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Abstract
This paper is devoted to proving some new fractional inequalities via recent
generalized fractional operators. These inequalities are in the Hermite–Hadamard and
Minkowski settings. Many previously documented inequalities may clearly be
deduced as specific examples from our findings. Moreover, we give some
comparative remarks to show the advantage and novelty of the obtained results.
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1 Introduction
Fractional integral inequalities are very important in theoretical mathematics and are a
substantial tool in dealing with fractional calculus science, which plays a vital role in mod-
eling procedures for a variety of engineering issues [1, 14, 18, 24, 32]. Many fractional
models yield better outcomes than identical equivalent models with integer derivatives, as
illustrated in [27]. This drives the need for more exact inequalities when working with frac-
tional calculus-based mathematical models. In the existing modification of a certain study,
we concentrate on the most prominent Hermite–Hadamard-type inequality [2, 8]. Be-
cause of the nature of its definition, convexity is crucial in analyzing inequality for convex
functions; for other classes of convex functions and attributes; see [5, 15, 16, 19, 20, 25, 26].

Recently, generalized fractional operators have been used to construct a Hermite–
Hadamard-type inequality allowing the ordinary version to be regained in its limit for the
generalized fractional parameter, as shown in [1]. In [7] a generalized k-fractional integral
inequality is proposed, as well as the Minkowski and Chebyshev integral inequalities that
involve the generalized k-fractional integrals. Inequalities of Hermite–Hadamard type un-
der generalized k-fractional integrals were studied in [9]. Guessab and Schmeisser [6] ex-
amined the sharp integral inequalities of the Hermite–Hadamard type. Also, Nisar et al.
[22] employed the Minkowski and Hermite–Hadamard inequalities to expand the results
of Dahmani [4] and proposed a more powerful integral inequality. Hyder et al. [12] utilized
some generalized fractional integrals to examine specific fractional-order inequalities in
Minkowski and Hermite–Hadamard manners.
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Let us start with the traditional Hermite–Hadamard inequality: If u : B ⊆ R → R is a
convex function and δ1, δ2 ∈ B with δ1 < δ2,then

u
(

δ1 + δ2

2

)
≤ 1

δ2 – δ1

∫ δ2

δ1

u(τ ) dτ ≤ f (δ1) + f (δ2)
2

. (1)

Additional generalizations and expansions can be found, for instance, in [21, 23, 28, 30].
Moreover, we can begin by recalling some basic fractional notions.

Definition 1.1 ([27]) The Riemann–Liouville fractional left and right integrals of a func-
tion H are respectively defined by

J
γ

x+ H(t) =
1

�(γ )

∫ t

x
(t – τ )γ –1H(τ ) dτ

(
t > x, Re(γ ) > 0

)
(2)

and

J
γ
y– H(t) =

1
�(γ )

∫ y

t
(τ – t)γ –1H(τ ) dτ

(
t < y, Re(γ ) > 0

)
, (3)

where � is the gamma function.

Definition 1.2 ([13]) The left and right fractional obedient (conformable) integral oper-
ators are respectively defined by

λ
J

γ

x+ H(t) =
1

�(γ )

∫ t

x

(
(t – x)γ – (τ – x)γ

γ

)λ–1 H(τ )
(τ – x)1–γ

dτ , t > x, (4)

and

λ
J

γ
y– H(t) =

1
�(γ )

∫ y

t

(
(y – t)γ – (y – τ )γ

γ

)λ–1 H(τ )
(y – τ )1–γ

dτ , t < y, (5)

where λ ∈C with Re(λ) > 0.

Hyder and Barakat [10] enhanced the fractional obedient integral operators and offered
more general definitions of the fractional integral operators as follows.

