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Abstract
In our previous work, we have extended the hypercircle inequality (HI) to situations
where the data error is known. Furthermore, the most recent result is applied to the
problem of learning a function value in the reproducing kernel Hilbert space.
Specifically, a computational experiment of the method of hypercircle, where the
data error is measured with the lp norm (1 < p ≤ ∞), is compared to the
regularization method, which is a standard method of the learning problem. Despite
this breakthrough, there is still a significant aspect of data error measure with the l1

norm to consider in this issue. In this paper, we do not only explore the hypercircle
inequality for the data error measured with the l1 norm, but also provide an
unexpected application of hypercircle inequality for only one data error to the l∞
minimization problem, which is a dual problem in this case.
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1 Introduction
Many inequalities are known in connection with the approximation problem. In 1947
the hypercircle inequality has been applied to boundary value problems in mathemat-
ical physics [11]. In 1959, Golomb and Weinberger demonstrated the relevance of the
hypercircle inequality (HI) to a large class of numerical approximation problems [5]. At
present the method of hypercircle, which has a long history in applied mathematics, has
received attention by mathematicians in several directions [4, 12]. In 2011, Khompurng-
son and Micchelli [6] described HI and its potential application to kernel-based learning
when the data is known exactly and then extended it to situation where there is known
data error (Hide). Furthermore, the most recent result is applied to the problem of learn-
ing a function value in the reproducing kernel Hilbert space. Specifically, a computational
experiment of the method of hypercircle, when data error is measured with the lp norm
(1 < p ≤ ∞), is compared to the regularization method, which is a standard method of
learning problem [6, 8]. We continue our research on this topic by presenting a full analy-
sis of hypercircle inequality for data error (Hide) measured with the l∞ norm [10]. Despite
this breakthrough, there is still a significant aspect of data error measure with the l1 norm
to consider in this issue. In this paper, we do not only explore the hypercircle inequality
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for data error measured with the l1 norm, but also provide an unexpected application of
hypercircle inequality for only one data error to the l∞ minimization problem, which is a
dual problem in this case.

Recently, we are specifically interested in a detailed analysis of the hypercircle inequality
for data error (Hide) measured with the l∞ norm [10]. Given a set of linearly independent
vectors X = {xj : j ∈ Nn} in a real Hilbert space H with inner product 〈·, ·〉 and norm ‖ · ‖,
where Nn = {1, 2, . . . , n}. The Gram matrix of the vector in X is

G =
(〈xi, xj〉 : i, j ∈Nn

)
.

We define the linear operator L : H −→ R
n as

Lx =
(〈x, xj〉 : j ∈Nn

)
, x ∈ H .

Consequently, the adjoint map LT : Rn −→ H is given as

LT a =
∑

j∈Nn

ajxj, a ∈R
n.

It is well known that for any d ∈R
n, there is a unique vector x(d) ∈ M such that

x(d) := LT(
G–1d

)
:= arg min

{‖x‖ : x ∈ H , L(x) = d
}

, (1)

where M is the n-dimensional subspace of H spanned by the vectors in X; see, for example,
[9]. We start with I ⊆ Nn that contains m elements (m < n). For each e = (e1, . . . , en) ∈ R

n,
we also use the notations eI = (ei : i ∈ I) ∈ R

m and eJ = (ei : i ∈ J) ∈R
n–m. We define the set

E∞ =
{

e : e ∈R
n : eI = 0, |||eJ |||∞ ≤ ε

}
,

where ε is some positive number. For each d ∈ R
n, we define the partial hyperellipse

H(d|E∞) :=
{

x : x ∈ H ,‖x‖ ≤ 1, L(x) – d ∈ E∞
}

. (2)

Given x0 ∈ H , our main goal here is to estimate 〈x, x0〉 for x ∈ H(d|E∞). According to the
midpoint algorithm, we define

I(x0, d|E∞) =
{〈x, x0〉 : x ∈H(d|E∞)

}
.

