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Abstract
Results reported in this paper establish the existence of solutions for a class of
generalized fractional inclusions based on the Caputo–Hadamard jerk system. Under
some inequalities between multi-functions and with the help of special contractions
and admissible maps, we investigate the existence criteria. Fixed points and end
points are key roles in this manuscript, and the approximate property for end points
helps us to derive the desired result for existence theory. An example is prepared to
demonstrate the consistency and correctness of analytical findings.
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1 Introduction
With the presentation of new analytical results in recent years, the power of fractional
calculus in describing processes and modeling physical events and engineering tools has
become clear to everyone. In most published papers we are able to observe different gen-
eralized fractional modelings of standard equations in which the Caputo or Riemann–
Liouville derivatives or their extensions have been utilized in fractional differential equa-
tions (FDEs) and fractional differential inclusions (FDIs) such as pantograph inclusion [1],
hybrid thermostat inclusion [2], q-differential inclusion on time scale [3], Langevin inclu-
sion [4], and higher order fractional differential inequalities [5]. One can find many pub-
lished works on various applications of fractional calculus in different fields of science (see,
for example, [6–16]).

In 2016, the authors considered the following mixed initial value problem involving
Hadamard derivative and Riemann–Liouville fractional integrals given by

⎧
⎨

⎩

H
D

q(y(t) –
∑m

i=1
RC
I
σi
r wi(t, y(t)) ∈H(t, y(t)), t ∈ [1, M],

y(1) = 0,
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where H
D

q denotes the Hadamard fractional derivative of order 0 < q ≤ 1, RC
I
σ
r is the

Riemann–Liouville fractional integral of order σ > 0, σ ∈ {σ1,σ2, . . . ,σm}, H : [1, M]×R →
P(R), wi ∈ C([1, M]×R,R) with wi(1, 0) = 0, i = 1, 2, . . . , m [17]. In 2017, Ahmad et al. con-
sidered the existence and uniqueness of solutions to the initial value problem of Caputo–
Hadamard sequential fractional order neutral functional differential equations as follows:

⎧
⎪⎪⎨

⎪⎪⎩

C
D
σ1 [C

D
σ2 y(t) – f1(t, yt)] = f2(t, yt), t ∈ [1, M],

y(t) = φ(t), t ∈ [1 – r, 1],
C
D
σ2 y(1) = η ∈R,

where C
D
σ1 , C

D
σ2 are the Caputo–Hadamard fractional derivatives, 0 < α,β < 1, fi :

[1, M] × C([–r, 0],R) → R is a given function, i = 1, 2, and φ ∈ C([1 – r, 1],R) [18]. The
authors in [19] introduced a new class of boundary value problems consisting of Caputo–
Hadamard type fractional differential equations and Hadamard type fractional integral
boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(C
D
σ1 + λC

D
σ1–1)y(t) = w1(t, y(t), z(t), C

D
βz(t)), 1 < σ2 ≤ 2,

(C
D
σ2 + λC

D
σ2–1)z(t) = w2(t, y(t), C

D
βy(t), z(t)), 1 < σ2 ≤ 2,

y(1) = 0, a11I
γ1 v(η1) + a12u(δ) = K1, γ1 > 0, 1 < η1 < δ,

z(1) = 0, a21I
γ2 u(η2) + a22v(δ) = K2, γ2 > 0, 1 < η2 < δ,

where 0 < β < 1, C
D

(.), I(.) respectively denote the Caputo–Hadamard fractional deriva-
tive and Hadamard fractional integral (to be defined later), wi : [0, δ] ×R

3 → R is a given
appropriate function and aij, Ki are real constants, here i, j = 1, 2 [19].

More precisely, in [1], Thabet et al. formulated a version of FDI taken from the
pantograph BVP in the sense of Caputo-conformable equipped with three-point RL-
conformable integral conditions:

⎧
⎪⎪⎨

⎪⎪⎩

CC
D

q,σ1
r y(t) ∈H(t,κ(t),κ(λ∗t)), t ∈ [r, M],

κ(r) = 0,

p1κ(M) + p2
RC
I

q,σ2
r κ(ζ ) = κ

∗.

Here, CC
D

q,σ1
r indicates the derivative of the Caputo-conformable type of order 1 < σ1 < 2

along with 0 < q < 1, RC
I

q,σ2
r is the integral of the RL-conformable type of order σ2 > 0,

ζ ∈ (r, M), p1, p2, y∗ ∈ R, 0 < λ < 1, and H : [r, M] × R
2 → P(R) is a multifunction. Also,

Baleanu et al. in [2] investigated the hybrid problem caused by the thermostat model

⎧
⎪⎪⎨

⎪⎪⎩

C
D

q
0( y(t)

κ(t,y(t)) ) + w(t, y(t)) = 0,

D( y(t)
κ(t,y(t)) )|t=0 = 0,

ηC
D

q–1
0 ( y(t)

κ(t,y(t)) )|t=1 + ( y(t)
κ(t,y(t)) )|t=a = 0,

so that C
D

q
0 is the Caputo derivation of fractional order 1 < q ≤ 2, D = d

dt the function
w : [0, 1]×R →R is continuous,κ ∈ C([0, 1]×R,R\{0}), η is a positive real parameter and
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0 ≤ a ≤ 1. Furthermore, Samei et al. in [3] discussed the fractional q-differential inclusion

⎧
⎨

⎩

C
D
σ
q y(t) ∈H(t, y(t), y′(t), C

D
p1
q y(t), . . . , C

D
pm
q y(t)), t ∈ [0, 1],

y(0) + cy′′(0) = 0, a1y(τ ) + a2
(1) = 0, cy′(1) + a3
(1) = 0.

Here, C
D
σ
q denotes the Caputo fractional quantum derivative of order 2 < σ ≤ 3, 1 < pi ≤ 2,

(i = 1, 2, . . . , m), 0 < τ < 1, c =
∑m

j=1 ci, cj ∈R, 
 : [0,∞) → [0,∞) defined by


i(z) =
∫ z

0
ϕ
(
y(ξ )

)
dξ ,

ϕ : [0,∞) → [0,∞), H : [0, 1] × R
m+2 → P(R) is a compact-valued multifunction and

a1, a2, a3 ∈ R. Recently, Rezapour et al. introduced and investigated a new BVP consist-
ing of a generalized fractional integro-Langevin equation with constant coefficient and
nonlocal fractional boundary conditions (BCs) given by

⎧
⎪⎪⎨

⎪⎪⎩

C
D

q1
0+ [C

D
q2
0+ y(t) – βy(t)] = RL

I
p
0+ h(t, y(t)), t ∈ [0, 1],

y(0) = 0, C
D

q2
0+ y(0) = 0,

C
D

1
0+ y(1)C

D
1
0+ y(τ ) = 0, τ ∈ (0, 1),

where 0 < q1 < 1, 1 < q2 < 2, p > 0, β ∈R
+, C

D
η

0+ , (η ∈ {q1, q2}) and RL
I

p
0+ denote the Caputo

fractional derivative operators and the Riemann–Liouville fractional integral of orders p
and η, respectively, and the function h : [0, 1] ×R→ R is continuous [4].

The authors in [5] showed how fractional differential inequalities can be useful to es-
tablish the properties of solutions of different problems in biomathematics and flow phe-
nomena. The nonexistence of global solutions to a higher order fractional differential in-
equality with a nonlinearity involving Caputo fractional derivative has been obtained [5].
On the other hand in [20] the authors analyzed the properties of fractional operators with
fixed memory length in the context of Laplace transform of the Riemann–Liouville frac-
tional integral and derivative with fixed memory length [20] on the fractional differential
equation

aD
η

t+ y(t) ∼ t–LD
η
t y(t), t > a + L.