Definition 1.3 The general improved fractional left and right integral operators of a func-
tion H are respectively given by

λ
J

γ

x+ H(t) =
1

�(γ )

∫ t

x
hλ–1(t – x, τ – x,γ )

H(τ )
ϑ(τ – x,γ )

dτ , t > x, (6)

and

λ
J

γ
y– H(t) =

1
�(γ )

∫ y

t
hλ–1(y – t, y – τ ,γ )

H(τ )
ϑ(y – τ ,γ )

dτ , t < y, (7)

where

h(t, τ ,γ ) =
∫ t

τ

dτ ∗

ϑ(τ ∗,γ )
, (8)
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and ϑ : R+ × (0, 1] →R+ is a continuous function fulfilling the conditions:
• ϑ(t, 1) = 1 ∀t ∈R+,
• ϑ(t,γ ) �= 0 ∀(t,γ ) ∈R+ × (0, 1],
• ϑ(·,γ1) �= ϑ(·,γ2) ∀γ1,γ2 ∈ [0, 1].

In 2020, Hyder and Soliman [11] introduced the new generalized theta-obedient integral

J
γ

θ ,qH(t) =
∫ t

0

(τ – q(1 + θq(τ ,γ ))H(τ )
(τ – q)θq(τ ,γ )

dτ , t ∈R+, (9)

where τ �= q ∈R, and θq : R+ × (0, 1] → R is a continuous function satisfying the following
conditions:

• θq(t, 1) = 1 ∀t ∈R+,
• θq(t,γ ) �= 0 ∀(t,γ ) ∈R+ × (0, 1],
• θq(·,γ1) �= θq(·,γ2) ∀γ1,γ2 ∈ [0, 1],
• θ0(t,γ ) = ϑ(t,γ ) ∀(t,γ ) ∈R+ × (0, 1].

Using the Cauchy formula for iterated integrals, we can iterate the integral (9) n times and
obtain the following result:

n
J

γ

θ ,qH(t) =
∫ t

0

(τ1 – q(1 + θq(τ1,γ )) dτ1

(τ1 – q)θq(τ1,γ )

∫ τ1

0

(τ2 – q(1 + θq(τ2,γ )) dτ2

(τ2 – q)θq(τ2,γ )

· · ·
∫ τn–1

0

(τn – q(1 + θq(τn,γ ))H(τn)
(τn – q)θq(τn,γ )

dτn

=
1

�(n)

∫ t

0
gn–1

q (t, τ ,γ )
(τ – q(1 + θq(τ ,γ ))H(τ )

(τ – q)θq(τ ,γ )
dτ , (10)

where

gq(t, τ ,γ ) =
∫ t

τ

(u – q(1 + θq(u,γ ))
(u – q)θq(u,γ )

du. (11)

Replacing the natural number n by a complex number λ, we define the generalized frac-
tional theta-obedient integral as follows.

Definition 1.4 The generalized fractional theta-obedient integral of a function H is de-
fined by

λ
J

γ

θ ,qH(t) =
1

�(λ)

∫ t

0
gλ–1

q (t, τ ,γ )
(τ – q(1 + θq(τ ,γ ))H(τ )

(τ – q)θq(τ ,γ )
dτ , (12)

where λ ∈C with Re(λ) > 0, and gq is defined by (11).

In this paper, we employ recently developed generalized fractional operators to con-
struct novel fractional inequalities for integrable nonnegative functions. These inequali-
ties concern the Hermite–Hadamard and Minkowski inequalities. Our outcomes can be
compared by the previous results established in [3, 12, 22]. The inequalities obtained in
these references can be derived as particular cases. Also, we show in this work that the in-
equality of [22, Theorem 2.5] is incorrect. Finally, this paper is organized as follows: Sect. 2
contains the main results, and Sect. 3 provides concluding remarks.
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2 Main results
In this section, we establish generalized fractional inequalities in the Hermite–Hadamard
and Minkowski settings using newly discovered fractional integral operators. To support
this claim, we offer the following theorems.