We point out that I(x0, d|E∞) is a closed bounded subset in R. Therefore we obtain that

I(x0, d|E∞) =
[
m–(x0, d|E∞), m+(x0, d|E∞)

]
,

where m–(x0, d|E∞) = min{〈x, x0〉 : x ∈ H(d|E∞)} and m+(x0, d|E∞) = max{〈x, x0〉 : x ∈
H(d|E∞)}. Hence the best estimator is the midpoint of this interval. According to our
previous work [10], we give a formula for the right-hand endpoint.
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Theorem 1.1 If x0 /∈ M and H(d|E∞) contains more than one point, then

m+(x0, d|E∞) = min
{∥∥x0 – LT (c)

∥
∥ + ε‖|cJ‖|1 + (d, c). : c ∈R

n}. (3)

Therefore the midpoint of the uncertainty I(x0, d|E∞) is given by

m(x0, d|E∞) =
m+(x0, d|E∞) – m+(x0, –d|E∞)

2
. (4)

Furthermore, we describe every solution to the error bound problem (3) that is required
to find the uncertainty interval midpoint. Specifically, the result is applied to a problem
with learning the value of a function in the Hardy space of square-integrable functions on
the unit circle, which has a well-known reproducing kernel. These formulas allow us to
give explicitly the right-hand endpoint m+(x0, d|E∞) when only the data error is known.
We conjecture that the results of this case appropriately extend to the case of data error
measured with the l1 norm, which is our motivation to study this subject.

The paper is organized as follows. In Sect. 2, we provide basic concepts of the particular
case of hypercircle inequality for only one data error. Specifically, we provide an explicit
solution of a dual problem, which we need for main results. In Sect. 3, we solve the problem
of hypercircle inequality for data error measured with the l1 norm. The main result in this
section is Theorem 3.3, which establishes the solution for the l∞ minimization problem,
which is a dual problem in this case. Finally, we provide an example of a learning problem in
the Hardy space of square-integrable functions on the unit circle and report on numerical
experiments of the proposed methods.

2 Hypercircle inequality for only one data error
In this section, we describe HI for only one data error and its potential relevance to kernel-
based learning. Given a set I ⊆ Nn that contains n – 1 elements, we assume that j /∈ I . For
each e = (e1, . . . , en) ∈ R

n, we also use the notation eI = (ei : i ∈ I) ∈R
m. For each d ∈R

n, we
define the partial hyperellipse

H(d, ε) :=
{

x : x ∈ H ,‖x‖ ≤ 1, LI(x) = dI ,
∣
∣〈x, xj〉 – dj

∣
∣ ≤ ε

}
. (5)

Let x0 ∈ H . Our purpose here is to find the best estimator for 〈x, x0〉 knowing that ‖x‖ ≤ 1,

〈x, xi〉 = di for all j ∈ Nn–1 and 〈x, xj〉 = dj + e, where |e| ≤ ε.

According to our previous work [7], we point out that H(d, ε) is weakly sequentially com-
pact in the weak topology on H . It follows that I(x0, d, ε) := {〈x, x0〉 : x ∈H(d, ε)} fills out a
closed bounded interval in R. Clearly, the midpoint of the uncertainty interval is the best
estimator for 〈x, x0〉 when x ∈ H(d, ε). Therefore the hypercircle inequality for partially
corrupted data becomes as follows.

Theorem 2.1 If x0 ∈ H and H(d, ε) 
= ∅, then there is e0 ∈R such that |e0| ≤ ε and for any
x ∈H(d, ε),

∣∣〈x(d + e0), x0
〉
– 〈x, x0〉

∣∣ ≤ 1
2

(m+(x0, d, ε) + m–(x0, d, ε),
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where x(d + e0) = QT (G–1(d + e0)) ∈H(d, ε),

m+(x0, d, ε) := max
{〈x, x0〉 : x ∈H(d, ε)

}
, (6)

and

m–(x0, d, ε) := min
{〈x, x0〉 : x ∈H(d, ε)

}
. (7)

For the particular case ε = 0, let us provide an explicit HI bound and a hypercircle in-
equality as follows.