These facts could be used to better explain the motivation behind the present study [20].
Jleli et al. studied the wave inequality with a Hardy potential

∂tty –�y +
λ

|x|2 y ≥ |y|p in (0,∞) ×�,

where � is the exterior of the unit ball in R
N , (N ≥ 2), p > 1, and

λ≥ –
(

N – 2
2

)2

,

under the inhomogeneous boundary condition α ∂y
∂x (t, x) + βy(t, x) ≥ w(x) on (0,∞) × ∂�,

where α,β ≥ 0 and (α,β) 
= (0, 0) [21]. The Caputo–Hadamard derivation operator [22]
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is another extension of the above operators that many researchers got help from it in
their modelings. For instance, we can find the applications of this generalized operator
in modeling of the Sturm–Liouville–Langevin problem [23], investigation of the combi-
nation synchronization of a Caputo–Hadamard system [24], description of an uncertain
BVP‘ [25], studying the proportional Langevin BVP [26], etc.

Our main novelty in this work is to use the Caputo–Hadamard operator for generalizing
the standard jerk problem in the form of a fractional inclusion problem. In fact, a jerk
system is a simple form of a nonlinear ODE of third order depicted by

d3y
dt3 = F

(

y,
dy
dt

,
d2y
dt2

)

,

where, in mechanics, the nonlinear mapping F (·, ·, ·) is equivalent to the 1st-derivative of
acceleration. For this reason, it is introduced as a jerk [27, 28].

The mathematical analysis of this generalized system is our main purpose in this
work. To do this, we decided to utilize a new family of multi-functions belonging to φ-
admissibles and φ-ψ-contractions for proving theorems based on fixed point methods.
Also, those multi-functions that have approximate property for their end points play a
fundamental role in our analysis. These items present the novelty and contribution of our
work in this regard, because most researchers get help from standard fixed point tech-
niques in their papers. For example, the Leray–Schauder, the Banach principle, Krasnosel-
skii, degree principle, Schaefer are the most famous of them, and they are applied in more
papers including the generalized proportional equation by Das et al. in [29], impulsive
implicit problem by Ali et al. in [30], nonlinear φ-Hilfer problem on compact domain by
Mottaghi et al. in [31], multi-term multi-strip coupled system by Ahmad et al. in [32],
ψ-Hilfer system of coupled Langevin equations by Sudsutad et al. in [33], sequential RL-
Hadamard–Caputo problem by Ntouyas et al. in [34], sequential post-quantum integro-
difference problem by Soontharanon et al. in [35] and Samei in [36–38], Neumann sym-
metric Hahn problem by Dumrongpokaphan et al. in [39], etc.

By virtue of the idea of a standard jerk equation and extending it to the generalized frac-
tional Caputo–Hadamard settings, we here introduce and study new existence methods
based on some special multi-functions to guarantee the existence of solution for the ex-
tended fractional jerk inclusion problem illustrated as

⎧
⎪⎪⎨

⎪⎪⎩

(CH
D
ι1
1+ (CH

D
ι2
1+ (CH

D
ι3
1+ y)))(t)

∈G(t, y(t), CH
D
ι3
1+ y(t), CH

D
ι2
1+ (CH

D
ι3
1+ y(t))),

y(1) + y(e) = 0, CH
D
ι3
1+ y(η) = 0, CH

D
ι2
1+ (CH

D
ι3
1+ y(e)) = 0,

(1)

in which ι1, ι2, ι3 ∈ (0, 1] and CH
D

p
1+ displays the derivative operator in the sense of Caputo–

Hadamard subject to p ∈ {ι1, ι2, ι3} and also t ∈ I := [1, e] and η ∈ (1, e). In addition to these,
we have considered the operator G : I × R

3 → P(R) as a multi-function in which P(R)
illustrates all nonempty subsets of R.

This research is conducted as follows. Section 2 is fundamental and necessary in its
nature since it collects definitions and required results. Section 3 is divided into two parts:
one is in relation to the existence criterion via fixed points and the second is in relation to
the existence criterion via end points. In fact, in Sect. 3.1, some inequalities between multi-
functions and contractions and admissible functions play the role to prove the desired
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results via fixed point notion. Accordingly, Sect. 3.2 is devoted to proving similar results
via end points and approximate property for end points. Section 4 discusses an example
for simulating and analyzing the results numerically. Section 5 completes our research via
conclusions.

2 Preliminaries
Here, we shall review some primitive and fundamental concepts in the direction of used
approaches and techniques in the present study. As you will observe, these notions and
properties are utilized throughout the paper. The readers can find more details in [22, 40,
41].

Definition 2.1 ([40, 41]) Let q ≥ 0. Then the Hadamard fractional qth-integral of a con-
tinuous function y : (a,∞) → R of order q is formulated by H

I
0
a+ y(t) = y(t) and

H
I

q
a+ y(t) =

1
�(q)

∫ t

a

(

ln
t
r

)q–1

y(r)
dr
r

, q > 0.

Definition 2.2 ([22]) The Caputo–Hadamard fractional qth-derivative for y ∈
ACn

δ ([a, b],R) is illustrated as

CH
D

q
a+ y(t) = H

I
n–q
a+ δ

ny(t) =
1

�(n – q)

∫ t

a

(

ln
t
r

)n–q–1

δny(r)
dr
r

,

in which n – 1 < q < n and δ = t d
dt . Note that, for q = n ∈N, we have

CH
D

n
a+ y(t) = δny(t) =

(

t
d
dt

)n

y(t), CH
D

0
a+ y(t) = y(t).

From here onwards, we denote the abbreviations HF-integral and CHF-derivative for the
above fractional operators. To find other information on the CHF-operators, we direct the
interested readers to [22].

Lemma 2.3 ([22, 40, 41]) Let q, p ∈R
+. Then:

(1) H
I

q
a+

H
I

p
a+ y(t) = H

I
q+p
a+ y(t), (Semi-group property for HF-integrals);

(2) For n – 1 < q < n, m – 1 < p < m and y(t) ∈ Cm+n
δ [a, b], we have

CH
D

q
a+

CH
D

p
a+ y(t) = CH

D
q+p
a+ y(t),

(Semi-group property for CHF-derivatives);
(3) For q > p,

CH
D

p
a+

H
I

q
a+ y(t) = H

I
q–p
a+ y(t),

(Composition property for HF-CHF-operators).

Example 2.4 ([40, 41]) Let q, ι ∈ R
+. For y(t) = (ln t

a )ι, we have

H
I

q
a+ y(t) = H

I
q
a+

(

ln
t
a

)ι

=
�(ι + 1)
�(q + ι + 1)

(

ln
t
a

)q+ι

, ∀t > a.
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Further, if y(t) ≡ c ∈R, then

H
I

q
a+ y(t) = H

I
q
a+ c =

c
�(q + 1)

(

ln
t
a

)q

, ∀t > a.

Lemma 2.5 ([22]) Let y ∈ ACn
δ ([a, b],R) and n – 1 < q < n.

H
I

q
a+

(CH
D

q
a+ y

)
(t) = y(t) –

n–1∑

i=0

δiy(a)
i!

(

ln
t
a

)i

, ∀t > a.

For the homogeneous CHF-differential equation CH
D

q
a+ y(t) = 0, its general solution, by

virtue of Lemma 2.5, is obtained by

y(t) = s0 + s1

(

ln
t
a

)

+ s2

(

ln
t
a

)2

+ · · · + sn–1

(

ln
t
a

)n–1

,

subject to si ∈R and n = [q] + 1 [22]. Hence

H
I

q
a+

(CH
D

q
a+ y

)
(t) = y(t) + s0 + s1

(

ln
t
a

)

+ s2

(

ln
t
a

)2

+ · · · + sn–1

(

ln
t
a

)n–1

for t > a [22].
In what follows we give a brief introduction to some special function spaces and multi-

valued operators. We assume (A,‖ · ‖) as a normed space. We mean by PCL(A), PBN (A),
PCP(A), and PCV (A) the category of all closed, bounded, compact, and convex sets, re-
spectively, belonging to A.

Definition 2.6 ([42]) The (Pompeiu–Hausdorff) metric, displayed by

Hρ :
(
P(A)

)2 →R∪ {∞},

is introduced as

Hρ(W1, W2) = max
{

sup
ν1∈W1

ρ(ν1,ν2), sup
ν2∈W2

ρ(W1,ν2)
}

,

in which ρ is a metric of A and

ρ(W1,ν2) = inf
ν1∈W1

ρ(ν1,ν2), ρ(ν1, W2) = inf
ν2∈W2

ρ(ν1,ν2).