Theorem 2.1 Let λ,γ > 0 and s ≥ 1, and let H , B be two functions on [0,∞) such that for
all t > 0, H(t), B(t) > 0,λJγ

θ ,qHs(t) < ∞, and λJ
γ

θ ,qBs(t) < ∞. If 0 < j ≤ H(τ )
B(τ ) ≤ J , τ ∈ [0, t], and

τ ≥ q(1 + θq(τ ,γ )), then we have the following inequality:

(
λ
J

γ

θ ,qHs(t)
)1/s +

(
λ
J

γ

θ ,qBs(t)
)1/s ≤ 1 + (j + 2)J

(j + 1)(J + 1)
(
λ
J

γ

θ ,q(H + B)s(t)
)1/s. (13)

Proof According to the condition H(τ )
B(τ ) ≤ J , τ ∈ [0, t], t > 0, we get

(J + 1)sHs(τ ) ≤ Js(H + B)s(τ ). (14)

Therefore we have

(J + 1)s

�(λ)
gλ–1

q (t, τ ,γ )
(τ – q(1 + θq(τ ,γ )))Hs(τ )

(τ – q)θq(τ ,γ )

≤ Js

�(λ)
gλ–1

q (t, τ ,γ )
(τ – q(1 + θq(τ ,γ )))(H + B)s(τ )

(τ – q)θq(τ ,γ )
. (15)

Using (12), we can integrate inequality (15) from 0 to t with respect to τ :

λ
J

γ

θ ,qHs(t) ≤ Js

(J + 1)s
λ
J

γ

θ ,q(H + B)s(t). (16)

Hence

(
λ
J

γ

θ ,qHs(t)
)1/s ≤ J

J + 1
(
λ
J

γ

θ ,q(H + B)s(t)
)1/s. (17)

Now, according to the condition H(τ )
B(τ ) ≥ j, we have

(
1 +

1
j

)s

Bs(τ ) ≤
(

1
j

)s

(H + B)s(τ ) (18)

and

1
�(λ)

(
1 +

1
j

)s

gλ–1
q (t, τ ,γ )

(τ – q(1 + θq(τ ,γ )))Bs(τ )
(τ – q)θq(τ ,γ )

≤ 1
�(λ)

(
1
j

)s

gλ–1
q (t, τ ,γ )

(τ – q(1 + θq(τ ,γ )))(H + B)s(τ )
(τ – q)θq(τ ,γ )

. (19)

Using (14), we can integrate inequality (19) from 0 to t with respect to τ :

(
λ
J

γ

θ ,qBs(t)
)1/s ≤ 1

j + 1
(
λ
J

γ

θ ,q(H + B)s(t)
)1/s. (20)

Thus by adding inequalities (17) and (20) we obtain the required inequality (13). �
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Theorem 2.2 Let γ > 0, s ≥ 1, and λ ∈C, Re(λ) > 0, and let H , B be two functions on [0,∞)
such that for all t > 0, H(t), B(t) > 0, λJ

γ

θ ,qHs(t) < ∞, and λJ
γ

θ ,qBs(t) < ∞. If 0 < j ≤ H(τ )
B(τ ) ≤ J ,

τ ∈ [0, t], and τ ≥ q(1 + θq(τ ,γ )), then we have the following inequality:

(
λ
J

γ

θ ,qHs(t)
)2/s +

(
λ
J

γ

θ ,qBs(t)
)2/s ≥

(
(J + 1)(j + 1)

J
– 2

)(
λ
J

γ

θ ,q(H + B)s(t)
)1/s. (21)

Proof By multiplying the two inequalities (17) and (20) we get

(
(J + 1)(j + 1)

J

)(
λ
J

γ

θ ,qHs(t)
)1/s(λ

J
γ

θ ,qBs(t)
)1/s ≤ (

λ
J

γ

θ ,q(H + B)s(t)
)2/s. (22)

By the Minkowski inequality we obtain

(
λ
J

γ

θ ,q(H + B)s(t)
)2/s ≤ ((

λ
J

γ

θ ,qHs(t)
)1/s +

(
λ
J

γ

θ ,qBs(t)
)1/s)2

=
(
λ
J

γ

θ ,qHs(t)
)2/s +

(
λ
J

γ

θ ,qBs(t)
)2/s

+ 2
(
λ
J

γ

θ ,qHs(t)
)1/s(λ

J
γ

θ ,qBs(t)
)1/s. (23)

Thus we can derive the desired inequality (21) using inequalities (22) and (23). �

