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Abstract
In this study, we consider a nonlinear matrix equation of the form
X =Q +

∑m
i=1A∗

i G(X )Ai , whereQ is a Hermitian positive definite matrix,A∗
i stands

for the conjugate transpose of an n× nmatrixAi , and G is an order-preserving
continuous mapping from the set of all Hermitian matrices to the set of all positive
definite matrices such that G(O) = O. We discuss sufficient conditions that ensure the
existence of a unique positive definite solution of the given matrix equation. For this,
we derive some fixed point results for Suzuki-FG contractive mappings on metric
spaces (not necessarily complete) endowed with arbitrary binary relation (not
necessarily a partial order). We provide adequate examples to validate the fixed-point
results and the importance of related work, and the convergence analysis of
nonlinear matrix equations through an illustration with graphical representations.
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1 Introduction
The study of nonlinear matrix equations (NME) appeared first in the literature concerned
with an algebraic Riccati equation. These equations occur in a large number of problems
in control theory, dynamical programming, ladder network, stochastic filtering, queuing
theory, statistics, and many other applicable areas.

Let H(n) (resp. K(n), P(n)) denote the set of all n × n Hermitian (resp. positive semi-
definite, positive definite) matrices over C and M(n) the set of all n × n matrices over C.
In [1], Ran and Reurings discussed the existence of solutions of the following equation:

X + B∗F(X )B = Q (1)

in K(n), where B ∈M(n), Q is positive definite, and F is a mapping from K(n) into M(n).
Note that X is a solution of (1) if and only if it is a fixed point of the mapping G(X ) = Q–
B∗F(X )B. In [2], authors used the notion of partial ordering and established a modification
of the Banach contraction principle, which they applied for solving a class of NMEs of the
form X = Q +

∑m
i=1 B∗

i F(X )Bi using the Ky Fan norm in M(n).
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Theorem 1.1 ([2]) Let F : H(n) → H(n) be an order-preserving, continuous mapping
which maps P(n) into itself and Q ∈ P(n). If Bi,B∗

i ∈ P(n) and
∑m

i=1 BiB∗
i < M · In for

some M > 0 (In – the unit matrix in M(n)) and if | tr(F(Y) – F(X ))| ≤ 1
M | tr(Y – X )| for all

X ,Y ∈H(n) with X ≤ Y , then the equation X = Q+
∑m

i=1 B∗
i F(X )Bi has a unique positive

definite solution (PDS).

In recent years, a number of mathematicians have obtained fixed point results for con-
traction type mappings in metric spaces equipped with partial order. Some early results in
this direction were established by Turinici in [3, 4]; one may note that their starting points
were “amorphous” contributions in the area due to Matkowski [5, 6]. These types of re-
sults have been reinvestigated by Ran and Reurings [1] and also by Nieto and Ródríguez-
López [7, 8]. Samet and Turinici [9] established fixed point theorem for nonlinear contrac-
tion under symmetric closure of an arbitrary relation. Ahmadullah et al. [10–12] and Alam
and Imdad [13] employed an amorphous relation to prove a relation-theoretic analogue
of the Banach contraction principle which in turn unifies a lot of well-known relevant
order-theoretic fixed point theorems. Recently, Hasanuzzaman and Imdad [14] used the
concept of simulation function and proved the relation theoretic metrical fixed point re-
sults for Suzuki typeZR-contraction and discussed application in solving nonlinear matrix
equations.

Motivated by the above reference work, we introduce the notion of Suzuki-FG contrac-
tive mapping on metric spaces endowed with an arbitrary binary relation (not necessar-
ily partial order), and then we prove existence and uniqueness fixed point results under
weaker conditions. We justify our work by some illustrative examples and demonstrate the
genuineness of Suzuki-FG contraction over Suzuki contraction, generalized Suzuki con-
traction, and implicit type contraction mapping. Further, we apply this result to NMEs and
discuss its convergence behavior with respect to three different initial values with graphi-
cal representations and solutions by the surface plot. The experiment was run on a macOS
Mojave version 10.14.6 CPU @1.6 GHz intel core i5 8GB with MATLAB R2020b as the
programming language (Online).

