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Abstract
In the present paper, we construct a new class of operators based on new type Bézier
bases with a shape parameter λ and positive parameter s. Our operators include
some well-known operators, such as classical Bernstein, α-Bernstein, generalized
blending type α-Bernstein and λ-Bernstein operators as special case. In this paper, we
prove some approximation theorems for these operators. Approximation properties
of our operators are illustrated on graphs for variables s, α, λ, and n. It should be
mentioned that our operators for λ = 1 have better approximation than Bernstein and
α-Bernstein operators.

MSC: 41A10; 41A25; 41A36

Keywords: Bernstein Operators; λ-Bernstein Operators; α-Bernstein Operators;
Modulus of continuity

1 Introduction
In 1912, Bernstein constructed Bernstein polynomials to prove Weierstrass Approxima-
tion Theorem [28], which says, for any continuous function f (x) on the closed interval
[a, b], there exists a sequence of polynomials pn(x) that converges uniformly to f (x). For
a given continuous function f (x) on [0, 1], Bernstein operators [6] BnC[0, 1] → C[0, 1] are
given by

Bn(f ; x) =
n∑

k=0

bn,k(x)f
(

k
n

)
, (1)

where

bn,k(x) =
(

n
k

)
xk(1 – x)n–k , x ∈ [0, 1], (2)

and

(
n
k

)
=

⎧
⎨

⎩

n!
(n–k)!k! , if 0 ≤ k ≤ n,

0, otherwise.
(3)
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Many extensions of Bernstein operators have been given in [15, 17, 24], and references
to many related works are also cited there. Later, Chen et al. (see [13]) extended Bernstein
operators to α-Bernstein operators with a parameter α ∈ [0, 1], which are defined as

Tn,α(f ; x) =
n∑

k=0

p(α)
n,k(x)f

(
k
n

)
, (4)

where p(α)
1,0(x) = 1 – x, p(α)

1,1(x) = x, and

p(α)
n,k(x) =

[
(1 – α)

(
n – 2

k

)
x + (1 – α)

(
n – 2
k – 2

)
(1 – x)

+ α

(
n
k

)
x(1 – x)

]
xk–1(1 – x)n–k–1,

for n ≥ 2, x ∈ [0, 1], f (x) ∈ C[0, 1]. The α-Bernstein operators and their modifications have
been intensively studied by many researchers in recent papers (see [1, 3–5, 11, 21, 23]).

More recently, Aktuğlu et al. (see [3]) introduced and studied generalized blending type
α-Bernstein operators by

Lα,s
n (f ; x) =

n∑

k=0

{
(1 – α)

(
n – s
k – s

)
xk–s+1(1 – x)n–k

+ (1 – α)
(

n – s
k

)
xk(1 – x)n–s–k+1

+ α

(
n
k

)
xk(1 – x)n–k

}
f
(

k
n

)
for n ≥ s (5)

and

Lα,s
n (f ; x) =

n∑

k=0

(
n
k

)
xk(1 – x)n–kf

(
k
n

)
for n < s, (6)

which depend on two parameters α and s, where s is a positive integer, α ∈ [0, 1], x ∈ [0, 1],
f (x) ∈ C[0, 1].

One can see that when s = 1 and s = 2, then operators given by (5) and (6) reduce to
ordinary Bernstein operators given by (1) and α-Bernstein operators given by (4), respec-
tively. Aktuğlu and Yashar (see [4]) initiated and investigated some properties of general-
ized parametric blending type Bernstein operators that depend on four parameters s1, s2,
a1, and a2.

In 2010, Ye et al. [29] introduced and studied new Bézier basis with a shape parameter
λ ∈ [–1, 1], which is defined by

b̃n,k(λ; x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

bn,0(x) – λ
n+1 bn+1,1(x), if k = 0,

bn,k(x) + λ( n–2k+1
n2–1 bn+1,k(x))

– λ( n–2k–1
n2–1 bn+1,k+1(x)), if (1 ≤ k ≤ n – 1),

bn,n(x) – λ
n+1 bn+1,n(x), if k = n.

(7)
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More recently, Cai et al. [10] introduced new λ-Bernstein operators

Bn,λ(f ; x) =
n∑

k=0

b̃n,k(x)f
(

k
n

)
, (8)

where b̃n,k(x) is defined in equation (7). The λ-Bernstein operators become a hot topic for
last years and are investigated by many researchers [2, 7–9, 12, 16, 18–20, 22, 25–27].

The main purpose of the present paper is to construct a generalization of blending type
Bernstein operators based on new type Bézier bases with a shape parameter λ and positive
parameter s. A Korovkin-type approximation theorem will be proven. Moreover, approxi-
mation properties will also be discussed. For fixed s, α, λ, n, and specific function, detailed
graphs will be given.

2 Construction of the (α,λ, s)-Bernstein operators and some basic results
This section is devoted to the construction and some main properties of the opera-
tors L(α,s)

n,λ (f ; x) that include: classical Bernstein, α-Bernstein, generalized blending type α-
Bernstein and λ-Bernstein operators given in ([3, 6, 10], and [13]) as a special case. We
introduce (α,λ, s)-Bernstein operators as follows:

Definition 1 Let 0 ≤ α ≤ 1, –1 ≤ λ ≤ 1 and s be a positive integer. Then define

L(α,s)
n,λ (f ; x) =

n∑

k=0

b̃α,s
n,k(λ; x)f

(
k
n

)
,

where

b̃α,s
n,k(λ; x) =

⎧
⎪⎪⎨

⎪⎪⎩

b̃n,k(λ; x), if n < s,

(1 – α)[xb̃n–s,k–s(λ; x) + (1 – x)b̃n–s,k(λ; x)]

+ αb̃n,k(λ; x), if n ≥ s

and b̃n,k(λ; x) defined in equation (7).

