ξ �
p
K F(x0);

(2) When F(x) = F(x0), in the following, we prove
⋂

y∈F(x0) (y + ξ + K) ∩ F(x0) = ∅. Other-
wise, there exists y0 ∈ F(x0) such that y0 ∈ ⋂

y∈F(x0) (y + ξ + K), then y0 ∈ y0 + ξ + K . There-
fore, –ξ ∈ K . It follows that ξ ∈ K ∩ (–K) = {0}. Hence ξ = 0, which contradicts ξ �= 0.
Hence, F(x) + ξ �

p
K F(x0).

Summarizing the above discussion, we obtain x0 ∈ ξ -Ep
K (F , T).

(iii) “⊂” Let x0 ∈ W p
K (F , T), then (

⋂
y∈F(x) (y + K) + intK) ∩ F(x0) = ∅, ∀x ∈ T . For each

ξ ∈ K\{0},
⋂

y∈F(x) (y + ξ + K) =
⋂

y∈F(x) (y + K) + ξ . Therefore,
⋂

y∈F(x) (y + ξ + K) + intK =
⋂

y∈F(x) (y + K) + ξ + intK ⊂ ⋂
y∈F(x) (y + K) + intK . Hence, (

⋂
y∈F(x) (y + ξ + K) + intK) ∩

F(x0) = ∅, that is F(x) + ξ ��p
K F(x0). We obtain x0 ∈ ξ -W p

K (F , T).
“⊃” Let x0 ∈ T and x0 /∈ W p

K (F , T). Then, there exists x1 ∈ T such that F(x1) �p
K F(x0),

that is (
⋂

y∈F(x1) (y + K) + intK) ∩ F(x0) �= ∅. Hence, there is y0 ∈ F(x0) such that y0 ∈
⋂

y∈F(x1) (y + K)+intK , then there exists y1 ∈ ⋂
y∈F(x1) (y + K) such that y0 ∈ y1 +intK , there-

fore y0 ∈ int(y1 + intK). Therefore, there exists ξ1 ∈ K\{0} such that y0 – ξ1 ∈ y1 + intK ,
i.e., y0 ∈ y1 + ξ1 + intK ⊂ ⋂

y∈F(x1) (y + K + ξ1) + intK . We obtain (
⋂

y∈F(x1) (y + K + ξ1) +
intK) ∩ F(x0) �= ∅, that is F(x1) + ξ1 �p

K F(x0). Therefore, x0 /∈ ξ1-W p
K (F , T). Hence, x0 /∈

⋂
ξ∈K\{0} ξ -W p

K (F , T). �
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Remark 4.3 Similar to the proof of Theorem 4.2(i), we can prove ξ -Ep
K (F , T) ⊂ ξ -W p

K (F , T).

5 Optimality conditions
Consider the set-optimization problem

(P)

⎧
⎨

⎩
min F(x)

s.t. x ∈ T .

Theorem 5.1 Let F(x) be compact for any x ∈ T and S be closed, x0 ∈ T . Then, x0 is an
η-m-efficient solution of (P) if and only if there exists a function φ : P(Y ) → R̄ that is m-
increasing on P(Y ) and satisfies the following statements:

(i) φ(F(x0) – η) = 0,
(ii) φ(F(x)) > 0 for all x ∈ T\{x ∈ T : F(x) + η = F(x0)}.

Proof Assume that x0 ∈ T is an η-m-efficient solution of (P). Define φ : P(Y ) → R̄ by
φ(·) = Im

ê (·, F(x0)). Then, φ(·) is m-increasing on P(Y ) from Proposition 3.5. We have
φ(F(x0) – η) = 0 from Corollary 3.1. Since x0 is an η-m-efficient solution, we obtain
F(x) + η �

m
S F(x0) for all x ∈ T\{x ∈ T : F(x) + η = F(x0)} from the definition. It follows

from Proposition 3.7 that Im
ê (F(x), F(x0)) > 0. Hence, T(F(x)) > 0.

Conversely, let (i) and (ii) be true for some φ : P(Y ) → R̄ that is m-increasing on P(Y ).
Suppose to the contrary that x0 is not an η-m-efficient solution of (P). Then, there exists
x1 ∈ T such that F(x1) + η 
m

S F(x0) and F(x1) + η �= F(x0), we obtain Im
ê (F(x1), F(x0)) ≤ 0

from Proposition 3.7. Hence, φ(F(x1)) ≤ 0. This contradicts (ii). Therefore, x0 is an η-m-
efficient solution of (P). �

In what follows, we give an example to illustrate the necessity of the above theorem.

Example 7 Let X = R, T = [0, 1], Y = l2 and S = l2
+ = {y = (yn)n∈N ∈ Y |yn ≥ 0, n ∈ .N}. Take

ê = (1, 1, 1
3 , 1

4 , . . . , 1
n , . . .), η = (1, 2, 1

3 , 1
4 , . . . , 1

n , . . .). Let F : X ⇒ Y be defined as

F(x) =
{
λ(0, x, 0, 0, . . .) + (1 – λ)(1, x, 0, 0, . . .),λ ∈ [0, 1]

}
, x ∈ X.