Lemma 2.1 ([4]) Let H be a concave function on [a, b]. Then we have the following inequal-
ities:

H(a) + H(b) ≤ H(a + b – t) + H(t) ≤ 2H
(

a + b
2

)
. (24)

Theorem 2.3 Let λ,γ > 0, λ ∈C, and c, d > 1, and let H , B be two functions on [0,∞) such
that H(t), B(t) > 0 for t > 0. If the functions Hc, Bd are concave on [0,∞), then we have the
following inequality:

1
2c+d

(
H(0) + H

(
γ gq(t, 0,γ )

))c(B(0) + B
(
γ gq(t, 0,γ )

))d(λ
J

γ

θ ,q
(
γ λ–1gλ–1

q (t, 0,γ )
))2

≤ λ
J

γ

θ ,q
(
γ λ–1gλ–1

q (t, 0,γ )Hc(γ gq(t, 0,γ )
))

λ
J

γ

θ ,q

× (
γ λ–1gλ–1

q (t, 0,γ )Bd(γ gq(t, 0,γ )
))

. (25)

Proof By Lemma 2.1 and the concavity of the functions Hc, Bd , for t > 0,γ > 0, and τ ∈
[0, t], we have

Hc(0) + Hc(γ gq(t, 0,γ )
) ≤ Hc(γ gq(t, τ ,γ )

)
+ Hc(γ gq(τ , 0,γ )

)

≤ 2Hc
(

γ

2
gq(t, 0,γ )

)
, (26)

Bd(0) + Bd(γ gq(t, 0,γ )
) ≤ Bd(γ gq(t, τ ,γ )

)
+ Bd(γ gq(τ , 0,γ )

)

≤ 2Bd
(

γ

2
gq(t, 0,γ )

)
. (27)
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Multiplying inequalities (26) and (27) by τ–q(1+θq(τ ,γ ))
�(λ)(τ–q)θq(τ ,γ ) (γ gq(t, τ ,γ )gq(τ , 0,γ ))λ–1 and inte-

grating the resulting inequalities from 0 to t, we get

Hc(0) + Hc(γ gq(t, 0,γ ))
�(λ)

∫ t

0

(
γ gq(t, τ ,γ )gq(τ , 0,γ )

)λ–1 τ – q(1 + θq(τ ,γ )) dτ

(τ – q)θq(τ ,γ )

≤ 1
�(λ)

∫ t

0

(
γ gq(t, τ ,γ )gq(τ , 0,γ )

)λ–1 (τ – q(1 + θq(τ ,γ )))Hc(γ gq(t, τ ,γ )
(τ – q)θq(τ ,γ )

dτ

+
1

�(λ)

∫ t

0

(
γ gq(t, τ ,γ )gq(τ , 0,γ )

)λ–1 (τ – q(1 + θq(τ ,γ )))Hc(γ gq(τ , 0,γ )
(τ – q)θq(τ ,γ )

dτ

≤ 2Hc( γ

2 gq(t, 0,γ ))
�(λ)

∫ t

0

(
γ gq(t, τ ,γ )gq(τ , 0,γ )

)λ–1 (τ – q(1 + θq(τ ,γ ))) dτ

(τ – q)θq(τ ,γ )
, (28)

and

Bd(0) + Bd(γ gq(t, 0,γ ))
�(λ)

∫ t

0

(
γ gq(t, τ ,γ )gq(τ , 0,γ )

)λ–1 (τ – q(1 + θq(τ ,γ ))) dτ

(τ – q)θq(τ ,γ )

≤ 1
�(λ)

∫ t

0

(
γ gq(t, τ ,γ )gq(τ , 0,γ )

)λ–1 (τ – q(1 + θq(τ ,γ )))Bd(γ gq(t, τ ,γ )
(τ – q)θq(τ ,γ )

dτ

+
1

�(λ)

∫ t

0

(
γ gq(t, τ ,γ )gq(τ , 0,γ )

)λ–1 (τ – q(1 + θq(τ ,γ )))Bd(γ gq(τ , 0,γ )
(τ – q)θq(τ ,γ )

dτ

≤ 2Bd( γ

2 gq(t, 0,γ ))
�(λ)