Definition 2.7 ([42]) For G : A →PCL(A) and y1, y2 ∈ A, let

Hρ
(
G(y1),G(y2)

) ≤ Lρ(y1, y2).

Then G is called: (1) Lipschitz if L > 0; (2) a contraction if L ∈ (0, 1).
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In the next step, we recall a specific family of multi-functions introduced by Amini-
Harandi [42] in 2010 which we utilize in our proofs.

Definition 2.8 ([42]) Let A be a metric space and G be a multi-valued operator on it.
Then

(1) y ∈ A is an end point of G : A →P(A) if Gy = {y}.
(2) G admits the AEP-property (approximate end point property) whenever

inf
v∈A

sup
y∈Gv

ρ(v, y) = 0.

Later, in 2013, Mohammadi, Rezapour, and Shahzad [43] provided another family of
multi-functions based on two operators ψ and φ which is a generalized structure of a
similar notion pertinent to single-valued operators given by Samet et al. [44] in 2012.

Definition 2.9 ([43]) Let � be a family of all increasing mappings ψ : R≥0 → R
≥0 s.t.

∀t > 0,
∑∞

i=1ψ
i(t) < ∞ and ψ(t) < t. Let G : A →P(A) and φ : A × A →R

≥0. In this case:
(1) G : A →PCL,BN (A) is φ-ψ-contraction if ∀y1, y2 ∈ A,

φ(y1, y2)Hρ(Gy1,Gy2) ≤ψ(
ρ(y1, y2)

)
.

(2) G is φ-admissible if ∀y1 ∈ A and ∀y2 ∈ Gy1,

φ(y1, y2) ≥ 1 �⇒ φ(y2, y3) ≥ 1, ∀y3 ∈Gy2.

(3) A admits the property (Cφ) if for each {yn}n≥1 ⊂ A with yn → y and φ(yn, yn+1) ≥ 1,

∃{yni} ⊂ {yn}, s.t. φ(yni , y) ≥ 1, ∀i ∈N.

To follow the required arguments on the existence of a solution for the Caputo–
Hadamard fractional jerk problem (CHF-jerk problem) (1), we begin this section by in-
troducing a Banach space as follows:

A =
{

y(t) : y(t), CH
D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

) ∈ C(I,R)
}

,

equipped with

‖y‖A = sup
t∈I

∣
∣y(t)

∣
∣ + sup

t∈I

∣
∣CH

D
ι3
1+ y(t)

∣
∣ + sup

t∈I

∣
∣CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

)∣
∣

for all y ∈ A.

3 Existence results via fixed-points and end points
Now, in the next proposition, the solution’s structure for the supposed CHF-jerk problem
(1) is exhibited in the format of an integral equation.
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Proposition 3.1 Let ι1, ι2, ι3 ∈ (0, 1], η ∈ (1, e) and T ∈ C(I,R). Then the solution of the
linear CHF-jerk problem

⎧
⎪⎪⎨

⎪⎪⎩

(CH
D
ι1
1+ (CH

D
ι2
1+ (CH

D
ι3
1+ y)))(t) = T(t), t ∈ I,

y(1) + y(e) = 0, CH
D
ι3
1+ y(η) = 0,

CH
D
ι2
1+ (CH

D
ι3
1+ y(e)) = 0,

(2)

is obtained as

y(t) =
1

�(ι1 + ι2 + ι3)

∫ t

1

(

ln
t
r

)ι1+ι2+ι3–1

T(r)
dr
r

–
1

2�(ι1 + ι2 + ι3)

∫ e

1

(

ln
e
r

)ι1+ι2+ι3–1

T(r)
dr
r

+
F1(t)

2�(1 + ι3)�(ι1 + ι2)

∫ η

1

(

ln
η

r

)ι1+ι2–1

T(r)
dr
r

+
F2(t)

2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1)

×
∫ e

1

(

ln
e
r

)ι1–1

T(r)
dr
r

, (3)

where

⎧
⎪⎪⎨

⎪⎪⎩

F1(t) = 1 – 2(ln t)ι3 ,

F2(t) = �(1 + ι2)�(1 + ι3)[1 – 2(ln t)ι2+ι3 ]

– �(1 + ι2 + ι3)(lnη)ι2 [1 – 2(ln t)ι3 ].

(4)

Proof Let y satisfy the linear CHF-jerk problem (2). In view of the semi-group property
for HF-integrals given in Lemma 2.3, since ι1 ∈ (0, 1], so by utilizing the HF-integral of
order ι1, we get

CH
D
ι2
1+

(CH
D
ι3
1+ y

)
(t) =

1
�(ι1)

∫ t

1

(

ln
t
r

)ι1–1

T(r)
dr
r

+ c0, (5)

where c0 ∈ R. Again, utilizing the HF-integral of order ι2 ∈ (0, 1] to both sides of (5), we
get

CH
D
ι3
1+ y(t) =

1
�(ι1 + ι2)

∫ t

1

(

ln
t
r

)ι1+ι2–1

T(r)
dr
r

+ c0
(ln t)ι2
�(1 + ι2)

+ c1, (6)

where c1 ∈ R. At last, utilizing the HF-integral of order ι3 ∈ (0, 1] to both sides of (6), the
general series solution of (2) can be derived by

y(t) =
1

�(ι1 + ι2 + ι3)

∫ t

1

(

ln
t
r

)ι1+ι2+ι3–1

T(r)
dr
r

+ c0
(ln t)ι2+ι3

�(1 + ι2 + ι3)
+ c1

(ln t)ι3
�(1 + ι3)

+ c2, (7)
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where c2 ∈ R. To obtain the values ci (i = 0, 1, 2), we first consider the third boundary
condition and (5), and so the coefficient c0 is obtained as

c0 = –
1
�(ι1)

∫ e

1

(

ln
e
r

)ι1–1

T(r)
dr
r

. (8)

In the sequel, the second boundary condition and the obtained value for c0 in (8) yield

c1 = –
1

�(ι1 + ι2)

∫ η

1

(

ln
η

r

)ι1+ι2–1

T(r)
dr
r

+
(lnη)ι2

�(1 + ι2)�(ι1)

∫ e

1

(

ln
e
r

)ι1–1

T(r)
dr
r

.

(9)

Finally, (8) and (9) and the first boundary condition give

c2 = –
1

2�(ι1 + ι2 + ι3)

∫ e

1

(

ln
e
r

)ι1+ι2+ι3–1

T(r)
dr
r

+
1

2�(1 + ι3)�(ι1 + ι2)

∫ η

1

(

ln
η

r

)ι1+ι2–1

T(r)
dr
r

+
�(1 + ι2)�(1 + ι3) – �(1 + ι2 + ι3)(lnη)ι2

2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1)

×
∫ e

1

(

ln
e
r

)ι1–1

T(r)
dr
r

. (10)

At this moment, we insert the value of the coefficients ci, by (8)–(10), into (7) and obtain

y(t) =
1

�(ι1 + ι2 + ι3)

∫ t

1

(

ln
t
r

)ι1+ι2+ι3–1

T(r)
dr
r

–
1

2�(ι1 + ι2 + ι3)

∫ e

1

(

ln
e
r

)ι1+ι2+ι3–1

T(r)
dr
r

+
F1(t)

2�(1 + ι3)�(ι1 + ι2)

∫ η

1

(

ln
η

r

)ι1+ι2–1

T(r)
dr
r

+
F2(t)

2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1)

∫ e

1

(

ln
e
r

)ι1–1

T(r)
dr
r

,

showing that y satisfies (3) and F1(t), F2(t) are continuous functions represented in (4).
This ends the proof. �

3.1 Fixed-point and jerk model (1)
In this part, we define the solution to the CHF-jerk problem (1).

Definition 3.2 The function y ∈ C(I, A) is named the solution to the supposed CHF-jerk
problem (1) whenever it fulfills the given BCs and ∃g ∈ L1(I) s.t.

g(t) ∈G
(
t, y(t), CH

D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

))
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for almost all t ∈ I and

y(t) =
1

�(ι1 + ι2 + ι3)

∫ t

1

(

ln
t
r

)ι1+ι2+ι3–1

g(r)
dr
r

–
1

2�(ι1 + ι2 + ι3)

∫ e

1

(

ln
e
r

)ι1+ι2+ι3–1

g(r)
dr
r

+
F1(t)

2�(1 + ι3)�(ι1 + ι2)

∫ η

1

(

ln
η

r

)ι1+ι2–1

g(r)
dr
r

+
F2(t)

2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1)

∫ e

1

(

ln
e
r

)ι1–1

g(r)
dr
r

.