2 Preliminaries
Throughout this article, the notations Z,N,R,R+ have their usual meanings, and N

∗ =
N∪ {0}.

We call (E ,R) a relational set if (i) E �= ∅ is a set and (ii) R is a binary relation on E .
In addition, if (E , d) is a metric space, we call (E , d,R) a relational metric space (RMS,

for short).
The following are some standard terms used in the theory of relational sets (see, e.g.,

[9, 13, 15–17]).
Let (E ,R) be a relational set, (E , d,R) be an RMS, and let 	 be a self-mapping on E .

Then:
1. ν ∈ E is R-related to ϑ ∈ E if and only if (ν,ϑ) ∈R.
2. The set (E ,R) is said to be comparable if for all ν,ϑ ∈ E , [ν,ϑ] ∈ R, where [ν,ϑ] ∈R

means that either (ν,ϑ) ∈R or (ϑ ,ν) ∈R.
3. A sequence (νn) in E is said to be R-preserving if (νn,νn+1) ∈R, ∀n ∈N∪ {0}.
4. (E , d,R) is said to be R-complete if every R-preserving Cauchy sequence converges

in E .
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5. R is said to be 	-closed if (ν,ϑ) ∈ R⇒ (	ν,	ϑ) ∈ R. It is said to be weakly 	-closed
if (ν,ϑ) ∈ R⇒ [	ν,	ϑ] ∈ R.

6. R is said to be d-self-closed if for every R-preserving sequence with νn → ν , there is
a subsequence (νnk ) of (νn) such that [νnk ,ν] ∈R for all k ∈N∪ {0}.

7. A subset Z of E is called R-directed if for each ν,ϑ ∈ Z, there exists μ ∈ E such that
(ν,μ) ∈R and (ϑ ,μ) ∈R. It is called (	,R)-directed if for each ν,ϑ ∈ Z there exists
μ ∈ E such that (ν,	μ) ∈R and (ϑ ,	μ) ∈R.

8. 	 is said to be R-continuous at ν if for every R-preserving sequence (νn) converging
to ν , we get 	(νn) → 	(ν) as n → ∞. Moreover, 	 is said to be R-continuous if it is
R-continuous at every point of E .

9. For ν,ϑ ∈ E , a path of length k (where k is a natural number) in R from ν to ϑ is a
finite sequence {μ0,μ1,μ2, . . . ,μk} ⊂ E satisfying the following conditions:
(i) μ0 = ν and μk = ϑ ,

(ii) (μi,μi+1) ∈R for each i (0 ≤ i ≤ k – 1),
then this finite sequence is called a path of length k joining ν to ϑ in R.

10. If, for a pair of ν,ϑ ∈ E , there is a finite sequence {μ0,μ1,μ2, . . . ,μk} ⊂ E satisfying
the following conditions:
(i) 	μ0 = ν and 	μk = ϑ ,

(ii) (	μi,	μi+1) ∈R for each i (0 ≤ i ≤ k – 1),
then this finite sequence is called a 	-path of length k joining ν to ϑ in R.

Notice that a path of length k involves k + 1 elements of E although they are not neces-
sarily distinct.

We fix the following notation for a relational metric space (E , d,R), a self-mapping 	 on
E , and an R-directed subset D of E :

(i) Fix(	) := the set of all fixed points of 	,
(ii) X(	,R) := {ν ∈ E : (ν,	ν) ∈R},

(iii) P(ν,ϑ ,R) := the class of all paths in R from ν to ϑ in R, where ν,ϑ ∈ E .