In order to make the calculations easier, we will use the following representation of
L(α,s)

n,λ (f ; x). For any 0 ≤ α ≤ 1, –1 ≤ λ ≤ 1 and a positive integer s,

L(α,s)
n,λ (f ; x) =

⎧
⎨

⎩
Bn,λ(f ; x) if n < s,

Bα,s
n,λ(f ; x), if n ≥ s.

(9)

Here, Bn,λ(f ; x) is given by equation (8), and Bα,s
n,λ(f ; x) is defined by

Bα,s
n,λ(f ; x) = (1 – α)Bs,(�)

n,λ (f ; x) + αBn,λ(f ; x), (10)

where

Bs,(�)
n,λ (f ; x) =

[
x

n∑

k=0

b̃n–s,k–s(λ; x) + (1 – x)
n∑

k=0

b̃n–s,k(λ; x)

]
f
(

k
n

)
.
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Theorem 1 For any 0 ≤ α ≤ 1, –1 ≤ λ ≤ 1 and a positive integer s,

L(α,s)
n,λ (f ; x) =

⎧
⎨

⎩
Bn,λ(f ; x), if n < s,

(1 – α)Bs,(�)
n,λ (f ; x) + αBn,λ(f ; x) if n ≥ s,

(11)

where

Bn,λ(f ; x) =
n∑

k=0

bn,k(x)f
(

k
n

)

+ λ

n–1∑

k=0

n – 2k – 1
n2 – 1

bn+1,k+1(x)
[

f
(

k + 1
n

)
– f

(
k
n

)]

and

Bs,(�)
n,λ (f ; x) =

n–s∑

k=0

bn–s,k(x)
[

xf
(

k + s
n

)
+ (1 – x)f

(
k
n

)]

+ λx
n–s–1∑

k=0

n – s – 2k – 1
(n – s)2 – 1

bn–s+1,k+1(x)

×
[

f
(

k + s + 1
n

)
– f

(
k + s

n

)]

+ λ(1 – x)
n–s–1∑

k=0

n – s – 2k – 1
(n – s)2 – 1

bn–s+1,k+1(x)

×
[

f
(

k + 1
n

)
– f

(
k
n

)]
.

Proof Considering the definition of Bn,λ(f ; x), we have

Bn,λ(f ; x) =
n∑

k=0

b̃n,k(λ; x)f
(

k
n

)

= b̃n,0(λ; x)f
(

0
n

)
+

n–1∑

k=1

b̃n,k(λ; x)f
(

k
n

)

+ b̃n,n(λ; x)f
(

n
n

)

=
[

bn,0(x) –
λ

n + 1
bn+1,1(x)

]
f
(

0
n

)

+
n–1∑

k=1

[
bn,k(x) + λ

n – 2k + 1
n2 – 1

bn+1,k(x) – λ
n – 2k – 1

n2 – 1
bn+1,k+1(x)

]
f
(

k
n

)

+
[

bn,n(x) –
λ

n + 1
bn+1,n(x)

]
f
(

n
n

)

= bn,0(x)f
(

0
n

)
+

n–1∑

k=1

bn,k(x)f
(

k
n

)
+ bn,n(x)f

(
n
n

)
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+
n–1∑

k=1

[
λ

n – 2k + 1
n2 – 1

bn+1,k(x)
]

f
(

k
n

)
–

[
λ

n + 1
bn+1,n(x)

]
f
(

n
n

)

–
n–1∑

k=1

[
λ

n – 2k – 1
n2 – 1

bn+1,k+1(x)
]

f
(

k
n

)
+

[
–

λ

n + 1
bn+1,1(x)

]
f
(

0
n

)
.

Hence,

Bn,λ(f ; x) =
n∑

k=0

bn,k(x)f
(

k
n

)
+

n∑

k=1

[
λ

n – 2k + 1
n2 – 1

bn+1,k(x)
]

f
(

k
n

)

–
n–1∑

k=0

[
λ

n – 2k – 1
n2 – 1

bn+1,k+1(x)
]

f
(

k
n

)

=
n∑

k=0

bn,k(x)f
(

k
n

)

+ λ

n–1∑

k=0

n – 2k – 1
n2 – 1

bn+1,k+1(x)
[

f
(

k + 1
n

)
– f

(
k
n

)]
,

which completes the proof of the first part.
Using the same techniques, Bs,(�)

n,λ (f ; x) can be proved in a similar way. �

Lemma 1
(i) (Linearity) The (α,λ, s)-Bernstein operators are satisfying the following equality:

L(α,s)
n,λ (a1f + a2g; x) = a1L(α,s)

n,λ (f ; x) + a2L(α,s)
n,λ (g; x),

where a1, a2 are real numbers, and f (x) and g(x) are defined on the closed interval
[0, 1].