A direct calculation gives that F(x) –̇ F(0) = {(0, x, 0, 0, . . .)} for x ∈ T . Hence, we have
(F(x) –̇ F(0) + η) ∩ (–S) = ∅, thus F(x) + η �

m
S F(0), and F(x) + η �= F(0) for ∀x ∈ T . Hence,

x0 = 0 is an η-m-efficient solution.
Define a function φ : P(Y ) → R̄ by

φ(A) = Im
ê

(
A, F(0)

)
= inf

{
t ∈R | A 
m

S tê + F(0) – η
}

, ∀A ∈P(Y ).

Then,

φ
(
F(0) – η

)
= Im

ê
(
F(0) – η, F(0)

)

= inf
{

t ∈R|F(0) –̇ F(0) 
m
S tê

}

= inf

{
t ∈R|(0, 0, 0, . . .) ≤ t

(
1, 1,

1
3

,
1
4

, . . . ,
1
n

, . . .
)}

= inf{t ∈R|t ≥ 0}
= 0,
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∀x ∈ T , φ
(
F(x)

)
= Im

ê
(
F(x), F(0)

)

= inf
{

t ∈R|F(x) –̇ F(0) 
m
S tê – η

}

= inf

{
t ∈R|(0, x, 0, . . .) ≤

(
t – 1, t – 2,

t – 1
3

,
t – 1

4
, . . . ,

t – 1
n

, . . .
)}

= inf{t ∈ R|t ≥ 2 + x}
= 2 + x.

Thus, φ(F(x)) > 0 for all x ∈ T\{x ∈ T : F(x) + η = F(0)}.

Remark 5.1 According to Remark 2.1 and Theorem 4.1(i), Theorem 5.1 generalizes and
improves [11, Theorem 2] in the following two aspects:

(i) From a nonempty interior to a nonempty quasirelative interior of an order cone.
(ii) From efficient solutions to approximately efficient solutions.

Theorem 5.2 Let T ⊂ X, F : T → 2Y and K be closed, x0 ∈ T and F(x0) ∈ P(Y ). Suppose
that there exists a functional ϕ : P(Y ) → R̄ satisfying

(i) ϕ is p-increasing on P(Y );
(ii) ϕ(F(x0) – ξ ) = 0;

(iii) for any x ∈ T\{x ∈ T : F(x) + ξ = F(x0)}, ϕ(F(x)) > 0.
Then, x0 is a ξ -efficient solution of (P).

Proof If x0 is not a ξ -efficient solution of (P), then there exists x1 ∈ T such that F(x1)+ξ 
p
K

F(x0) and F(x1) + ξ �= F(x0). Then, ϕ(F(x1)) ≤ ϕ(F(x0) – ξ ) = 0, this is in contradiction with
(iii). Hence, x0 ∈ T is a ξ -efficient solution of (P). �

Remark 5.2 We partly consider the converse proposition of Theorem 5.2. Let x0 be a ξ -
efficient solution of (P), although we can construct a functional ϕ similar to the proof of
necessity of Theorem 5.1, however, ϕ may not satisfy (i)–(iii) of Theorem 5.2. The follow-
ing example illustrates the case.

Example 8 Let X = R, T = [0, 2] and K = R
2
+. Define the set-valued map F ⇒ Y as

F(x) =

⎧
⎨

⎩
{(y1, y2) ∈R

2|(y1 – 1)2 + (y2 – 1)2 ≤ 1}, x ∈ [0, 1),

{(y1, y2) ∈R
2|(y1 – 6–

√
2

4 )2 + (y2 – 6–
√

2
4 )2 ≤ 1}, x ∈ [1, 2].

Take x0 = 2, k̂ = (1, 1) and ξ = ( 2–
√

2
8 , 2–

√
2

8 ). Since
⋂

y∈F(x) (y + K + ξ ) ∩ F(x0) = ∅, we obtain
F(x) + ξ �

p
K F(x0) for any x ∈ T . Hence, x0 is a ξ -efficient solution. For the functional

ϕ : P(Y ) → R̄ defined as ϕ(A) = Ip
k̂

(A, F(x0)), ∀A ∈ P(Y ), we can verify that ϕ satisfies
(i)–(ii). On the other hand, when x ∈ [0, 1), ϕ(F(x)) = Ip

k̂
(F(x), F(x0)) = inf{t ∈ R|F(x) 
p

K

tk̂ + F(x0) – ξ}. If t = – 2–
√

2
8 , then F(x) + ξ = tk̂ + F(x0), hence F(x) + ξ 
p

K tk̂ + F(x0); if
t < – 2–

√
2

8 , then F(x) + ξ �
p
K tk̂ + F(x0). Therefore, ϕ(F(x)) = – 2–

√
2

8 < 0, thus ϕ does not
satisfy (iii).

6 Conclusions
In this paper, when the ordered cone S has nonempty quasirelative interiors or ordered
cone K has nonempty interiors, we introduce several kinds of order relations 
p

K , �p
K , 
m

S ,
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and ≺m
qriK , respectively. We introduce two kinds of nonlinear functions, whose properties

are discussed. With order relations 
p
K , �p

K , 
m
S , and ≺m

qriK , we introduce several classes of
approximately efficient solutions and approximate weakly efficient solutions, respectively,
for set optimization, and study the relationship among them. The optimality conditions
for approximate solutions of set optimization are established.
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