3 Results on Suzuki-FG contractive mappings
Definition 3.1 ([18]) The collection of all functions F : R+ →R satisfying:

(F1) F is continuous and strictly increasing;
(F2) for each {ξn} ⊆ R+, limn→∞ ξn = 0 iff limn→∞ F (ξn) = –∞,

will be denoted by F.
The collection of all pairs of mappings (G,β), where G : R+ → R, β : R+ → [0, 1), satis-

fying:
(F3) for each {ξn} ⊆ R+, lim supn→∞ G(ξn) ≥ 0 iff lim supn→∞ ξn ≥ 1;
(F4) for each {ξn} ⊆ R+, lim supn→∞ β(ξn) = 1 implies limn→∞ ξn = 0;
(F5) for each {ξn} ⊆ R+,

∑∞
n=1 G(β(ξn)) = –∞,

will be denoted by Gβ .

Definition 3.2 Let (E , d,R) be an RMS and P : E → E be a given mapping. A mapping
P is said to be a Suzuki-FG contractive mapping if there exist F ∈ F and (G,β) ∈Gβ such
that, for (ν,ϑ) ∈ E with (ν,ϑ) ∈R∗,

⎧
⎨

⎩

1
2 d(ν,Pν) ≤ d(ν,ϑ) implies

F (d(Pν,Pϑ)) ≤F (N(ν,ϑ)) + G(β(N(ν,ϑ))),
(2)
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where

N(ν,ϑ) = max

{

d(ν,ϑ), d(ν,Pν), d(ϑ ,Pϑ),
d(ν,Pϑ) + d(ϑ ,Pν)

2

}

,

R
∗ =
{

(ν,ϑ) ∈R |Pν �= Pϑ
}

.
(3)

We denote by (SFG)R the collection of all Suzuki-FG contractive mappings on (E , d,R).

Now, we are equipped to state and prove our first main result as follows.

Theorem 3.3 Let (E , d,R) be an RMS and P : E → E . Suppose that the following condi-
tions hold:

(C1) X(P ,R) �= ∅;
(C2) R is P-closed and P-transitive;
(C3) E is R-complete;
(C4) P ∈ (SFG)R;
(C5) 	 is R-continuous or
(C′

5) R is d-self-closed.
Then there exists a point ν∗ ∈ Fix(P).

Proof Starting with ν0 ∈ E given by (C1), we construct a sequence {νn} of Picard iterates
νn+1 = Pn(ν0) for all n ∈N

∗.
Using (C1)–(C2), we have that (Pν0,P2ν0) ∈R. Continuing this process inductively, we

obtain

(
Pnν0,Pn+1ν0

) ∈ R (4)

for any n ∈ N
∗. Hence, {νn} is an R-preserving sequence.

Now, if there exists some n0 ∈ N
∗ such that d(νn0 ,Pνn0 ) = 0, then the result follows im-

mediately. Otherwise, for all n ∈ N
∗, d(νn,Pνn) > 0 so that Pνn �= Pνn+1 which implies that

(νn,νn+1) ∈ R∗ and 1
2 d(νn,Pνn) < d(νn,Pνn). Therefore, using (C4) for ν = νn, ϑ = νn+1, we

have

F
(
d(Pνn,Pνn+1)

)≤F
(
N(νn,νn+1)

)
+ G
(
β
(
N(νn,νn+1)

))
,

where

N(νn,νn+1) = max

{
d(νn,νn+1), d(νn,Pνn), d(νn+1,Pνn+1),

d(νn ,Pνn+1)+d(νn+1,Pνn)
2

}

= max

{
d(νn,νn+1), d(νn,νn+1), d(νn+1,νn+2),

d(νn ,νn+2)
2

}

≤ max

{
d(νn,νn+1), d(νn,νn+1), d(νn+1,νn+2),

d(νn ,νn+1)+d(νn+1,νn+2)
2

}

= max
{

d(νn,νn+1), d(νn+1,νn+2)
}

.
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If N(νn,νn+1) = d(νn+1,νn+2), then

F
(
d(νn+1,νn+2)

)≤F
(
d(νn+1,νn+2)

)
+ G
(
β
(
d(νn+1,νn+2)

))
,

which implies G(β(d(νn+1,νn+2))) ≥ 0, i.e., β(d(νn+1,νn+2)) ≥ 1, a contradiction. Therefore

d(νn+1,νn+2) ≤ d(νn,νn+1) for all n ∈N, (5)

and so

F
(
d(νn+1,νn+2)

)≤ F
(
d(νn,νn+1)

)
+ G
(
β
(
d(νn,νn+1)

))

for all n ∈N. Consequently,

F
(
d(νn,νn+1)

)≤F
(
d(νn–1,νn)

)
+ G
(
β
(
d(νn–1,νn)

))

...