(ii) (Monotonicity) The (α,λ, s)-Bernstein operators are monotone for λ ∈ [–1, 1] and
α ∈ [0, 1]. Therefore, if f (x) ≥ g(x), then L(α,s)

n,λ (f ; x) ≥ L(α,s)
n,λ (g; x) for x ∈ [0, 1].

(iii) (Positivity) For a given nonnegative function defined on [0, 1], the operators
L(α,s)

n,λ (f ; x) are nonnegative for α ∈ [0, 1] and λ ∈ [–1, 1].
(iv) (End-point interpolation) The (α,λ, s)-Bernstein operators satisfy the end point

interpolation property for f (x), that is

L(α,s)
n,λ (f ; 0) = f (0); L(α,s)

n,λ (f ; 1) = f (1).

Remark 1 The operators L(α,s)
n,λ (f ; x) have the following special cases:

a) If α = 1 or s = 1, then L(α,s)
n,λ (f ; x) reduces to the operators given in [10].

b) If λ = 0, L(α,s)
n,λ (f ; x) reduces to the operators given in [3].

c) If α = 1 and λ = 0, L(α,s)
n,λ (f ; x) reduces to the operators given in [6].

d) If λ = 0 and s = 2, L(α,s)
n,λ (f ; x) reduces to the operators given in [13].

Lemma 2 (see [10]) If n < s then L(α,s)
n,λ (f ; x) = Bn,λ(f ; x) for any 0 ≤ α ≤ 1, –1 ≤ λ ≤ 1 and

(i) Bn,λ(1; x) = 1;
(ii) Bn,λ(t; x) = x + 1–2x+xn+1–(1–x)n+1

n(n–1) λ;
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(iii) Bn,λ(t2; x) = x2 + x(1–x)
n + λ[ 2x–4x2+2xn+1

n(n–1) + xn+1+(1–x)n+1–1
n2(n–1) ].

Theorem 2 If n ≥ s, for any 0 ≤ α ≤ 1 and –1 ≤ λ ≤ 1, we have the following identities:

(i) L(α,s)
n,λ (1; x) = 1,

(ii) L(α,s)
n,λ (t; x) = x + (1 – α)λ

[
1 – 2x + xn–s+1 – (1 – x)n–s+1

n(n – s – 1)

]

+ αλ

[
1 – 2x + xn+1 – (1 – x)n+1

n(n – 1)

]
,

(iii) L(α,s))
n,λ

(
t2; x

)
= x2 +

[n + (1 – α)s(s – 1)]x(1 – x)
n2

+
αλ

n

[
2x – 4x2 + 2xn+1

(n – 1)

]

+
(1 – α)λ

n

[
2x – 4x2 + 2xn–s+1

(n – s – 1)

]

+
αλ

n2

[
xn+1 + (1 – x)n+1 – 1

(n – 1)

]

+
(1 – α)λ

n2

[
xn–s+1 + (1 – x)n–s+1 – 1

(n – s – 1)

]

+
[

2sx(xn–s+1 – (1 – x)n–s+1)
(n – s – 1)

]
.

Proof Recall that for n ≥ s,

L(α,s)
n,λ (f ; x) = (1 – α)Bs,(�)

n,λ (f ; x) + αBn,λ(f ; x).

Now,
(i) L(α,s)

n,λ (1; x) = (1 – α)Bs,(�)
n,λ (1; x) + αBn,λ(1; x) = 1.

(ii) Since Bn,λ(t; x) is given in Lemma 2, we only need to find Bs,(�)
n,λ (t; x).

Bs,(�)
n,λ (t; x) =

n–s∑

k=0

bn–s,k(x)
[

x
(

k + s
n

)
+ (1 – x)

(
k
n

)]

+ λx
n–s–1∑

k=0

n – s – 2k – 1
(n – s)2 – 1

bn–s+1,k+1(x)
[(

k + s + 1
n

)
–

(
k + s

n

)]

+ λ(1 – x)
n–s–1∑

k=0

n – s – 2k – 1
(n – s)2 – 1

bn–s+1,k+1(x)
[(

k + 1
n

)
–

(
k
n

)]

=
n–s∑

k=0

bn–s,k(x)
(

k
n

+
sx
n

)

+ λ

n–s–1∑

k=0

n – s – 2k – 1
(n – s)2 – 1

bn–s+1,k+1(x)
1
n
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=
n – s

n
x +

sx
n

+
λ

n(n – s + 1)

n–s–1∑

k=0

bn–s+1,k+1(x)

–
2λ

n((n – s)2 – 1)

n–s–1∑

k=0

kbn–s+1,k+1(x).