Theorem 2.2 If x ∈H(d) and x0 ∈ H , then

∣∣〈x(d), x0
〉
– 〈x, x0〉

∣∣ ≤ dist(x0, M)
√

1 –
∥∥x(d)

∥∥2, (8)

where dist(x0, M) := min{‖x0 – y‖ : y ∈ M}.

The inequality above guarantees the presence of an approximation value, which is the
vector in the closest point of a hyperplane to the origin. Moreover, it is independent of the
vector x0. For the detailed proofs, see [2].

A more complete right-hand endpoint of the uncertainty interval may be obtained by
the following results. To this end, we define the function V : Rn →R for each c ∈R

n by

V (c) :=
∥∥x0 – LT (c)

∥∥ + ε|cj| + (d, c).

Theorem 2.3 If x0 /∈ M and H(d, ε) contains more than one element, then

m+(x0, d, ε) = min
{

V (c) : c ∈R
n}, (9)

and the right-hand side of equation (9) has a unique solution.

Proof See [7]. �

To state the midpoint of the uncertainty interval, we point out the following fact. We
begin with the left-hand side of the interval

–m+(x0, –d, ε) = m–(x0, d, ε) := min
{〈x, x0〉 : x ∈H(d, ε)

}
.

The midpoint is given by

m(x0, d, ε) =
m+(x0, d, ε) – m+(x0, –d, ε)

2
. (10)

In the remainder of this section, we provide an explicit solution to (9).

Theorem 2.4 If x0 /∈ M and H(d, ε) contain more than one element, then we have:
1. x0

‖x0‖ ∈H(d, ε) if and only if m+(x0, d, ε) = ‖x0‖,
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2. x+(dI) ∈H(d, ε) if and only if

m+(x0, d, ε) =
〈
x(dI), x0

〉
+ dist(x0, MI)

√
1 –

∥
∥x(dI)

∥
∥2,

where the vector x+(dI) := arg max{〈x, x0〉 : x ∈H(dI)},
3. x0

‖x0‖ , x+(dI) /∈H(d, ε) if and only if

m+(x0, d, ε) = max
{〈

x+(d + εe), x0
〉
,
〈
x+(d – εe), x0

〉}
,

where the vector e ∈R
n with eI = 0 and |ej| = 1.

Proof According to our hypotheses, the minimum c∗ ∈ R
n is the unique solution of the

right-hand side of equation (9).
(1) The proof directly follows from [7], that is, we can state that if x0 /∈ M, then

0 = arg min
{

V (c) : c ∈R
n}

if and only if x0
‖x0‖ ∈H(d, ε).

(2) Again from [7] it follows that c∗ = arg min{V (c) : c ∈ R
n} with c∗

j = 0 if and only if

x+(dI) ∈H(d, ε).

By the hypercircle inequality and (8) we obtain that

〈
x+(dI), x0

〉
=

〈
x(dI), x0

〉
+ dist(x0, MI)

√
1 –

∥∥x(dI)
∥∥2.

(3) Under our hypotheses and [7], the minimum c∗ ∈ R
n is the unique solution of the

function V , and c∗
j 
= 0. Computing the gradient of V yields

–L
(

x0 – LT c∗

‖x0 – LT c∗‖
)

+ ε sgn
(
c∗

n
)
e + d = 0, (11)

which confirms that

LI
(
x+(d, ε)

)
= dI and

〈
x+(d, ε), xj

〉
= dj + sgn

(
c∗)ε,

where the vector x+(d, ε) is given by

x+(d, ε) :=
x0 – LT c∗

‖x0 – LT c∗‖ ∈H(d + εe) ∪H(d – εe).