∀t ∈ I . For each y ∈ A, we specify selections of G as

SG,y =
{

g ∈ L1(I) : g(t) ∈G
(
t, y(t), CH

D
ι3
1+ y(t),

CH
D
ι2
1+

(CH
D
ι3
1+ y(t)

))
(a.e.) t ∈ I

}
.

In the sequel, define the multi-function K : A →P(A) by

K(y) =
{

z ∈ A : there exists g ∈ SG,y such that z(t) = π (t) ∀t ∈ I
}

, (11)

for which

π (t) =
1

�(ι1 + ι2 + ι3)

∫ t

1

(

ln
t
r

)ι1+ι2+ι3–1

g(r)
dr
r

–
1

2�(ι1 + ι2 + ι3)

∫ e

1

(

ln
e
r

)ι1+ι2+ι3–1

g(r)
dr
r

+
F1(t)

2�(1 + ι3)�(ι1 + ι2)

∫ η

1

(

ln
η

r

)ι1+ι2–1

g(r)
dr
r

+
F2(t)

2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1)

∫ e

1

(

ln
e
r

)ι1–1

g(r)
dr
r

. (12)

By making use of the following theorem relying on some inequalities between special
multi-functions such as φ-ψ-contractions and φ-admissible, we establish the first crite-
rion guaranteeing the existence of solution for the CHF-jerk problem (1).

Theorem 3.3 ([43]) Regard the complete metric space (A,ρ),ψ ∈� , φ : A×A →R
≥0 and

G : A →PCL,BN (A). Assume that:
(1) G is φ-admissible and φ-ψ-contraction;
(2) φ(y0, y1) ≥ 1 for some y0 ∈ A and y1 ∈Gy0;
(3) A involves the (Cφ)-property.

Then G admits a fixed point.
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Remark 3.4 For the sake of simplicity, we define

�̌1 =
3

2�(ι1 + ι2 + ι3 + 1)
+

F∗
1 (lnη)ι1+ι2

2�(1 + ι3)�(ι1 + ι2 + 1)

+
F∗

2
2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1 + 1)

,

�̌2 =
1

�(ι1 + ι2 + 1)
+

F∗∗
1 (lnη)ι1+ι2

2�(1 + ι3)�(ι1 + ι2 + 1)

+
F∗∗

2
2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1 + 1)

,

�̌3 =
1

�(ι1 + 1)
+

F∗∗∗
2

2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1 + 1)
, (13)

where for t ∈ I = [1, e],

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

supt∈I |F1(t)| ≤ supt∈I(1 + 2(ln t)ι3 ) = 3 := F∗
1 > 0,

supt∈I |F2(t)| ≤ supt∈I(�(1 + ι2)�(1 + ι3)[1 + 2(ln t)ι2+ι3 ]

+ �(1 + ι2 + ι3)(lnη)ι2 [1 + 2(ln t)ι3 ])

≤ 3�(1 + ι2)�(1 + ι3) + 3�(1 + ι2 + ι3)(lnη)ι2

:= F∗
2 > 0,

(14)

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

supt∈I |(CH
D
ι3
1+ F1)(t)| ≤ supt∈I(2�(ι3 + 1))

= 2�(ι3 + 1) := F∗∗
1 > 0,

supt∈I |(CH
D
ι3
1+ F2)(t)|

≤ supt∈I(2�(1 + ι3)�(1 + ι2 + ι3)(ln t)ι2

+ 2�(1 + ι2 + ι3)�(1 + ι3)(lnη)ι2 )

≤ 2�(1 + ι2 + ι3)�(1 + ι3)(1 + (lnη)ι2 ) := F∗∗
2 > 0,

(15)

and
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

supt∈I |CH
D
ι2
1+ (CH

D
ι3
1+ F1)(t)| ≤ supt∈I(0) = 0 := F∗∗∗

1 ,

supt∈I |CH
D
ι2
1+ (CH

D
ι3
1+ F2)(t)|

≤ supt∈I(2�(1 + ι3)�(1 + ι2 + ι3)�(1 + ι2))

= 2�(1 + ι3)�(1 + ι2 + ι3)�(1 + ι2) := F∗∗∗
2 > 0.

(16)

Theorem 3.5 Let G : I × A3 → PCP(A) be a multifunction and assume the following sce-
nario:

(H1) The multifunction G is bounded and integrable with G(·, y1, y2, y3) : I → PCP(A) is
measurable for all ym ∈ A (m = 1, 2, 3);

(H2) There exist κ ∈ C(I, [0,∞)) and ψ ∈� s.t.

Hρ(G(t, y1, y2, y3),G(t, ȳ1, ȳ2, ȳ3) ≤ κ(t)
(
ϑ�

‖κ‖
)

ψ

( 3∑

m=1

|ym – ȳm|
)

(17)
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for all t ∈ I and ym, ȳm ∈ A (m = 1, 2, 3), where supt∈I |κ(t)| = ‖κ‖,

ϑ� =
1

�̌1 + �̌2 + �̌3
,

and �̌m (m = 1, 2, 3) are given by (13);
(H3) A function �� : R3 × R

3 → R exists such that, for all ym, ȳm ∈ A (m = 1, 2, 3), we
have

��
(
(y1, y2, y3), (ȳ1, ȳ2, ȳ3)

) ≥ 0;

(H4) If {yj }j≥1 ⊂ A s.t. yj → y and

��
((

yj (t), CH
D
ι3
1+ yj (t), CH

D
ι2
1+

(CH
D
ι3
1+ yj (t)

))
,

(
yj+1(t), CH

D
ι3
1+ yj+1(t), CH

D
ι2
1+

(CH
D
ι3
1+ yj+1(t)

))) ≥ 0,

then ∃{yjs}s≥1 ⊂ {yj } exists such that, for all t ∈ I and s ≥ 1, we have

��
((

yjs (t), CH
D
ι3
1+ yjs (t), CH

D
ι2
1+

(CH
D
ι3
1+ yjs (t)

))
,

(
y(t), CH

D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

))) ≥ 0;

(H5) There exist a member y0 ∈ A and μ ∈ K(y0) such that, for any t ∈ I ,

�
((

y0(t), CH
D
ι3
1+ y0(t), CH

D
ι2
1+

(CH
D
ι3
1+ y0(t)

))
,

(
μ(t), CH

D
ι3
1+μ(t), CH

D
ι2
1+

(CH
D
ι3
1+μ(t)

))) ≥ 0,

where the multifunction K : A →P(A) is specified by (11);
(H6) For every y ∈ A and μ ∈ K(y) with

��
((

y(t), CH
D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

))
,

(
μ(t), CH

D
ι3
1+μ(t), CH

D
ι2
1+

(CH
D
ι3
1+μ(t)

))) ≥ 0,

there exists a member ν ∈ K(y) such that the inequality

��
((
μ(t), CH

D
ι3
1+μ(t), CH

D
ι2
1+

(CH
D
ι3
1+μ(t)

))
,

(
ν(t), CH

D
ι3
1+ν(t), CH

D
ι2
1+

(CH
D
ι3
1+ν(t)

))) ≥ 0

holds for all t ∈ I .
Then, the CHF-jerk problem (1) owns a solution.