∫ t

0

(
γ gq(t, τ ,γ )gq(τ , 0,γ )

)λ–1 (τ – q(1 + θq(τ ,γ ))) dτ

(τ – q)θq(τ ,γ )
. (29)

Setting gq(t, τ ,γ ) = gq(η, 0,γ ), we have

1
�(λ)

∫ t

0

(
γ gq(t, τ ,γ )gq(τ , 0,γ )

)λ–1 (τ – q(1 + θq(τ ,γ ))) dτ

(τ – q)θq(τ ,γ )

= λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)λ–1), (30)

1
�(λ)

∫ t

0

(
γ gq(t, τ ,γ )gq(τ , 0,γ )

)λ–1 (τ – q(1 + θq(τ ,γ )))Hc(γ gq(t, τ ,γ )
(τ – q)θq(τ ,γ )

dτ

= λ
J

γ

θ ,q(
(
γ gq(t, 0,γ )

)λ–1Hc(γ gq(t, 0,γ )
)
, (31)

and

1
�(λ)

∫ t

0

(
γ gq(t, τ ,γ )gq(τ , 0,γ )

)λ–1 (τ – q(1 + θq(τ ,γ )))Bd(γ gq(t, τ ,γ )
(τ – q)θq(τ ,γ )

dτ

= λ
J

γ

θ ,q(
(
γ gq(t, 0,γ )

)λ–1Bd(γ gq(t, 0,γ )
)
. (32)

Therefore by (28), (30), and (31) we get

(Hc(0) + Hc(γ gq(t, 0,γ )
)(

λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)λ–1))

≤ 2λ
J

γ

θ ,q(
(
γ gq(t, 0,γ )

)λ–1Hc(γ gq(t, 0,γ )
)

≤ 2Hc
(

γ

2
gq(t, 0,γ )

)(
λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)λ–1)), (33)
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and by (29), (30), and (32) we get

(Bd(0) + Bd(γ gq(t, 0,γ )
)(

λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)λ–1))

≤ 2λ
J

γ

θ ,q(
(
γ gq(t, 0,γ )

)λ–1Bd(γ gq(t, 0,γ )
)

≤ 2Bd
(

γ

2
gq(t, 0,γ )

)(
λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)λ–1)). (34)

Hence by multiplying both inequalities (33) and (34) it follows that

(Hc(0) + Hc(γ gq(t, 0,γ )
)
(Bd(0) + Bd(γ gq(t, 0,γ )

)(
λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)λ–1))2

≤ 4(λJγ

θ ,q
((

γ gq(t, 0,γ )
)λ–1Hc(γ gq(t, 0,γ )

))
× (λJγ

θ ,q
((

γ gq(t, 0,γ )
)λ–1Bd(γ gq(t, 0,γ )

))
. (35)

Since H(t)B(t) > 0 for t > 0, for γ > 0, c ≥ 0, and d ≥ 0, we have

(
Hc(0) + Hc(γ gq(t, 0,γ )

2

)1/c

≥ H(0) + H(γ gq(t, 0,γ )
2

, (36)

and

(
Bd(0) + Bd(γ gq(t, 0,γ )

2

)1/d

≥ B(0) + B(γ gq(t, 0,γ )
2

. (37)

Therefore

(
Hc(0) + Hc(γ gq(t, 0,γ )

2

)(
λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)λ–1))

≥
(

H(0) + H(γ gq(t, 0,γ )
2

)c(
λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)λ–1)), (38)

and

(
Bd(0) + Bd(γ gq(t, 0,γ )

2

)(
λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)λ–1))

≥
(

B(0) + B(γ gq(t, 0,γ )
2

)d(
λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)λ–1)). (39)

Using inequalities (38) and (39), we obtain

(Hc(0) + Hc(γ gq(t, 0,γ )
)
(Bd(0) + Bd(γ gq(t, 0,γ )

)(
λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)λ–1))2

≥ 22–c–d(H(0) + H
(
γ gq(t, 0,γ )