Define �1(n, s; x) and �2(n, s; x) as

�1(n, s; x) =
n–s–1∑

k=0

bn–s+1,k+1(x) (12)

and

�2(n, s; x) =
n–s–1∑

k=0

kbn–s+1,k+1(x). (13)

Now, we need to calculate �1(n, s; x) and �2(n, s; x)

�1(n, s; x) =
n–s–1∑

k=0

bn–s+1,k+1(x) =
n–s∑

k=1

bn–s+1,k(x)

=
n–s+1∑

k=0

bn–s+1,k(x) – bn–s+1,0(x) – bn–s+1,n–s+1(x)

= 1 – (1 – x)n–s+1 – xn–s+1

and

�2(n, s; x) =
n–s–1∑

k=0

kbn–s+1,k+1(x)

=
n–s–1∑

k=0

k(n – s + 1)!
(n – s – k)!(k + 1)!

xk+1(1 – x)n–s–k

=
n–s–1∑

k=0

(n – s + 1)!
(n – s – k)!k!

xk+1(1 – x)n–s–k –
n–s–1∑

k=0

bn–s+1,k+1(x)

= (n – s + 1)x
n–s–1∑

k=0

bn–s,k(x) – �1(n, s; x)

= (n – s + 1)x

( n–s∑

k=0

bn–s,k(x) – bn–s,n–s(x)

)
– �1(n, s; x)

= (n – s + 1)x
(
1 – xn–s) –

[
1 – (1 – x)n–s+1 – xn–s+1].

Hence, we get

Bs,(�)
n,λ (t; x) = x + λ

[
1

n(n – s + 1)
�1(n, s; x) –

2
n((n – s)2 – 1)

�2(n, s; x)
]

= x + λ

[
1 – (1 – x)n–s+1 – xn–s+1

n(n – s + 1)

]
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– 2λ

[
(n – s + 1)x(1 – xn–s) – [1 – (1 – x)n–s+1 – xn–s+1]

n((n – s)2 – 1)

]

= x + λ

[
1 – 2x + xn–s+1 – (1 – x)n–s+1

n(n – s – 1)

]
.

Finally, using above equality and Lemma 2, we have

L(α,s)
n,λ (t; x) = x + λ

1 – 2x + xn–s+1 – (1 – x)n–s+1

n(n – s – 1)

+ αλ

[
1 – 2x + xn+1 – (1 – x)n+1

n(n – 1)

]

–
[

1 – 2x + xn–s+1 – (1 – x)n–s+1

n(n – s – 1)

]
.

(iii) Direct calculations yield that

Bs,(�)
n,λ

(
t2; x

)
=

n–s∑

k=0

bn–s,k(x)
[

x
(

k + s
n

)2

+ (1 – x)
(

k
n

)2]

+ λx
n–s–1∑

k=0

n – s – 2k – 1
(n – s)2 – 1

bn–s+1,k+1(x)
[(

k + s + 1
n

)2

–
(

k + s
n

)2]

+ λ(1 – x)
n–s–1∑

k=0

n – s – 2k – 1
(n – s)2 – 1

bn–s+1,k+1(x)
[(

k + 1
n

)2

–
(

k
n

)2]

=
n–s∑

k=0

bn–s,k(x)
[

k2

n2 +
2sxk
n2 +

s2x
n2

]

+ λ

n–s–1∑

k=0

n – s – 2k – 1
(n – s)2 – 1

bn–s+1,k+1(x)
[

2k
n2 +

2sx + 1
n2

]

= x2 +
(s(s – 1) + n)x(1 – x)

n2

+
2λ

n2(n – s + 1)
�2(n, s; x) +

(2sx + 1)λ
n2(n – s + 1)

�1(n, s; x)

+
–4λ

n2((n – s)2 – 1)
�3(n, s; x) +

–2(2sx + 1)λ
n2((n – s)2 – 1)

�2(n, s; x),

where

�3(n, s; x) =
n–s–1∑

k=0

k2bn–s+1,k+1(x). (14)

After similar calculations, we may write

�3(n, s; x) = (n – s + 1)(n – s)x2

[n–s–1∑

k=0

bn–s–1,k(x) – bn–s–1,n–s–1(x)

]

+ (n – s + 1)x

[ n–s∑

k=0

bn–s,k(x) – bn–s,n–s(x)

]
– 2�2(n, s; x) – �1(n, s; x),
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which implies that

Bs,(�)
n,λ

(
t2; x

)
= x2 +

(s(s – 1) + n)x(1 – x)
n2 +

λ

n

[
2x – 4x2 + 2xn–s+1

n – s – 1

]

+
λ

n2

[
–1 + xn–s+1 + (1 – x)n–s+1

n – s – 1

]

+
λ

n2

[
2sx(xn–s+1 – (1 – x)n–s+1)

n – s – 1

]
.

Finally, using above equality and Lemma 2, we have

L(α,s)
n,λ

(
t2; x

)
= (1 – α)Bs,(�)

n,λ (t; x) + αBn,λ(t; x)

= x2 +
(s(s – 1) + n)x(1 – x)

n2 +
αλ

n

[
2x – 4x2 + 2xn+1

n – 1

]

+
(1 – α)λ

n

[
2x – 4x2 + 2xn–s+1

n – s – 1

]
+

αλ

n2

[
xn+1 + (1 – x)n+1 – 1

n – 1

]

+
(1 – α)λ

n2

[
–1 + xn–s+1 + (1 – x)n–s+1 + 2sx(xn–s+1 – (1 – x)n–s+1)

n – s – 1

]
. �

Corollary 1 For fixed α, x ∈ [0, 1], λ ∈ [–1, 1] and n ≥ s, where s is a positive integer, we
have

(i) L(α,s)
n,λ (t – x; x) = (1 – α)λ

[
1 – 2x + xn–s+1 – (1 – x)n–s+1

n(n – s – 1)

]

+ αλ

[
1 – 2x + xn+1 – (1 – x)n+1

n(n – 1)

]
,

(ii) L(α,s)
n,λ

(
(t – x)2; x

)
=

[n + (1 – α)s(s – 1)]x(1 – x)
n2

+ 2αλ

[
(1 – x)n+1

n(n – 1)

]
+ 2(1 – α)λ

[
(1 – x)n–s+1

n(n – s – 1)

]

+ αλ

[
xn+1 + (1 – x)n+1 – 1

n2(n – 1)

]

+ (1 – α)λ
[

xn–s+1 + (1 – x)n–s+1 – 1
n2(n – s – 1)

]

+ 2(1 – α)λsx
[

xn–s+1 – (1 – x)n–s+1

n2(n – s – 1)

]
.