Proof Definitely, the fixed point of the mapping K : A → P(A) is a solution of the CHF-
jerk problem (1). Note that SG,y is nonempty. Indeed, the multifunction

t �→G
(
t, y(t), CH

D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

))
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is both measurable and closed-valued for any y ∈ A, so SG,y 
= ∅. Firstly, we will claim that
K(y) ⊆ A is closed ∀y ∈ A. As for, take a sequence {yn}n≥1 in K(y) such that yn → y as
n → ∞. For each n ≥ 1, there is gn ∈ SG,y such that

yn(t) =
1

�(ι1 + ι2 + ι3)

∫ t

1

(

ln
t
r

)ι1+ι2+ι3–1

gn(r)
dr
r

–
1

2�(ι1 + ι2 + ι3)

∫ e

1

(

ln
e
r

)ι1+ι2+ι3–1

gn(r)
dr
r

+
F1(t)

2�(1 + ι3)�(ι1 + ι2)

∫ η

1

(

ln
η

r

)ι1+ι2–1

gn(r)
dr
r

+
F2(t)

2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1)

∫ e

1

(

ln
e
r

)ι1–1

gn(r)
dr
r

for all t ∈ I . Since the multifunction G has compact values, there is indeed a subsequence
of {gn}n≥1 (following the same notation) that converges to some g ∈ L1(I). Subsequently,
g ∈ SG,y and

yn(t) → y(t)

=
1

�(ι1 + ι2 + ι3)

∫ t

1

(

ln
t
r

)ι1+ι2+ι3–1

g(r)
dr
r

–
1

2�(ι1 + ι2 + ι3)

∫ e

1

(

ln
e
r

)ι1+ι2+ι3–1

g(r)
dr
r

+
F1(t)

2�(1 + ι3)�(ι1 + ι2)

∫ η

1

(

ln
η

r

)ι1+ι2–1

g(r)
dr
r

+
F2(t)

2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1)

×
∫ e

1

(

ln
e
r

)ι1–1

g(r)
dr
r

for all t ∈ I . As a result, we can deduce that y ∈ K(y) and K is closed-valued. The bound-
edness of K(y) is obvious from the compactness of multifunction G. Next, we prove that
K is a φ-ψ-contraction. To do this, we regard φ : A2 �→R≥0 by φ(y, ȳ) = 1 whenever

��
((

y(t), CH
D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

))
,

(
ȳ(t), CH

D
ι3
1+ ȳ(t), CH

D
ι2
1+

(CH
D
ι3
1+ ȳ(t)

))) ≥ 0,

and φ(y, ȳ) = 0 otherwise, where y, ȳ ∈ A. Consider y, ȳ ∈ A and �1 ∈ K(ȳ) and choose g1 ∈
SG,ȳ such that

�1(t) =
1

�(ι1 + ι2 + ι3)

∫ t

1

(

ln
t
r

)ι1+ι2+ι3–1

g1(r)
dr
r

–
1

2�(ι1 + ι2 + ι3)

∫ e

1

(

ln
e
r

)ι1+ι2+ι3–1

g1(r)
dr
r

+
F1(t)

2�(1 + ι3)�(ι1 + ι2)

∫ η

1

(

ln
η

r

)ι1+ι2–1

g1(r)
dr
r
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+
F2(t)

2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1)

×
∫ e

1

(

ln
e
r

)ι1–1

g1(r)
dr
r

for all t ∈ I . By making use of (17), we get

Hρ

(
G

(
t, y(t), CH

D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

))
,

G
(
ȳ(t), CH

D
ι3
1+ ȳ(t), CH

D
ι2
1+

(CH
D
ι3
1+ ȳ(t)

)))

≤ κ(t)
(
ϑ�

‖κ‖
)

ψ
(|y – ȳ| +

∣
∣CH

D
ι3
1+ y – CH

D
ι3
1+ ȳ

∣
∣

+
∣
∣CH

D
ι2
1+

(CH
D
ι3
1+ y

)
– CH

D
ι2
1+

(CH
D
ι3
1+ ȳ

)∣
∣
)

with

��
((

y(t), CH
D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

))
,

(
ȳ(t), CH

D
ι3
1+ ȳ(t), CH

D
ι2
1+

(CH
D
ι3
1+ ȳ(t)

))) ≥ 0.

Thus, there exists

℘ ∈G
(
t, y(t), CH

D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

))

such that

∣
∣g1(t) –℘

∣
∣ ≤ κ(t)

(
ϑ�

‖κ‖
)

ψ
(|y – ȳ| +

∣
∣CH

D
ι3
1+ y – CH

D
ι3
1+ ȳ

∣
∣

+
∣
∣CH

D
ι2
1+

(CH
D
ι3
1+ y

)
– CH

D
ι2
1+

(CH
D
ι3
1+ ȳ

)∣
∣
)
.

Now, consider a mapping U : I →P(A) defined by

U(t) =
{

℘ ∈ A :
∣
∣g1(t) –℘

∣
∣ ≤ κ(t)

(
ϑ�

‖κ‖
)

ψ(|y – ȳ| +
∣
∣CH

D
ι3
1+ y – CH

D
ι3
1+ ȳ

∣
∣

+
∣
∣CH

D
ι2
1+

(CH
D
ι3
1+ y

)
– CH

D
ι2
1+

(CH
D
ι3
1+ ȳ

)∣
∣

}

for any t ∈ I . Since g1 and

� = κ(t)
(
ϑ�

‖κ‖
)

ψ
(|y – ȳ| +

∣
∣CH

D
ι3
1+ y – CH

D
ι3
1+ ȳ

∣
∣

+
∣
∣CH

D
ι2
1+

(CH
D
ι3
1+ y

)
– CH

D
ι2
1+

(CH
D
ι3
1+ ȳ

)∣
∣
)

are measurable, so the multivalued function

U(·) ∩G(·, y(·), CH
D
ι3
1+ y(·), CH

D
ι2
1+

(CH
D
ι3
1+ y(·))
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is also measurable. Now, suppose

g2 ∈G(t, y(t), CH
D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

)
,

so that we have

∣
∣g1(t) – g2(t)

∣
∣ ≤ κ(t)

(
ϑ�

‖κ‖
)

ψ
(|y – ȳ| +

∣
∣CH

D
ι3
1+ y – CH

D
ι3
1+ ȳ

∣
∣

+
∣
∣CH

D
ι2
1+

(CH
D
ι3
1+ y

)
– CH

D
q2
1+

(CH
D
ι3
1+ ȳ

)∣
∣
)
.

Define �2 ∈ K(y) by

�2(t) =
1

�(ι1 + ι2 + ι3)

∫ t

1

(

ln
t
r

)ι1+ι2+ι3–1

g2(r)
dr
r

–
1

2�(ι1 + ι2 + ι3)

∫ e

1

(

ln
e
r

)ι1+ι2+ι3–1

g2(r)
dr
r

+
F1(t)

2�(1 + ι3)�(ι1 + ι2)

∫ η

1

(

ln
η

r

)ι1+ι2–1

g2(r)
dr
r

+
F2(t)

2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1)

×
∫ e

1

(

ln
e
r

)ι1–1

g2(r)
dr
r

for any t ∈ I . Then we get the following inequalities as a result.

∣
∣�1(t) – �2(t)

∣
∣

≤ 1
�(ι1 + ι2 + ι3)

∫ t

1

(

ln
t
r

)ι1+ι2+ι3–1∣
∣g1(r) – g2(r)

∣
∣dr

r

+
1

2�(ι1 + ι2 + ι3)

∫ e

1

(

ln
e
r

)ι1+ι2+ι3–1∣
∣g1(r) – g2(r)

∣
∣dr

r

+
|F1(t)|

2�(1 + ι3)�(ι1 + ι2)

∫ η

1

(

ln
η

r

)ι1+ι2–1∣
∣g1(r) – g2(z)

∣
∣dr

r

+
|F2(t)|

2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1)

×
∫ e

1

(

ln
e
r

)ι1–1∣
∣g1(r) – g2(z)

∣
∣dr

r

≤ (ln t)ι1+ι2+ι3

�(ι1 + ι2 + ι3 + 1)
‖κ‖

(
ϑ�

‖κ‖
)

ψ
(‖y – ȳ‖)

+
1

2�(ι1 + ι2 + ι3 + 1)
‖κ‖

(
ϑ�

‖κ‖
)

ψ
(‖y – ȳ‖)

+
F∗

1 (lnη)ι1+ι2

2�(1 + ι3)�(ι1 + ι2 + 1)
‖κ‖

(
ϑ�

‖κ‖
)

ψ
(‖y – ȳ‖)

+
F∗

2
2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1 + 1)
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× ‖κ‖
(
ϑ�

‖κ‖
)

ψ
(‖y – ȳ‖)

=
[

3
2�(ι1 + ι2 + ι3 + 1)

+
F∗

1 (lnη)ι1+ι2

2�(1 + ι3)�(ι1 + ι2 + 1)

+
F∗

2
2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1 + 1)

]

× ‖κ‖
(
ϑ�

‖κ‖
)

ψ
(‖y – ȳ‖)

= ϑ��̌1ψ
(‖y – ȳ‖).