≤F
(
d(ν0,ν1)

)
+

i=n∑

i=1

G
(
β
(
d(νi,νi–1)

))
. (6)

Letting n → ∞ gives limn→∞ F (d(νn,νn+1)) = –∞ and F ∈ F gives

lim
n→∞ d(νn,νn+1) = 0. (7)

We will now show that the sequence {νn} is an R-preserving Cauchy sequence in (E , d).
On the contrary, we suppose that there exist ζ > 0 and two subsequences {νn(j)} and {νm(j)}
of {νn} such that m(j) is the smallest index for which m(j) > n(j) > j and

d(νm(j),νn(j)) ≥ ζ . (8)

This means that m(j) > n(j) > j and

d(νm(j)–1,νn(j)) < ζ . (9)

On the other hand,

ζ ≤ d(νm(j),νn(j)) ≤ d(νm(j),νm(j)–1) + d(νm(j)–1,νnj)) ≤ d(νm(j),νm(j)–1) + ζ .

Taking j → ∞ and using (7), we get

lim
j→∞ d(νm(j),νn(j)) = ζ , (10)

and hence

lim
j→∞ d(νm(j)+1,νn(j)+1) = ζ . (11)
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Then, from (7) and (10), one can select a positive integer N ∈ N such that

1
2

d(νm(j),Pνm(j)) <
1
2
ζ < d(νm(j),νn(j)) for all j ≥ N .

As the sequence {νn} is R-preserving and R is P-transitive, therefore (νm(j),νn(j)) ∈ R∗,
and we get

F
(

lim sup
j→∞

d(νm(j)+1,νn(j)+1)
)

≤F
(

lim sup
j→∞

N(νm(j),νn(j))
)

+ lim sup
j→∞

G
(
β
(
N(νm(j),νn(j))

))
, (12)

where

N(νm(j),νn(j))

= max

{
d(νm(j),νn(j)), d(νm(j),Pνm(j)), d(νn(j),Pνn(j)),

d(νn(j),Pνm(j))+d(νm(j),Pνn(j))
2

}

= max

{
d(νm(j),νn(j)), d(νm(j),νm(j)+1), d(νn(j),νn(j)+1),

d(νn(j),νm(j)+1)+d(νm(j),νn(j)+1)
2

}

≤ max

{
d(νm(j),νn(j)), d(νm(j),νm(j)+1), d(νn(j),νn(j)+1),
d(νn(j),νm(j))+d(νm(j),νm(j)+1)+d(νm(j),νn(j))+d(νn(j),νn(j)+1)

2

}

.

Taking upper limit as j → ∞ and making use of (7), (10), and (11), we get

lim sup
j→∞

N(νm(j),νn(j)) = lim sup
j→∞

d(νm(j),νn(j)). (13)

Therefore, from (12), (11), and (13), we have

F (ζ ) = F
(

lim sup
j→∞

d(νm(j)+1,νn(j)+1)
)

≤F
(

lim sup
j→∞

d(νm(j),νn(j))
)

+ lim sup
j→∞

G
(
β
(
d(νm(j),νn(j))

))

= F (ζ ) + lim sup
j→∞

G(β
(
d(νm(j),νn(j))

)
,

which implies that lim supj→∞ G(β(d(νm(j),νn(j)))) ≥ 0, which gives lim supj→∞ β(d(νm(j),
νn(j))) ≥ 1, and taking into account that β(ξ ) < 1 for all ξ ≥ 0, we have lim supj→∞ β(d(νm(j),
νn(j))) = 1. Therefore, lim supj→∞ d(νm(j),νn(j)) = 0, a contradiction. Hence, {νn} is an R pre-
serving Cauchy sequence in E .