Lemma 3 For f ∈ C[0, 1], α, x ∈ [0, 1], λ ∈ [–1, 1] and a positive integer s, we have the
following inequality:

∥∥L(α,s)
n,λ (f ; x)

∥∥ ≤ ‖f ‖, (15)

where ‖ · ‖ represents the uniform norm on C[0, 1].
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Proof

∥∥L(α,s)
n,λ (f ; x)

∥∥ ≤
n∑

k=0

b̃α,s
n,k(λ; x)

∣∣∣∣f
(

k
n

)∣∣∣∣

≤ ‖f ‖L(α,s)
n,λ (1; x) = ‖f ‖. �

Corollary 2 For n ∈ {1, 2, . . .}, we have the following inequalities:

L(α,s)
n,λ

(
(t – x); x

) ≤ �n,s,1(x;α)

and

L(α,s)
n,λ

(
(t – x)2; x

) ≤ �n,s,2(x;α),

where

�n,s,1(x;α) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1–2x+xn+1–(1–x)n+1

n(n–1) if n < s,

(1 – α)[ 1+2x+xn–s+1+(1–x)n–s+1

n(n–s–1) ]

+ α[ 1+2x+xn+1+(1–x)n+1

n(n–1) ] if n ≥ s,

�n,s,2(x;α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(1–x)
n + 2(1–x)n+1

n(n–1)

+ xn+1+(1–x)n+1+1
n2(n–1) if n < s,

[n+(1–α)s(s–1)]x(1–x)
n2 + 2α(1–x)n+1

n(n–1)

+ 2(1–α)(1–x)n–s+1

n(n–s–1) + α[ xn+1+(1–x)n+1+1
n2(n–1) ]

+ (1 – α)[ xn–s+1+(1–x)n–s+1+1
n2(n–s–1) ]

+ (1 – α)2sx[ xn–s+1+(1–x)n–s+1

n2(n–s–1) ] if n ≥ s.

3 Approximation properties of (α,λ, s)-Bernstein operators
This section is devoted to the approximation properties of the operators L(α,s)

n,λ (f ; x). In
this section, we will prove a Korovkin-type approximation theorem and approximation
theorems by means of modulus of continuity and the Lipschitz function.

Theorem 3 If f ∈ C[0, 1], α, x ∈ [0, 1], λ ∈ [–1, 1], and s is a positive integer, then L(α,s)
n,λ (f ; x)

converge uniformly to f (x) on the closed interval [0, 1].

Proof By the Korovkin Theorem, it is enough to show that L(α,s)
n,λ (ei; x) converges uniformly

to ei(x), where ei(x) = xi, i = 0,1,2. From Lemma 2 and Theorem 2, L(α,s)
n,λ (1; x) = 1 for positive

integer s and

L(α,s)
n,λ (t; x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x + 1–2x+xn+1–(1–x)n+1

n(n–1) λ if n < s,

x + (1 – α)λ[ 1–2x+xn–s+1–(1–x)n–s+1

n(n–s–1) ]

+ αλ[ 1–2x+xn+1–(1–x)n+1

n(n–1) ] if n ≥ s
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and

L(α,s)
n,λ

(
t2; x

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x2 + x(1–x)
n + λ[ 2x–4x2+2xn+1

n(n–1) + xn+1+(1–x)n+1–1
n2(n–1) ] if n < s,

x2 + [n+(1–α)s(s–1)]x(1–x)
n2 + αλ[ 2x–4x2+2xn+1

n(n–1) ]

+ (1 – α)λ[ 2x–4x2+2xn–s+1

n(n–s–1) ]

+ αλ[ xn+1+(1–x)n+1–1
n2(n–1) ]

+ (1 – α)λ[ xn–s+1+(1–x)n–s+1–1
n2(n–s–1) ]

+ 2sx(1 – α)λ[ xn–s+1–(1–x)n–s+1

n2(n–s–1) ] if n ≥ s.

It is easily to see that for each case, L(α,s)
n,λ (t; x) and L(α,s)

n,λ (t2; x) converge uniformly to e1(x) = x
and e2(x) = x2, respectively. This completes the proof. �

We use modulus of continuity to give quantitative error estimates for (α,λ, s)-Bernstein
operators. We denote the usual modulus of continuity for f ∈ C[0, 1] as

w(f ; δ) = sup
0<h≤δ

sup
x,x+h∈[0,1]

∣∣f (x + h) – f (x)
∣∣.

Theorem 4 For any f ∈ C[0, 1], s positive integer, x,α ∈ [0, 1] and λ ∈ [–1, 1], we have

∣∣L(α,s)
n,λ (f ; x) – f (x)

∣∣ ≤ 2ω
(
f ;�n,s,2(x;α)

)
,

where ω is the usual modulus of the continuity.