Therefore we obtain that

m+(x0, d, ε) = max
{〈

x+(d + εe), x0
〉
,
〈
x+(d – εe), x0

〉}
. �

We end this section by discussing a concrete example of the hypercircle inequality for
only one data error for function estimation in a reproducing kernel Hilbert space. Specif-
ically, we report on a new numerical experiment in a reproducing kernel Hilbert space by
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Figure 1 Exact function

using the available material from HI and our recent results. A real-valued function K(t, s)
of t and s in T is called a reproducing kernel of H if the following property is satisfied for
all t ∈ T and f ∈ H :

f (t) = 〈Kt , f 〉, (12)

where Kt is the function defined for s ∈ T as Kt(s) = K(t, s). Moreover, for any kernel K ,
there is unique RKHS with K as its reproducing kernel [1]. In our example, we choose the
Gaussian kernel on R, that is,

K(s, t) = e– (s–t)2
10 , s, t ∈R.

The computational steps are organized in the following way. Let T = {tj : j ∈Nn} be points
of increasing order in R. Consequently, we have a finite set of linearly independent ele-
ments {Ktj : j ∈Nn} in H , where

Ktj (t) := e–
(tj–t)2

10 , j ∈Nn, t ∈ R.

Thus the vectors {xj : j ∈Nn} appearing above are identified with the function {Ktj : j ∈Nn}
Therefore the Gram matrix of {Ktj : j ∈Nn} is given by

G(t1, . . . , tn) :=
(
K(ti, tj) : i, j ∈Nn

)
.

In our experiment, we choose the exact function

g(t) = –0.15K0.5(t) + 0.05K0.85(t) – 0.25K–0.5(t)

and compute the vector d = {g(tj) : j ∈N12} as shown in Fig. 1.
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Given t0 = 3, we want to estimate f (3) = 〈Kt0 , f 〉 knowing that ‖f ‖K ≤ ρ and f (ti) =
〈Kti , f 〉 = di for all i ∈ N12. In addition, we assume that there is one missing data, that
is, we assume that g(0) is missing. Therefore we proximate f (0) by fdI (0) = 6.5768973,
which is obtained from the hypercircle inequality, Theorem 2.2, whereas the exact value
g(0) = 6.576978. Next, we wish to estimate f (3) = 〈f , Kt0〉 knowing that f (tj) = dj for all
j ∈ N12 and f (0) = 6.5768973 + e, where |e| ≤ ε. Clearly, our data set contains both accurate
and inaccurate data. Specifically, there is only one data error in this case. By Theorem 2.4
we easily see that fdI ∈ H(d, ε). Thus the best value to estimate f (3) is fdI (3) = 3.137912
knowing that f (tj) = dj for all j ∈ N12 and f (0) = 6.5768973 + e, where |e| ≤ ε. The exact
value is g(3) = 3.1395855.

3 Hypercircle inequality for data error measured with l1 norm
In the previous section, we have provided basic concepts of the particular case of hyper-
circle inequality for only one data error. For our purpose, we restrict our attention to the
study of hypercircle inequality for partially corrupted data with the l1 norm. We start with
I ⊆Nn that contains m elements (m < n). For each e = (e1, . . . , en) ∈R

n, we also use the no-
tations eI = (ei : i ∈ I) ∈ R

m and eJ = (ei : i ∈ J) ∈ R
n–m. We define E1 = {e : e ∈ R

n : eI =
0,‖|eJ |‖1 ≤ ε}, where ε is some positive number. For each d ∈ R

n, we define the partial
hyperellipse

H(d|E1) :=
{

x : x ∈ H ,‖x‖ ≤ 1, L(x) – d ∈ E1
}

. (13)

As we said earlier, it follows that H(d|E1) is weakly sequentially compact in the weak
topology on H and I(x0, d|E1) := {〈x, x0〉 : x ∈ H(d|E1)} is a closed bounded interval in
R. Again, the midpoint of the uncertainty interval is the best estimator for 〈x, x0〉 when
x ∈H(d|E1). Therefore the midpoint of the uncertainty I(x0, d|E1) is given by

m(x0, d|E1) =
m+(x0, d|E1) – m+(x0, –d|E1)