Also, we have

∣
∣CH

D
ι3
1+�1(t) – CH

D
ι3
1+�2(t)

∣
∣

≤
[

1
�(ι1 + ι2 + 1)

+
F∗∗

1 (lnη)ι1+ι2

2�(1 + ι3)�(ι1 + ι2 + 1)

+
F∗∗

2
2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1 + 1)

]

× ‖κ‖
(
ϑ�

‖κ‖
)

ψ
(‖y – ȳ‖)

= ϑ��̌2ψ
(‖y – ȳ‖)

and

∣
∣CH

D
ι2
1+

(CH
D
ι3
1+�1(t)

)
– CH

D
ι2
1+

(CH
D
ι3
1+�2(t)

)∣
∣

≤
[

1
�(ι1 + 1)

+
F∗∗∗

2
2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1 + 1)

]

× ‖κ‖
(
ϑ�

‖κ‖
)

ψ
(‖y – ȳ‖)

= ϑ��̌3ψ
(‖y – ȳ‖)

for all t ∈ I . Consequently,

‖�1 – �2‖ = sup
t∈I

∣
∣�1(t) – �2(t)

∣
∣ + sup

t∈I

∣
∣CH

D
ι3
1+�1(t) – CH

D
ι3
1+�2(t)

∣
∣

+ sup
t∈I

∣
∣CH

D
ι2
1+

(CH
D
ι3
1+�1(t)

)
– CH

D
ι2
1+

(CH
D
ι3
1+�2(t)

)∣
∣

≤ ϑ�(�̌1 + �̌2 + �̌3)ψ
(‖y – ȳ‖) =ψ

(‖y – ȳ‖).

Accordingly, φ(y, ȳ)Hρ(K(y), K(ȳ)) ≤ ψ(‖y – ȳ‖) for all y, ȳ ∈ A. This confirms that K is a
φ-ψ-contraction. Next, suppose that y ∈ A and ȳ ∈ K(y) s.t. φ(y, ȳ) ≥ 1 and

��
((

y(t), CH
D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

))
,

(
ȳ(t), CH

D
ι3
1+ ȳ(t), CH

D
ι2
1+

(CH
D
ι3
1+ ȳ(t)

))) ≥ 0,
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so there exists ℘ ∈ K(ȳ) such that

��
((

ȳ(t), CH
D
ι3
1+ ȳ(t), CH

D
ι2
1+

(CH
D
ι3
1+ ȳ(t)

))
,

(
℘(t), CH

D
ι3
1+℘(t), CH

D
ι2
1+

(CH
D
ι3
1+℘(t)

))) ≥ 0,

which further implies that φ(ȳ,℘) ≥ 1 and accordingly K is φ-admissible. Finally, let y0 ∈ A
and ȳ ∈ K(y0) so that

��
((

y0(t), CH
D
ι3
1+ y0(t), CH

D
ι2
1+

(CH
D
ι3
1+ y0(t)

))
,

(
ȳ(t), CH

D
ι3
1+ ȳ(t), CH

D
ι2
1+

(CH
D
ι3
1+ ȳ(t)

))) ≥ 0

for all t ∈ I . It follows that φ(y0, ȳ) ≥ 1. Assume {yj }j≥1 ⊂ A s.t. yj → y and φ(yj , yj+1) ≥ 1
for all j . Then we have

��
((

yj (t), CH
D
ι3
1+ yj (t), CH

D
ι2
1+

(CH
D
ι3
1+ yj (t)

))
,

(
yj+1(t), CH

D
ι3
1+ yj+1(t), CH

D
ι2
1+

(CH
D
ι3
1+ yj+1(t)

))) ≥ 0.

Then hypothesis (H4) confirms the existence of a subsequence {yjs}s≥1 of {yj } satisfying

��
((

yjs (t), CH
D
ι3
1+ yjs (t), CH

D
ι2
1+

(CH
D
ι3
1+ yjs (t)

))
,

(
y(t), CH

D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

))) ≥ 0

for all t ∈ I . Thus, φ(yjs , y) ≥ 1 for all t, and accordingly it possesses the (Cφ) condition.
Hence, Theorem 3.3 allows that K possesses a fixed point which is a solution for the CHF-
jerk inclusion (1). �

3.2 End point and jerk model (1)
Now, in the next place, by utilizing another theorem based on some other special multi-
functions containing the AEP-property, we derive the second criterion guaranteeing the
existence of solution for the supposed CHF-jerk problem (1).

Theorem 3.6 ([42]) Consider (A,ρ) as a complete metric space. Assume:
(1) ψ ∈� is u.s.c along with lim inft→∞(t –ψ(t)) > 0 for t > 0;
(2) G : A →PCL,BN (A) admits the property

Hρ(Gy1,Gy2) ≤ψ(
ρ(y1, y2)

)
, ∀y1, y2 ∈ A.

Then G admits one and exactly one end point iff G contains the AEP-property.

Theorem 3.7 Take G : I × A3 →PCP(A). Assume that
(H7) There exists a nondecreasing and upper semi-continuous mapping ψ : R≥0 → R≥0

which satisfies ψ(t) ≤ t, ∀t > 0 and lim inft→∞(t –ψ(t)) ≥ 0;
(H8) Multifunction G : I × A3 → PCP(A) is bounded and integrable such that the map

G(·, y1, y2, y3) : I →PCP(A) is measurable for all ym ∈ A (m = 1, 2, 3);
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(H9) There is a function κ ∈ C(I, [0,∞)) s.t.

Hρ(G(t, y1, y2, y3),G(t, y̌1, y̌2, y̌3) ≤ κ(t) �ψ

( 3∑

m=1

|ym – y̌m|
)

(18)

for all t ∈ I and ym, y̌m ∈ A (m = 1, 2, 3), where

 � =
1

!1 +!2 +!3
, !m = ‖κ‖�̌m (m = 1, 2, 3);

(H10) The AEP-property is valid for the multi-function K .
Then the CHF-jerk problem (1) has a solution.

Proof We want to establish that the multifunction K : A → P(A) possesses an end point.
Initially, we claim that K(y) is closed ∀y ∈ A. As the multifunction

t �→G
(
t, y(t), CH

D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

))

is both measurable and closed-valued for any y ∈ A, so the G has a measurable selection
and SG,y 
= ∅. By using the same procedure as that given in Theorem 3.5, it can be easily
deduced that K(y) is closed-valued. Also, the compactness of G ensures the boundedness
of K(y). Next, assume that y, y̌ ∈ A and �1 ∈ K(y̌) and choose g1 ∈ S

G,y̌ such that

�1(t) =
1

�(ι1 + ι2 + ι3)

∫ t

1

(

ln
t
r

)ι1+ι2+ι3–1

g1(r)
dr
r

–
1

2�(ι1 + ι2 + ι3)

∫ e

1

(

ln
e
r

)ι1+ι2+ι3–1

g1(r)
dr
r

+
F1(t)

2�(1 + ι3)�(ι1 + ι2)

∫ η

1

(

ln
η

r

)ι1+ι2–1

g1(r)
dr
r

+
F2(t)

2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1)

∫ e

1

(

ln
e
r

)ι1–1

g1(r)
dr
r

for all t ∈ I . Also, for all y, y̌ ∈ A and t ∈ I , we have

Hρ(G
(
t, y(t), CH

D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

))
,

G
(
y̌(t), CH

D
ι3
1+ y̌(t), CH

D
ι2
1+

(CH
D
ι3
1+ y̌(t)

))

≤ κ(t) �ψ
(∣
∣y(t) – y̌(t)

∣
∣ +

∣
∣CH

D
ι3
1+ y(t) – CH

D
ι3
1+ y̌(t)

∣
∣

+
∣
∣CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

)
– CH

D
ι2
1+

(CH
D
ι3
1+ y̌(t)

)∣
∣
)
.