Proof Since L(α,s)
n,λ (1; x) = 1 and b̃α,s

n,k(λ; x) ≥ 0 on [0, 1], we can write

∣∣L(α,s)
n,λ (f ; x) – f (x)

∣∣ ≤
n∑

k=0

b̃α,s
n,k(λ; x)

∣∣∣∣f
(

k
n

)
– f (x)

∣∣∣∣.

If we use the following properties of the modulus of continuity

∣∣f (t) – f (x)
∣∣ ≤ ω(f ; δ)

(
(t – x)2

δ2 + 1
)

and

ω(f ;γ δ) ≤ (1 + γ )ω(f ; δ),

where γ is a positive constant, we obtain

∣∣∣∣f
(

k
n

)
– f (x)

∣∣∣∣ ≤ ω

(
f ;

1
δ

∣∣∣∣
k
n

– x
∣∣∣∣δ

)

≤
(

1 +
1
δ

∣∣∣∣
k
n

– x
∣∣∣∣

)
ω(f ; δ).
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Consequently, we can write

∣∣L(α,s)
n,λ (f ; x) – f (x)

∣∣ ≤
n∑

k=0

b̃α,s
n,k(λ; x)

∣∣∣∣f
(

k
n

)
– f (x)

∣∣∣∣

≤
n∑

k=0

b̃α,s
n,k(λ; x)

(
1 +

1
δ

∣∣∣∣
k
n

– x
∣∣∣∣

)
ω(f ; δ)

=

(
1 +

1
δ

n∑

k=0

b̃α,s
n,k(λ; x)

∣∣∣∣
k
n

– x
∣∣∣∣

)
ω(f ; δ).

If we apply the Cauchy–Schwarz inequality, we get

n∑

k=0

b̃α,s
n,k(λ; x)

∣∣∣∣
k
n

– x
∣∣∣∣ ≤

[ n∑

k=0

b̃α,s
n,k(λ; x)

(
k
n

– x
)2

] 1
2

=
[
L(α,s)

n,λ
(
(t – x)2; x

)] 1
2 ≤ [

�n,s,2(x;α)
] 1

2 .

So, we have

∣∣L(α,s)
n,λ (f ; x) – f (x)

∣∣ ≤
(

1 +
[�n,s,2(x;α)] 1

2

δ

)
ω(f ; δ).

Choosing δ = [�n,s,2(x;α)] 1
2 , we complete the proof. �

Theorem 5 If f ∈ C′[0, 1], s positive integer, x,α ∈ [0, 1] and λ ∈ [–1, 1], then

∣∣L(α,s)
n,λ (f ; x) – f (x)

∣∣ ≤ ∣∣�n,s,2(x;α)
∣∣∣∣f ′(x)

∣∣ + 2
√

�n,s,2(x;α)ω
(
f ′;

√
�n,s,2(x;α)

)
.

Proof We have the following equality by applying the mean value theorem of differential
calculus:

f
(

k
n

)
– f (x) =

(
k
n

– x
)

f ′(x) +
(

k
n

– x
)[

f ′(c) – f ′(x)
]
,

where c = cn,k(x) ∈ (x, k
n ). If we multiply both sides of the above equality by b̃α,s

n,k(λ; x) and
sum from 0 to n, we get

n∑

k=0

[
f
(

k
n

)
– f (x)

]
b̃α,s

n,k(λ; x) =
n∑

k=0

b̃α,s
n,k(λ; x)

[
k
n

– x
]

f ′(x)

+
n∑

k=0

b̃α,s
n,k(λ; x)

[
f
(

k
n

)
– f (x)

](
f ′(c) – f ′(x)

)
.

Equivalently,

L(α,s)
n,λ (f ; x) – f (x) = L(α,s)

n,λ (t – x; x)f ′(x)

+
n∑

k=0

b̃α,s
n,k(λ; x)

[
f
(

k
n

)
– f (x)

](
f ′(c) – f ′(x)

)
.
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Therefore, we can write

∣∣L(α,s)
n,λ (f ; x) – f (x)

∣∣ ≤ ∣∣L(α,s)
n,λ (t – x; x)

∣∣∣∣f ′(x)
∣∣

+
n∑

k=0

b̃α,s
n,k(λ; x)

∣∣∣∣f
(

k
n

)
– f (x)

∣∣∣∣
∣∣f ′(c) – f ′(x)

∣∣.

Here, we observe that

∣∣f ′(c) – f ′(x)
∣∣ =

(
1 +

1
δ
|c – x|

)
ω

(
f ′; δ

)

≤
(

1 +
1
δ

∣∣∣∣
k
n

– x
∣∣∣∣

)
ω

(
f ′; δ

)
,

where δ is any positive number, which does not depend on k, and ω is the usual modulus.
Consequently, we get

∣∣L(α,s)
n,λ (f ; x) – f (x)

∣∣ ≤ ∣∣L(α,s)
n,λ (t – x; x)

∣∣∣∣f ′(x)
∣∣ +

n∑

k=0

b̃α,s
n,k(λ; x)

∣∣∣∣
k
n

– x
∣∣∣∣ω

(
f ′; δ

)

+
1
δ

n∑

k=0

b̃α,s
n,k(λ; x)

(
k
n

– x
)2

ω
(
f ′; δ

)

≤ ∣∣L(α,s)
n,λ (t – x; x)

∣∣∣∣f ′(x)
∣∣ +

n∑

k=0

b̃α,s
n,k(λ; x)

∣∣∣∣
k
n

– x
∣∣∣∣ω

(
f ′; δ

)

+
1
δ

L(α,s)
n,λ

(
(t – x)2; x

)
ω

(
f ′; δ

)
.