2
. (14)

We easily see that the data set contains both accurate and inaccurate data. In the same
manner, we provide the duality formula to obtain the right-hand endpoint of the uncer-
tainty interval I(x0, d|E1). To this end, let us define the convex function V : Rn −→R by

V(c) :=
∥
∥x0 – LT (c)

∥
∥ + ε‖|cJ|‖∞ + (d, c), c ∈R

n. (15)

Theorem 3.1 If x0 /∈ M and H(d|E1) contains more than one point, then

m+(x0, d|E1) = min
{
V(c) : c ∈R

n}, (16)

and the right-hand side of equation (16) has a unique solution. Moreover, x+(dI) ∈H(d|E1)
if and only if c∗

J = 0 where, c∗ = arg min{V(c) : c ∈ R
n}.

Proof See [10]. �

We begin our main result of this section by providing a useful observation. To this end,
let us introduce the following notations. For each j ∈ J, define the function Vj : Rn →R by

Vj(c) :=
∥∥x0 – LT (c)

∥∥ + ε|cj| + (c, d), c ∈R
n. (17)
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Clearly, we see that the duality formula (17) corresponds to the hyperellipse with only one
data error

Hj(d, ε) =
{

x : x ∈ B, LNn\{j}(x) = dNn\{j},
∣∣〈x, xj〉 – dj

∣∣ < ε
}

. (18)

By Theorem 2.4, if x0 /∈ M and Hj(d, ε) contain more than one element, then there is
unique a∗ ∈ R

n such that

Vj
(
a∗) = min

{
Vj(a) : a ∈R

n}.

We can now state the first result.

Theorem 3.2 If x0 /∈ M,H(d|E1),Hj(d, ε) contains more than one point and there exists
a∗ = arg min{Vj(a) : a ∈R

m+1} with ‖a∗‖∞ = |a∗
j |, then

min
{
V(c) : c ∈R

n} = min
{
Vj(a) : a ∈ R

n}. (19)

Proof For each c ∈R
n, we observe that

Vj(c) =
∥∥x0 – LT (c)

∥∥ + ε|cj| + (c, d)

≤ ∥
∥x0 – LT (c)

∥
∥ + ε‖|cJ‖|∞ + (c, d)

= V(c),

which means that min{Vj(c) : c ∈R
n} ≤ min{V(c) : c ∈R

n}.
According to our assumption, we obtain that

Vj
(
a∗) =

∥∥x0 – LT(
a∗)∥∥ + ε

∣∣a∗
j
∣∣ +

(
a∗, d

)
(20)

=
∥
∥x0 – LT(

a∗)∥∥ + ε
∥
∥
∣
∣a∗

J
∥
∥
∣
∣∞ +

(
a∗, d

)
, (21)

which completes the proof. �

To study the general case, let us introduce the following notations. We first denote the
set

�∞ =
{
λ : λ ∈R

n,λI = 0, |||λJ|||∞ ≤ 1
}

.

For each λ ∈ �∞, we denote the set of linearly independent vectors

X
(
λj) = {xi : i ∈Nm} ∪ {

x
(
λj)}

in H , where the vector

x
(
λj) = xj +

∑

i∈J\{j}
λixi.
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Consequently, we denote by M(X(λj)) the (m + 1)-dimensional linear subspace of H
spanned by the vectors in X(λj). From now on, we denote by G(X(λj)) the Gram matrix
of the vectors in Xj(λJ), which is symmetric and positive definite. The vector d(λj) ∈ R

m+1

has the components

d
(
λj)

i = di for i ∈ I and d
(
λj)

m+1 = dj +
∑

i∈J\{j}
λidi.