)c(B(0) + B
(
γ gq(t, 0,γ )

)d

× (
λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)λ–1))2. (40)

Hence we derive the needed inequality (25) by combining inequalities (35) and (40). �
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Theorem 2.4 Let λ,γ ,ν > 0, λ,ν ∈C, and c, d > 1, and let H , B be two functions on [0,∞)
such that H(t), B(t) > 0 for t > 0. If Hc, Bd are concave on [0,∞), then we have the following
inequality:

1
2c+d–2

(
H(0) + H(t)

)c(B(0) + B(t)
)d(λ

J
γ

θ ,q
(
γ ν–1gν–1

q (t, 0,γ )
))2

≤
[

γ ν–λ�(ν)
�(λ)

ν

J
γ
(
γ λ–1gλ–1

q (t, 0,γ )Hc(γ gq(t, 0,γ )
))

+ λ
J

γ

θ ,q
(
γ ν–1gν–1

q (t, 0,γ )Hc(γ gq(t, 0,γ )
))]

×
[

γ ν–λ�(ν)
�(λ)

ν

J
γ
(
γ λ–1gλ–1

q (t, 0,γ )Bd(γ gq(t, 0,γ )
))

+ λ
J

γ

θ ,q
(
γ ν–1gν–1

q (t, 0,γ )Bd(γ gq(t, 0,γ )
))]

. (41)

Proof Multiplying inequalities (26) and (27) by τ–q(1+θq(τ ,γ ))
�(λ)(τ–q)θq(τ ,γ ) gλ–1

q (t, τ ,γ )(γ gq(τ , 0,γ ))ν–1

and then integrating the resulting inequalities with respect to τ from 0 to t, we obtain

Hc(0) + Hc(γ gq(t, 0,γ ))
�(λ)

∫ t

0
gλ–1

q (t, τ ,γ )
(
γ gq(τ , 0,γ )

)ν–1 τ – q(1 + θq(τ ,γ ))
(τ – q)θq(τ ,γ )

dτ

≤ 1
�(λ)

∫ t

0
gλ–1

q (t, τ ,γ )
(
γ gq(τ , 0,γ )

)ν–1 (τ – q(1 + θq(τ ,γ )))Hc(γ gq(t, τ ,γ )
(τ – q)θq(τ ,γ )

dτ dτ

+
1

�(λ)

∫ t

0
gλ–1

q (t, τ ,γ )
(
γ gq(τ , 0,γ )

)ν–1 (τ – q(1 + θq(τ ,γ )))Hc(γ gq(τ , 0,γ )
(τ – q)θq(τ ,γ )

dτ

≤ 2Hc( γ

2 gq(t, 0,γ ))
�(λ)

∫ t

0
gλ–1

q (t, τ ,γ )
(
γ gq(τ , 0,γ )

)ν–1 τ – q(1 + θq(τ ,γ ))
(τ – q)θq(τ ,γ )

dτ , (42)

and

Bd(0) + Bd(γ gq(t, 0,γ ))
�(λ)

∫ t

0
gλ–1

q (t, τ ,γ )
(
γ gq(τ , 0,γ )

)ν–1 τ – q(1 + θq(τ ,γ ))
(τ – q)θq(τ ,γ )

dτ

≤ 1
�(λ)

∫ t

0
gλ–1

q (t, τ ,γ )
(
γ gq(τ , 0,γ )

)ν–1 (τ – q(1 + θq(τ ,γ )))Bd(γ gq(t, τ ,γ )
(τ – q)θq(τ ,γ )

dτ dτ

+
1

�(λ)

∫ t

0
gλ–1

q (t, τ ,γ )
(
γ gq(τ , 0,γ )

)ν–1 (τ – q(1 + θq(τ ,γ )))Bd(γ gq(τ , 0,γ )
(τ – q)θq(τ ,γ )

dτ

≤ 2Bd( γ

2 gq(t, 0,γ ))
�(λ)

∫ t

0
gλ–1

q (t, τ ,γ )
(
γ gq(τ , 0,γ )