Using the Cauchy–Schwarz inequality

∣∣L(α,s)
n,λ (f ; x) – f (x)

∣∣ ≤ ∣∣L(α,s)
n,λ (t – x; x)

∣∣∣∣f ′(x)
∣∣

+

[ n∑

k=0

b̃α,s
n,k(λ; x)

(
k
n

– x
)2

] 1
2

ω
(
f ′; δ

)

+
1
δ

L(α,s)
n,λ

(
(t – x)2; x

)
ω

(
f ′; δ

)

=
∣∣L(α,s)

n,λ (t – x; x)
∣∣∣∣f ′(x)

∣∣ +
[
L(α,s)

n,λ
(
(t – x)2; x

)] 1
2 ω

(
f ′; δ

)

+
1
δ

L(α,s)
n,λ

(
(t – x)2; x

)
ω

(
f ′; δ

)

=
∣∣L(α,s)

n,λ (t – x; x)
∣∣∣∣f ′(x)

∣∣

+ ω
(
f ′; δ

)(
1 +

[L(α,s)
n,λ ((t – x)2; x)] 1

2

δ

)[
L(α,s)

n,λ
(
(t – x)2; x

)] 1
2

≤ ∣∣�n,s,1(x;α)
∣∣∣∣f ′(x)

∣∣

+ ω
(
f ′; δ

)(
1 +

√
�n,s,2(x;α)

δ

)√
�n,s,2(x;α)

and choosing δ =
√

�n,s,2(x;α), we complete the proof. �
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The Petree K-functional is given by

K2(f ; δ) := inf
g∈C2[0,1]

{‖f – g‖ + δ
∥∥g ′′∥∥} (

δ > 0 and f ∈ [0, 1]
)
,

where C2[0, 1] = {g ∈ C[0, 1] : g ′, g ′′ ∈ C[0, 1]}. It is given in [14] that there exists C > 0 such
that

K2(f ; δ) ≤ Cω2(f ;
√

δ),

where the second order modulus of continuity of smoothness for f ∈ C[0, 1] is defined as

ω2(f ; δ) = sup
0<h≤δ

sup
x,x+h,x+2h∈[0,1]

∣∣f (x + 2h) – 2f (x + h) + f (x)
∣∣.

Now, we can prove the following theorem:

Theorem 6 If f ∈ C[0, 1], α, x ∈ [0, 1], λ ∈ [–1, 1], and s is arbitrary positive integer, then

∣∣L(α,s)
n,λ (f ; x) – f (x)

∣∣ ≤ Cω2

(
f ;

1
2

√
�n,s,2(x;α) +

(
�n,s,1(x;α)

)2
)

+ ω
(
f ;�n,s,1(x;α)

)
,

where C is a positive constant.

Proof We denote ε
(α,s)
n,λ (x) = L(α,s)

n,λ (t; x) and define the auxiliary operator

L̃(α,s)
n,λ (f ; x) = L(α,s)

n,λ (f ; x) + f (x) – f
(
ε

(α,s)
n,λ (x)

)
. (16)

Using Lemma 2 and Theorem 2, one can easily see that

L̃(α,s)
n,λ (1; x) = L(α,s)

n,λ (1; x) = 1,

and

L̃(α,s)
n,λ (t; x) = L(α,s)

n,λ (t; x) + x – ε
(α,s)
n,λ (x) = x.

So, we have L̃(α,s)
n,λ (t – x; x) = 0.

Let g ∈ C2[0, 1]. By the Taylor expansion, we have the following equality:

g(t) = g(x) + (t – x)g ′(x) +
∫ t

x
(t – u)g ′′(u) du. (17)
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Applying the operators L̃(α,s)
n,λ on both sides of (17), we get

L̃(α,s)
n,λ (g; x) = g(x) + L̃(α,s)

n,λ

(∫ t

x
(t – u)g ′′(u) du; x

)

= g(x) + L(α,s)
n,λ

(∫ t

x
(t – u)g ′′(u) du; x

)

–
∫ ε

(α,s)
n,λ (x)

x

(
ε

(α,s)
n,λ (x) – u

)
g ′′(u) du.

Hence,

L̃(α,s)
n,λ (g; x) – g(x) = L(α,s)

n,λ

(∫ t

x
(t – u)g ′′(u) du; x

)

–
∫ ε

(α,s)
n,λ (x)

x

(
ε

(α,s)
n,λ (x) – u

)
g ′′(u) du.