Therefore we obtain the following partial hyperellipse with constant d(λj):

H
(
d
(
λj), ε

)
=

{
x : x ∈ B, LI(x) = dI ,

∣
∣〈x, x

(
λj)〉 – d

(
λj)

m+1

∣
∣ < ε

}
. (22)

Next, this partial hyperellipse with only one data error as (22) corresponds to a duality
formula for the right-hand endpoint of uncertainty interval, m+(x0, d(λj), ε), as shown the
following way. For all j ∈ J and λ ∈ �∞, we define the function Vj(·|λ) : Rm+1 → R by

Vj(c|λ) :=
∥∥x0 – LT

I (cI) – cm+1
(
x
(
λj))∥∥ + ε|cm+1| +

(
c, d

(
λj)), c ∈R

m+1. (23)

Theorem 3.3 If x0 /∈ M, x0
‖x0‖ /∈H(d|E1), and H(d|E1) contains more than one point, then

there are λ̂ ∈ �∞ and j ∈ J such that

min
{
V(c) : c ∈R

n} = min
{
Vj(c|λ̂) : c ∈R

m+1}. (24)

Proof According to our assumption, we can conclude that the right-hand side of equation
(24) has a unique solution. Since x0

‖x0‖ /∈ H(d|E1), the vector c∗ 
= 0. We then assume that
‖|c∗

J |‖∞ = |c∗
j | for some j ∈ J. Alternatively, we find that there is λ̂ ∈ �∞ such that c∗

i = λ̂ic∗
j

for all i ∈ J\{j}. Therefore we obtain that

min
{
V(c) : c ∈R

n} =
∥∥x0 – LT

I
(
c∗

I
)

– c∗
j
(
x
(
λ̂j))∥∥ + ε

∣∣c∗
j
∣∣ +

(
c∗, d

(
λ̂j))

= min
{
Vj(a|λ̂) : a ∈R

m+1}. (25)
�

Computing the gradient of Vj(·|λ̂), the minimum c∗
I∪{j} = a∗ ∈ R

m+1 is a unique solution
of the nonlinear equations

LI
(
x+

(
d
(
λ̂j), ε

))
= dI ,

and

〈
x+

(
d
(
λ̂j), ε

)
, x

(
λj)〉 – d

(
λj)

m+1 = sgn
(
c�

j
)
ε,

where the vector x+(d(λ̂j), ε) is given by

x+
(
d
(
λ̂j), ε

)
:=

x0 – LT
I (a∗

I ) – a∗
j (x(λ̂j)))

‖x0 – LT
I (a∗

I ) – a∗
j (x(λ̂j))‖ ∈H

(
d
(
λ̂j), ε

)
,
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and the partial hyperellipse with the constant d(λ̂j) is

H
(
d
(
λ̂j), ε

)
=

{
x : x ∈ B, LI(x) = dI ,

∣∣〈x, x
(
λ̂j)〉 – d

(
λ̂j)

m+1

∣∣ < ε
}

.

To this end, let us introduce the following set: For each λ ∈ �∞, we define

W (λ) := min
{

mi(λ) : i ∈ J
}

,

where mi(λ) = min{Vi(c|λ) : c ∈ R
m+1}.

Theorem 3.4 If H(d|E1) contains more than one point, then

m+(x0, d|E1) = min
{

W (λ) : λ ∈ �∞
}

(26)

Proof For each λ ∈ �∞, we see that

min
{
V(c) : c ∈R

n} ≤ min
{
Vi(a|λ) : a ∈R

m+1}

for all i ∈ J, that is, for each λ ∈ �∞,

min
{
V(c) : c ∈R

n} ≤ W (λ).

Consequently, we obtain that

min
{
V(c) : c ∈R

n} ≤ inf
{

W (λ) : λ ∈ �∞
}

.

According to Theorem 3.2, there are λ̂ ∈ �∞ and j ∈ J such that

min
{
V(c) : c ∈R

n} = min
{

Vj(c|λ̂) : c ∈R
m+1}.