There exists

℘̀ ∈G
(
t, y(t), CH

D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

))
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such that

∣
∣g1(t) – ℘̀

∣
∣ ≤ κ(t) �ψ

(∣
∣y(t) – y̌(t)

∣
∣ +

∣
∣CH

D
ι3
1+ y(t) – CH

D
ι3
1+ y̌(t)

∣
∣

+
∣
∣CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

)
– CH

D
ι2
1+

(CH
D
ι3
1+ y̌(t)

)∣
∣
)
.

We give a mapping � : I →P(A) by

�(t) =
{
℘̀ ∈ A :

∣
∣g1(t) – ℘̀

∣
∣ ≤ κ(t) �ψ

(∣
∣y(t) – y̌(t)

∣
∣

+
∣
∣CH

D
ι3
1+ y(t) – CH

D
ι3
1+ y̌(t)

∣
∣

+
∣
∣CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

)
– CH

D
ι2
1+

(CH
D
ι3
1+ y̌(t)

)∣
∣
)}

for any t ∈ I . Because g1 and

k = κ(t) �ψ
(|y – y̌| +

∣
∣CH

D
ι3
1+ y – CH

D
ι3
1+ y̌

∣
∣

+
∣
∣CH

D
ι2
1+

(CH
D
ι3
1+ y

)
– CH

D
ι2
1+

(CH
D
ι3
1+ y̌

)∣
∣
)

are measurable, thus

�(·) ∩G
(·, y(·), CH

D
ι3
1+ y(·), CH

D
ι2
1+

(CH
D
ι3
1+ y(·)))

is too. Take

g2 ∈G
(
t, y(t), CH

D
ι3
1+ y(t), CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

))
,

s.t. for all t ∈ I we get

∣
∣g1(t) – g2(t)

∣
∣ ≤ κ(t) �ψ

(∣
∣y(t) – y̌(t)

∣
∣ +

∣
∣CH

D
ι3
1+ y(t) – CH

D
ι3
1+ y̌(t)

∣
∣

+
∣
∣CH

D
ι2
1+

(CH
D
ι3
1+ y(t)

)
– CH

D
ι2
1+

(CH
D
ι3
1+ y̌(t)

)∣
∣
)
.

Define �2 ∈ K(y) by

�2(t) =
1

�(ι1 + ι2 + ι3)

∫ t

1

(

ln
t
r

)ι1+ι2+ι3–1

g2(r)
dr
r

–
1

2�(ι1 + ι2 + ι3)

∫ e

1

(

ln
e
r

)ι1+ι2+ι3–1

g2(r)
dr
r

+
F1(t)

2�(1 + ι3)�(ι1 + ι2)

∫ η

1

(

ln
η

r

)ι1+ι2–1

g2(r)
dr
r

+
F2(t)

2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1)

∫ e

1

(

ln
e
r

)ι1–1

g2(r)
dr
r

for any t ∈ I . Using the same techniques that were employed in the proof of Theorem 3.5,
we get that

‖�1 – �2‖ = sup
t∈I

∣
∣�1(t) – �2(t)

∣
∣ + sup

t∈I

∣
∣CH

D
ι3
1+�1(t) – CH

D
ι3
1+�2(t)

∣
∣
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+ sup
t∈I

∣
∣CH

D
ι2
1+

(CH
D
ι3
1+�1(t)

)
– CH

D
ι2
1+

(CH
D
ι3
1+�2(t)

)∣
∣

≤ �(!1 +!2 +!3)ψ
(‖y – y̌‖) =ψ

(‖y – y̌‖).

We get

Hρ
(
K(y), K(y̌)

) ≤ψ(‖y – y̌‖), ∀y, y̌ ∈ A.

Hypothesis (H10) gives the approximate property for the end points of K . Hence, due to
Theorem 3.6, ∃y∗ ∈ A s.t. K(y∗) = {y∗}. As a result, y∗ is a solution of the CHF-jerk problem
(1). �

4 Example
We give an example for simulating and analyzing the results numerically.

Example 4.1 We model the following CHF-jerk inclusion BVP by assuming the constant
values ι1 = 0.5, ι2 = 0.7, ι3 = 0.99 as

⎧
⎪⎪⎨

⎪⎪⎩

(CH
D

0.5
1+ (CH

D
0.7
1+ (CH

D
0.99
1+ y)))(t) ∈ [0, 1

4 (t| sin(y(t))| + t|CH
D

0.99
1+ y(t)|

+ 0.5t| tan–1(CH
D

0.7
1+ (CH

D
0.99
1+ y)(t))|) + 2 exp (t)],

y(1) + y(e) = 0, CH
D

0.99
1+ y(2.69) = 0, CH

D
0.7
1+ (CH

D
0.99
1+ y(e)) = 0,

(19)

where t ∈ I := [1, e], and we choose η = 2.69 ∈ (1, e). Now, consider the multi-function
G : I × A3 →PCP(A) defined by

G
(
t, y1(t), y2(t), y3(t)

)
=

[

0,
1
4
(
t
∣
∣sin

(
y1(t)

)∣
∣

+ t
∣
∣y2(t)

∣
∣ + 0.5t

∣
∣tan–1(y3(t)

)∣
∣
)

+ 2 exp (t)
]

,

where

A =
{

y(t) : y(t), CH
D

0.99
1+ y(t), CH

D
0.7
1+

(CH
D

0.99
1+ y(t)

) ∈ C
(
[1, e],R

)}
.

Some calculations, by the above data and using (13), give F∗
1 = 3,

F∗
2 = 3�(1 + ι2)�(1 + ι3) + 3�(1 + ι2 + ι3)(lnη)ι2

= 3�(1.7)�(1.99) + 3�(2.69)(ln 2.69)0.7 � 7.278176,

F∗∗
1 = 2�(1.99) = 1.991626,

F∗∗
2 = 2�(1 + ι2 + ι3)�(1 + ι3)

(
1 + (lnη)ι2

)

= 2�(2.69)�(1.99)
(
1 + (ln 2.69)0.7) � 6.0818,

F∗∗∗
1 = 0,

F∗∗∗
2 = 2�(1 + ι3)�(1 + ι2 + ι3)�(1 + ι2)
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= 2�(1.99)�(2.69)�(1.7) � 2.773247,

and

�̌1 =
3

2�(ι1 + ι2 + ι3 + 1)
+

F∗
1 (lnη)ι1+ι2

2�(1 + ι3)�(ι1 + ι2 + 1)

+
F∗

2
2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1 + 1)

=
3

2�(3.19)
+

3(ln 2.69)1.2

2�(1.99)�(2.2)

+
7.278176

2�(2.69)�(1.7)�(1.99)�(1.5)

� 4.936355,

�̌2 =
1

�(ι1 + ι2 + 1)
+

F∗∗
1 (lnη)ι1+ι2

2�(1 + ι3)�(ι1 + ι2 + 1)

+
F∗∗

2
2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1 + 1)

=
1

�(2.2)
+

1.991626(ln 2.69)1.2

2�(1.99)�(2.2)

+
6.0818

2�(2.69)�(1.7)�(1.99)�(1.5)

� 4.278391,

�̌3 =
1

�(ι1 + 1)
+

F∗∗∗
2

2�(1 + ι2 + ι3)�(1 + ι2)�(1 + ι3)�(ι1 + 1)

=
1

�(1.5)
+

2.7732476
2�(2.69)�(1.7)�(1.99)�(1.5)

� 2.256758.