)ν–1 τ – q(1 + θq(τ ,γ ))
(τ – q)θq(τ ,γ )

dτ . (43)

Setting gq(t, τ ,γ ) = gq(η, 0,γ ),we have

1
�(λ)

∫ t

0
gλ–1

q (t, τ ,γ )
(
γ gq(τ , 0,γ )

)ν–1 τ – q(1 + θq(τ ,γ ))
(τ – q)θq(τ ,γ )

dτ

= λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)ν–1), (44)

1
�(λ)

∫ t

0
gλ–1

q (t, τ ,γ )
(
γ gq(τ , 0,γ )

)ν–1Hc(γ gq(t, τ ,γ )
τ – q(1 + θq(τ ,γ ))

(τ – q)θq(τ ,γ )
dτ
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=
γ ν–λ�(ν)

�(λ)

ν

J
γ (

(
γ gq(t, 0,γ )

)λ–1Hc(γ gq(t, 0,γ )
)
, (45)

and

1
�(λ)

∫ t

0
gλ–1

q (t, τ ,γ )
(
γ gq(τ , 0,γ )

)ν–1 τ – q(1 + θq(τ ,γ ))
(τ – q)θq(τ ,γ )

Bd(γ gq(t, τ ,γ ) dτ

=
γ ν–λ�(ν)

�(λ)

ν

J
γ (

(
γ gq(t, 0,γ )

)λ–1Bd(γ gq(t, 0,γ )
)
. (46)

Therefore, by (41), (44), and (45) we get

(Hc(0) + Hc(γ gq(t, 0,γ )
)(

λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)ν–1))

≤ γ ν–λ�(ν)
�(λ)

ν

J
γ (

(
γ gq(t, 0,γ )

)λ–1Hc(γ gq(t, 0,γ )
)

+ λ
J

γ

θ ,q(
(
γ gq(t, 0,γ )

)ν–1Hc(γ gq(t, 0,γ )
)
. (47)

Also, by (43), (44), and (46) we get

(Bd(0) + Bd(γ gq(t, 0,γ )
)(

λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)ν–1))

≤ γ ν–λ�(ν)
�(λ)

ν

J
γ (

(
γ gq(t, 0,γ )

)λ–1Bd(γ gq(t, 0,γ )
)

+ λ
J

γ

θ ,q(
(
γ gq(t, 0,γ )

)ν–1Bd(γ gq(t, 0,γ )
)
. (48)

By multiplying inequalities (47) and (48) we get

(
Hc(0) + Hc(γ gq(t, 0,γ )

))(
Bd(0) + Bd(γ gq(t, 0,γ )

))(
λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)ν–1))2

≤
[

γ ν–λ�(ν)
�(λ)

ν

J
γ (

(
γ gq(t, 0,γ )

)λ–1Hc(γ gq(t, 0,γ )
)

+ λ
J

γ

θ ,q(
(
γ gq(t, 0,γ )

)ν–1Hc(γ gq(t, 0,γ )
)]

(49)

≤
[

γ ν–λ�(ν)
�(λ)

ν

J
γ (

(
γ gq(t, 0,γ )

)λ–1Bd(γ gq(t, 0,γ )
)

+ λ
J

γ

θ ,q(
(
γ gq(t, 0,γ )

)ν–1Bd(γ gq(t, 0,γ )
)]

. (50)

According to inequalities (38) and (39), we obtain

(
Hc(0) + Hc(γ gq(t, 0,γ )

))(
Bd(0) + Bd(γ gq(t, 0,γ )

))(
λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
))λ–1))2

≥ 22–k–l(H(0) + H
(
γ gq(t, 0,γ )

))c(B(0) + B
(
γ gq(t, 0,γ )

))d

× (
λ
J

γ

θ ,q
((

γ gq(t, 0,γ )
)λ–1))2. (51)

Hence we derive the needed inequality (41) by combining inequalities (49) and (51). �
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3 Comparative cases
In this study, we establish the Hermite–Hadamard and Minkowski inequalities in the con-
text of newly generalized fractional integral operators.