Using the above equation, we get the following inequality:

∣∣L̃(α,s)
n,λ (g; x) – g(x)

∣∣ ≤
∣∣∣∣L

(α,s)
n,λ

(∫ t

x
(t – u)g ′′(u) du; x

)∣∣∣∣

+
∣∣∣∣
∫ ε

(α,s)
n,λ (x)

x

(
ε

(α,s)
n,λ (x) – u

)
g ′′(u) du

∣∣∣∣

≤ L(α,s)
n,λ

(∣∣∣∣
∫ t

x
(t – u)g ′′(u) du

∣∣∣∣; x
)

+
∫ ε

(α,s)
n,λ (x)

x

∣∣ε(α,s)
n,λ (x) – u

∣∣∣∣g ′′(u)
∣∣du,

which implies that

∣∣L̃(α,s)
n,λ (g; x) – g(x)

∣∣ ≤ L(α,s)
n,λ

(∣∣∣∣
∫ t

x

∣∣(t – u)
∣∣du

∣∣∣∣; x
)∥∥g ′′∥∥ (18)

+
∫ ε

(α,s)
n,λ (x)

x

∣∣ε(α,s)
n,λ (x) – u

∣∣du
∥∥g ′′∥∥

≤ L(α,s)
n,λ

(
(t – x)2; x

)∥∥g ′′∥∥ +
(
ε

(α,s)
n,λ (x) – u

)2∥∥g ′′∥∥

≤ [
�n,s,2(x;α) +

(
�n,s,1(x;α)

)2]∥∥g ′′∥∥. (19)

So, we have

∣∣L̃(α,s)
n,λ (g; x) – g(x)

∣∣ ≤ [
�n,2(x;α) +

(
�n,1(x;α)

)2]∥∥g ′′∥∥.

On the other hand, from Lemma 3 and the auxiliary operators (16), we get

∣∣L̃(α,s)
n,λ (f ; x)

∣∣ ≤ ∣∣L(α,s)
n,λ (f ; x)

∣∣ +
∣∣f (x)

∣∣ +
∣∣f

(
ε

(α,s)
n,λ (x)

)∣∣

≤ ‖f ‖∣∣L(α,s)
n,λ (f ; x)

∣∣ + 2‖f ‖ ≤ 3‖f ‖ (20)

for all f ∈ C[0, 1] and x ∈ [0, 1].
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Now for f ∈ C[0, 1] and g ∈ C2[0, 1], using (18) and (20), we obtain that

∣∣L(α,s)
n,λ (f ; x) – f (x)

∣∣ ≤ ∣∣L̃(α,s)
n,λ (f ; x) – L̃(α,s)

n,λ (g; x)
∣∣ +

∣∣L̃(α,s)
n,λ (g; x) – g(x)

∣∣

+
∣∣g(x) – f (x)

∣∣ +
∣∣f

(
ε

(α,s)
n,λ (x)

)
– f (x)

∣∣

≤ 4‖f – g‖ +
[
�n,s,2(x;α) +

(
�n,s,1(x;α)

)2]∥∥g ′′∥∥

+ ω
(
f ;�n,s,1(x;α)

)
.

Therefore, taking infimum on the right-hand side over all g ∈ C2[0, 1], we get

∣∣L(α,s)
n,λ (f ; x) – f (x)

∣∣ ≤ 4K2

(
f ;

�n,s,2(x;α) + (�n,s,1(x;α))2

4

)

+ ω
(
f ;�n,s,1(x;α)

)
. �

4 Conclusion remarks
In the present research paper, we introduce the operators L(α,s)

n,λ (f ; x). Our operators
L(α,s)

n,λ (f ; x) are based on new type Bézier bases with a shape parameter λ and positive pa-
rameter s. Moreover, operators L(α,s)

n,λ (f ; x) include classical Bernstein, α-Bernstein, gener-
alized blending type α-Bernstein and λ-Bernstein operators as a special case. It should be
mentioned that for λ = 0 and s = 2, our operators reduce to the operators defined by Chen
et al. [13]. In this paper, some approximation properties of L(α,s)

n,λ (f ; x) are proved and also
are illustrated by graphical representations (see Fig. 1, Fig. 2, Fig. 3, Fig. 4). Our operators
L(α,s)

n,λ (f ; x) have better approximation for λ = 1 (see Fig. 2). Therefore, our operators have
better approximation in comparison with the operators suggested and studied by Chen
et al. (see Fig. 2). Finally, it should be mentioned that since our operators have better ap-
proximation for λ = 1, it gives better approximation than the other operators that can be
obtained from our operators for λ = 0. For example, taking λ = 0 and α = 1, our operators
reduce to Bernstein operators, and our operators for α = 1 and λ = 1 give better approxi-
mation than Bernstein operators.

Figure 1 Approximation of L(α,s)n,λ (f ; x) to f (x) = x3 – 3
2 x

2 + 1
2 x for n = 10, s = 2, λ = 1 and α = 0.25, 0.5, 0.75
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Figure 2 Approximation of L(α,s)n,λ (f ; x) to f (x) = x3 – 3
2 x

2 + 1
2 x for n = 10, s = 2, α = 1

4 and λ = –1, 0, 1

Figure 3 Approximation of L(α,s)n,λ (f ; x) to f (x) = x3 – 3
2 x

2 + 1
2 x for λ = –1, s = 2, and α = 1

2 n = 25, 50, 100

Figure 4 Approximation of L(α,s)n,λ (f ; x) to f (x) = x3 – 3
2 x

2 + 1
2 x for λ = 1, n = 10, and α = 1

2 s = 5, 15, 25
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