For each ym, ȳm ∈R (m = 1, 2, 3), we have

Hρ
(
G

(
t, y1(t), y2(t), y3(t)

)
,G

(
t, ȳ1(t), ȳ2(t), ȳ3(t)

))

≤ t
4
(∣
∣sin

(
y1(t)

)
– sin

(
ȳ1(t)

)∣
∣ +

∣
∣y2(t) – ȳ2(t)

∣
∣

+
∣
∣tan–1(y3(t)

)
– tan–1(ȳ3(t)

)∣
∣
)

≤ t
4
(∣
∣y1(t) – ȳ1(t)

∣
∣ +

∣
∣y2(t) – ȳ2(t)

∣
∣ +

∣
∣y3(t) – ȳ3(t)

∣
∣
)

=
t
4

( 3∑

i=1

∣
∣yi(t) – ȳi(t)

∣
∣

)

=
t
4
ψ

( 3∑

i=1

∣
∣yi(t) – ȳi(t)

∣
∣

)

= κ(t)ψ

( 3∑

i=1

∣
∣yi(t) – ȳi(t)

∣
∣

)
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≤ κ(t) �ψ

( 3∑

i=1

∣
∣yi(t) – ȳi(t)

∣
∣

)

.

Hence, from the above, it is found a function κ ∈ C(I, [0,∞)) as κ(t) = t
2 for all t ∈ I = [1, e].

Then

‖κ‖ = sup
t∈I

∣
∣
∣
∣

t
2

∣
∣
∣
∣ =

e
2

� 1.355.

Next, define ψ : [0,∞) → [0,∞) by ψ(t) = t
2 for (a.e.) t > 0. It is simple to verify that

lim inf
t→∞

(
t –ψ(t)

)
> 0,

and ψ(t) < t for all t > 0. Also, we obtain

 � =
1

!1 +!2 +!3
, !m = ‖κ‖�̌m (m = 1, 2, 3),

in which

!1 � ‖κ‖�̌1 � 6.688761,

!2 � ‖κ‖�̌2 � 5.797221,

!3 � ‖κ‖�̌3 � 3.057907.

Thus

 � =
1

!1 +!2 +!1
� 1

15.543889
� 0.064333

for all t ∈ I . In the sequel, we regard the multi-function K : A →P(A) by

K(y) =
{

z ∈ A : there exists g ∈ SG,y such that z(t) = π (t),∀t ∈ I
}

,

for which

π (t) =
1

�(2.19)

∫ t

1

(

ln
t
r

)1.19

g(r)
dr
r

–
1

2�(2.19)

∫ e

1

(

ln
e
r

)1.19

g(r)
dr
r

+
F1(t)

2�(1.99)�(1.2)

∫ η

1

(

ln
η

r

)0.2

g(r)
dr
r

+
F2(t)

2�(2.69)�(1.7)�(1.99)�(0.5)

∫ e

1

(

ln
e
r

)–0.5

g(r)
dr
r

, (20)
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where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(t) = 1 – 2(ln t)ι3 = 1 – 2(ln t)0.99,

F2(t) = �(1 + ι2)�(1 + ι3)[1 – 2(ln t)ι2+ι3 ]

– �(1 + ι2 + ι3)(lnη)ι2 [1 – 2(ln t)ι3 ]

= �(1.7)�(1.99)[1 – 2(ln t)1.69]

– �(2.69)(ln 2.69)0.7[1 – 2(ln t)0.99].

(21)

One can see the results of F1(t), F2(t) for t ∈ [1, e] in Table 1 and can see a graphical repre-
sentation of them in Fig. 1. As the multi-function K possesses an approximate end point

Table 1 Numerical results of F1(t) and F2(t) for t ∈ I

t F1 F2

1.00 1.0000 –0.6164
1.10 0.8048 –0.3536
1.20 0.6291 –0.1541
1.30 0.4682 0.0040
1.40 0.3197 0.1313
1.50 0.1817 0.2348
1.60 0.0529 0.3192
1.70 –0.0680 0.3881
1.80 –0.1818 0.4443
1.90 –0.2894 0.4897
2.00 –0.3914 0.5261
2.10 –0.4883 0.5549
2.20 –0.5807 0.5771
2.30 –0.6689 0.5937
2.40 –0.7533 0.6053
2.50 –0.8342 0.6127
2.60 –0.9119 0.6163
2.70 –0.9866 0.6167
2.80 –1.0586 0.6141

Figure 1 Graphical representation of F1(t) and F2(t) for t ∈ I



Etemad et al. Journal of Inequalities and Applications         (2022) 2022:84 Page 24 of 28

property, hence by using Theorem 3.7, the supposed CHF-jerk problem (19) admits a so-
lution.

5 Conclusion
In this research work, a generalization of the standard jerk equation in the context of the
Caputo–Hadamard differential inclusion (1) was provided, in which we used some in-
equalities and important properties of multi-valued functions in the framework of the
special contractions and admissible mappings. We extracted existence properties of solu-
tions of the mentioned inclusion (1) by applying two different notions of fixed points and
end points in functional analysis. This type of the Caputo–Hadamard structure for a jerk
problem is a newly-defined FBVP, and we tried to establish our results based on some new
non-routine techniques of fixed point and end point theories. With the help of an exam-
ple, we described our method numerically and graphically. Due to the importance of jerk
in the modern physics, it is necessary that we continue our study on the extended models
of such physical structures and investigate other qualitative properties of them.
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Appendix: Supplement

Algorithm 1 MATLAB lines for calculation of all variables in Example 4.1
1: clear;
2: format long;
3: syms v e;
4: q_1=0.5; q_2=0.7; q_3=0.99; eta=2.69;
5:
6: F_1ast=3;
7: F_2ast=3*gamma(1+q_2)*gamma(1+ q_3)

+ 3*gamma (1 + q_2 + q_3) ...
8: *(log(eta))^(q_2);
9: F_1astast=2*gamma(q_3 +1 );

10: F_2astast=2*gamma(1 + q_2 + q_3)*gamma(1+q_3)
*(1 + (log(eta))^(q_2));

11:
12: F_1astastast=0;
13: F_2astastast=2*gamma(1+ q_3)*gamma(1+ q_2 + q_3)*gamma(1+q_2);
14:
15: checkLambda_1=3/(2*gamma(q_1+q_2+q_3+1)) ...
16: + F_1ast* (log(eta))^(q_1+q_2)...
17: /(2*gamma(1 + q_3)*gamma(q_1 + q_2+1))...
18: + F_2ast/(2*gamma(1+q_2 + q_3 )*gamma(1 + q_2)...
19: *gamma(1 + q_3)*gamma(q_1+1));
20:
21: checkLambda_2=1/gamma(q_1+q_2+1) ...
22: + F_1astast*(log(eta))^(q_1+q_2)...
23: /(2*gamma(1 + q_3)*gamma(q_1 + q_2+1))...
24: +F_2astast/(2*gamma(1+q_2 + q_3)*gamma(1+q_2)...
25: *gamma(1+q_3)*gamma(q_1+1));
26:
27: checkLambda_3=1/gamma(q_1+1)+ F_2astastast...
28: /(2*gamma(1+q_2 + q_3)*gamma(1 + q_2)*gamma(1 + q_3)...
29: * gamma(q_1+1));
30:
31: kappa=1.355;
32: Xi_1= kappa * checkLambda_1;
33: Xi_2= kappa * checkLambda_2;
34: Xi_3= kappa * checkLambda_3;
35: ss=Xi_1 + Xi_2+ Xi_3;
36: varpistar = 1/(Xi_1 + Xi_2+ Xi_3);
37:
38: F_1=1- 2* (log(v))^(q_3);
39: F_2=gamma(1+q_2)* gamma(1+ q_3)* ...
40: (1- 2 *(log(v))^(q_2 + q_3))-gamma(1 + q_2 + q_3)...
41: * (log(eta))^(q_2) *( 1-2* (log(v))^(q_3));
42: column=1;
43: nn=1;
44: a=1;
45: b=exp(1);
46: t=1;
47: while t<=b+0.1
48: MI(nn,column) = nn;
49: MI(nn,column+1) = t;
50: MI(nn,column+2) =eval(subs(F_1, {v}, {t}));
51: MI(nn,column+3) =eval(subs(F_2, {v}, {t}));
52: t=t+0.1;
53: nn=nn+1;
54: end;
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