Therefore we can conclude that

min
{
V(c) : c ∈R

n} = min
{

W (λ) : λ ∈ �∞
}

. �

We end this section by extending these results to estimate optimally any number of fea-
tures. Let us define the function W : H(d|E1) →R

k defined for x ∈H(d|E1) by

Wx =
(〈x, x–k+j〉 : j ∈Nk

)
. (27)

In the case of estimating a single feature, the uncertainty set is an interval. For multiple
features, the uncertainty set is a bounded set in a finite-dimensional space. Consequently,
the corresponding uncertainty set is given as

U(d|E1) :=
{

Wx : x ∈H(d|E1)
}

. (28)

It is easy to check that U(d|E1) is a convex compact subset of Rk . To get the best estimator,
we need to find the center and radius of U(d|E1). We recall the Chebyshev radius and
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center. For this purpose, we choose the l∞ norm ‖| · |‖∞ on R
k and define the radius of

U(d|E1) as

r∞
(
U(d|E1)

)
:= inf

y∈Rk
sup

u∈U(d|E1)
|||u – y|||∞.

We denote its center as m∞ ∈ R
k . In the theorem below, we will show that the l∞ center

of the set U(d|E) is given by the vector

m∞ :=
(
m(x–k+j, d|E1) : j ∈Nk

)
,

where m(x–k+j, d|E1) is the center of the interval I(x–k+j, d|E1) for all j ∈ Nk .

Theorem 3.5 If H(d|E1) 
= ∅, then the l∞ center of the uncertainty set is m∞ = (m(x–k+j,
d|E1) : j ∈ Nk), and its radius is given by

r∞
(
U(d|E1)

)
= max

{
r
(
I(x–k+j, d|E1)

)
: j ∈Nk

}
.

Proof This follows by the same method as in [6]. �

To this end, we present some results of a numerical experiment on estimating multiple
features of a vector in the partial hyperellipse H(d|E1). For our computational experi-
ments, we choose the Hardy space of square-integrable functions on the unit circle with
reproducing kernel

K(z, ζ ) =
1

1 – ζ z
, ζ , z ∈ �,

where � := {z : |z| ≤ 1}, [3]. Specifically, let H2(�) be the set of all functions analytic in the
unit disc � with norm

‖f ‖ = sup
0<r<1

(
1

2π

∫ 2π

0

∣
∣f

(
reiθ )∣∣2dθ

) 1
2

.

Specifically, let T = {tj : j ∈ Nn} be points of increasing order in (–1, 1). Consequently, we
have a finite set of linearly independent elements {Ktj : j ∈ Nn} in H , where

Ktj (t) :=
1

1 – tjt
, j ∈Nn, t ∈ �.

Thus the vectors {xj : j ∈ Nn} appearing above are identified with the functions {Ktj : j ∈
Nn}. Therefore the Gram matrix of {Ktj : j ∈Nn} is given by

G(t1, . . . , tn) :=
(
K(ti, tj) : i, j ∈Nn

)
.

Next, we recall the Cauchy determinant defined for {tj : j ∈Nn} and {sj : j ∈Nn} as

det

(
1

1 – tisj

)

i,j∈Nn

=
∏

1≤j<i≤n(tj – ti)(sj – si)
∏

i,j∈Nn (1 – tisj)
; (29)
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see, for example, [2]. From this formula we obtain that

det G(t1, . . . , tn) =
∏

1≤i<j≤n(ti – tj)2

∏
i,j∈Nn (1 – titj)

. (30)

In our case, for any t0 ∈ (–1, 1) and t0 /∈ T := {tj : j ∈Nn}, we obtain that

dist
(
Kt0 , span{Ktj : j ∈Nn}

)
=

|B(t0)|
√

1 – t2
0

, (31)

where B is the rational function defined for t ∈C \ {t–1
j : j ∈Nn} by

B(t) :=
∏

j∈Nn

t – tj

1 – ttj
, (32)

and the vector x0 appearing previously is identified with the function Kt0 . We organize
the computational steps as follows. We choose a finite set of linear independent elements
{Ktj : j ∈N6} in H with

t1 = –0.9, t2 = –0.6, t3 = –0.3, t4 = 0.3, t5 = 0.6 and t6 = 0.9.