We examine some specific cases arising from our findings in this section by presenting
some particular examples of our fractional integral operator described by equation (12)
as the following cases.

Case I. If we put q = 0 in (12), then we get the general improved fractional operator
defined in [10]. When this operator is applied to the Hermite–Hadamard and Minkowski
inequalities, the obtained results are reduced to the following corollaries.

Corollary 3.1 Let λ,γ > 0, λ ∈ C, and c, d > 1. Let H , B be two functions on [0,∞) such
that H(t), B(t) > 0 for t > 0. If the functions Hc, Bd are concave on [0,∞), then we have the
following inequality:

1
2c+d

(
H(0) + H

(
γ g(t, 0,γ )

))c(B(0) + B
(
γ g(t, 0,γ )

))d(λ
J

γ

θ

(
γ λ–1gλ–1(t, 0,γ )

))2

≤ λ
J

γ

θ

(
γ λ–1gλ–1(t, 0,γ )Hc(γ g(t, 0,γ )

))
λ
J

γ

θ

(
γ λ–1gλ–1(t, 0,γ )Bd(γ g(t, 0,γ )

))
. (52)

Corollary 3.2 Let λ,γ ,ν > 0, λ,ν ∈C, and c, d > 1, and let H , B be two functions on [0,∞)
such that H(t), B(t) > 0 for t > 0. If Hc, Bd are concave functions on [0,∞), then we have the
following inequality:

1
2c+d–2

(
H(0) + H(t)

)c(B(0) + B(t)
)d(λ

J
γ

θ

(
γ ν–1gν–1(t, 0,γ )

))2

≤
[

γ ν–λ�(ν)
�(λ)

ν

J
γ
(
γ λ–1gλ–1(t, 0,γ )Hc(γ g(t, 0,γ )

))

+ λ
J

γ

θ

(
γ ν–1gν–1(t, 0,γ )Hc(γ g(t, 0,γ )

))]

×
[

γ ν–λ�(ν)
�(λ)

ν

J
γ
(
γ λ–1gλ–1(t, 0,γ )Bd(γ g(t, 0,γ )

))

+ λ
J

γ

θ

(
γ ν–1gν–1(t, 0,γ )Bd(γ g(t, 0,γ )

))]
. (53)

Case II. If we put γ = 1 and g(t, τ ,γ ) = ln t – ln τ in Corollary 3.2, then we obtain the
integral inequalities due to Hadamard fractional integral operator as follows.

Corollary 3.3 Let λ,ν > 0, λ,ν ∈ C, and k, l > 1, and let H , B be two functions on [0,∞)
such that H(t), B(t) > 0 for t > 0. If Hc, Bd are concave functions on [0,∞), then we have the
following inequality:

1
2k+l–2

(
H(0) + H(t)

)c(B(0) + B(t)
)d(λ

J
1((ln t)ν–1))2

≤
[

�(ν)
�(λ)

ν

J
1((ln t)λ–1Hc(ln t)

)
+λ

J
1((ln t)ν–1Hc(ln t)

]

×
[

�(ν)
�(λ)

ν

J
1((ln t)λ–1Bd(ln t)

)
+λ

J
1((ln t)ν–1Bd(ln t)

)]
. (54)
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Case III. If we put g(t, τ ,γ ) = tγ –τγ

γ
in Corollaries 3.1, 3.2, we will obtain the integral

inequalities due to Nizar et al. [22].
Case IV. If g(t, τ ,γ ) = tγ –τγ

γ
and γ = 1, then we obtain all the fractional inequalities in-

troduced by Dahmani [4].
Case V. If we put g(t, τ ,γ ) = tγ –τγ

γ
and γ = λ = 1, then all the outcomes will reduced to

the traditional inequalities introduced in [3].

4 Conclusions
In the context of the generalized fractional theta-obedient integral, a variety of research
directions related to integral inequalities can be examined in equation (12). More re-
search on the Hermite–Hadamard inequality with differentiable h-convex functions [31],
Hermite–Hadamard inequality for s-convex functions [29], the binary Brunn–Minkowski
inequality [17], and other topics are predicted under this operator.
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