We choose the exact function

g(t) = –0.15K0.5(t) + 0.05K0.85(t) – 0.25K–0.5(t)

and compute the vector d = {g(tj) : j ∈ N6}. By the definition of (12) the linear operator
L : H2(�) −→ R

5 is defined for f ∈ H2(�) as follows:

Lf :=
(
f (ti) : i ∈N6

)
) =

(〈f , Kti〉 : i ∈N6
)
).

In our experiment, we choose

t–2 = –0.4, t–1 = 0, t0 = 0.4,

and we wish to estimate

Wf =
(〈f , Kt–3+j〉 = f (t–3+j) : j ∈ N3

)

when we known that

f (tj) = dj for all j ∈N6 \ {3, 4} and
∣
∣f (t3) – d3

∣
∣ +

∣
∣f (t4) – d4

∣
∣ ≤ ε = 0.1.

According to Theorem 3.2, the functions V1 and V2 become

V1(c|λ) =
∥
∥Kt0 – (c1Kt1 + c2Kt2 + c3Kt5 + c4Kt6 ) – c5(Kt3 + λKt4 )

∥
∥

+ ε|c5| + (cI , dI) + c5(d3 + λd4)
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Table 1 Optimal value

ε m(t–3+j ,d|E1) g(t–3+j)

–0.4 –0.32936 –0.3617
0 –0.349967 –0.35
0.4 –0.32468 –0.3585

Figure 2 mi(–0.4,λ) for –d

and

V2(c|λ) =
∥
∥Kt0 – (c1Kt1 + c2Kt2 + c3Kt5 + c4Kt6 ) – c5(Kt4 + λKt3 )

∥
∥ + ε|c5| + (cI , dI)

+ c5(d4 + λd3).

In this computation, we found that f +
dI

/∈H(d|E1). To obtain the minimum of W , we must
compare the values of m1(t–3+j,λ) and m2(t–3+j,λ), where

m1(t–3+j,λ) = max
{

f +
d(λ1)+εe(t–3+j), f +

d(λ1)–εe(t–3+j)
}

and

m2(t–3+j,λ) = max
{

f +
d(λ2)+εe(t–3+j), f +

d(λ2)–εe(t–3+j)
}

,

that is,

mj(t–3+j,λ) = max
{

f +
d(λj)±εe(t–3+j)

}

= max
{

fd(λj)±εe(t–3+j) + dist
(
Kt–3+j , M

(
λj))

√
1 – ‖fd(λj±εe)‖2

}
.

To obtain the right-hand endpoint, we need to find the minimum of W defined for λ ∈
[–1, 1]. As explained earlier, the midpoint algorithm requires us to find numerically the
minimum of the function V for d and –d, that is, we compute v± := min{V(c,±d) : c ∈R

n},
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Figure 3 mi(0.4,λ) for d

Figure 4 mi(0.4,λ) for –d

and then our midpoint estimator is given by v+–v–
2 . The result of this computation is shown

in Table 1.
Furthermore, we see that m+(t–2, d|E1) = min{f +

d(λ2)+εe(t–2) : λ ∈ [–1, 1]}. To obtain
m+(t–2, –d|E1), we then plot m1 and m2 as functions of λ for t–2 = –0.4, as shown in Fig. 2.

Similarly, we find that

m+(t–1, d|E1) = min
{

f +
d(λ2)+εe(t–1) : λ ∈ [–1, 1]

}
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and

m+(t–1, –d|E1) = min
{

f +
–d(λ1)+εe(t–1) : λ ∈ [–1, 1]

}
.

For the case t0 = 0.4, we plot m1 and m2 as functions of λ for d and –d as shown in Figs. 3
and 4, respectively.

4 Conclusions
In this paper, we described an unexpected application of hypercircle inequality for only
one data error to the l∞ minimization problem (16). In two different circumstances, we
applied what we have learned from recent results to the problem of learning the value of
a function in RKHS, which can be beneficial in practice.
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