TheR-completeness of E implies that there exists ν∗ ∈ E such that limn→∞ νn = ν∗. Now,
first by (C5), we have

ν∗ = lim
n→∞νn+1 = lim

n→∞Pνn = Pν∗, (14)

and hence ν∗ is a fixed point of P .
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Alternatively, suppose that R is d-self-closed. Then there exists a subsequence {νnk } of
{νn} with [νnk ,ν∗] ∈ R for all k ∈N

∗. Now, we assert that

1
2

d(νnk ,Pνnk ) < d(νnk ,ν∗) or
1
2

d
(
Pνnk ,P2νnk

)
< d(Pνnk ,ν∗) (15)

for all k ∈N
∗.

Let, to the contrary, there exist ς ∈ N such that

1
2

d(νn(ς ),Pνn(ς )) ≥ d(νn(ς ),ν∗) and
1
2

d
(
Pνn(ς ),P2νn(ς )

)≥ d(Pνn(ς ),ν∗), (16)

so that

2d(νn(ς ),ν∗) ≤ d(νn(ς ),Pνn(ς )) ≤ d(νn(ς ),ν∗) + d(ν∗,Pνn(ς )),

and

d(νn(ς ),ν∗) ≤ d(ν∗,Pνn(ς )) ≤ 1
2

d
(
Pνn(ς ),P2νn(ς )

)
. (17)

Now, from (5) and using (16), (17), we have

d
(
Pνn(ς ),P2νn(ς )

)
< d(νn(ς ),Pνn(ς ))

≤ d(νn(ς ),ν∗) + d(ν∗,Pνn(ς ))

≤ 1
2

d
(
Pνn(ς ),P2νn(ς )

)
+

1
2

d
(
Pνn(ς ),P2νn(k)

)

= d
(
Pνn(ς ),P2νn(ς )

)
,

a contradiction, and therefore (15) remains true.
Now, we distinguish two cases for 	 = {k ∈ N : Pνnk = Pν∗}. If 	 is finite, then there

exists k0 ∈ N such that Pνnk �= Pν∗ for all k > k0. It follows from (15) (for all k > k0) that
either

F
(
d(Pνnk ,Pν∗)

)≤F
(
N(νnk ,ν∗)

)
+ G
(
β
(
N(νnk ,ν∗)

))
,

where

N(νnk ,ν∗) = max

{
d(νnk ,ν∗), d(νnk ,Pνnk ), d(ν∗,Pν∗),

d(νnk ,Pν∗)+d(ν∗ ,Pνnk )
2

}

.

Applying limit as n → ∞, we get limn→∞ N(νnk ,ν∗) = d(ν∗,Pν∗), which implies that
lim supn→∞ G(β(N(νnk ,ν∗)) ≥ 0, which gives lim supn→∞ β(N(νnk ,ν∗)) ≥ 1, and taking into
account that β(ξ ) < 1 for all ξ ≥ 0, we have lim supn→∞ β(N(νnk ,ν∗)) = 1. Therefore,
lim supn→∞ N(νnk ,ν∗) = 0. Hence, d(ν∗,Pν∗) = 0, we get ν∗ = Pν∗.

Otherwise, if 	 is not finite, then there is a subsequence {νn(k(ς ))} of {νnk } such that

νn(k(ς ))+1 = Pνn(k(ς )) = Pν∗, ∀ς ∈ N.

As νnk →d ν∗, therefore Pν∗ = ν∗. �
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Theorem 3.4 In addition to the assumptions of Theorem 3.3, let P(ν,ϑ ;R|P(E)) �= ∅ for all
ν,ϑ ∈P(E). Then P has a unique fixed point.

Proof In view of Theorem 3.3, Fix(P) �= ∅. If Fix(P) is a singleton, then we concluded the
proof. Otherwise, let ν∗ �= 
 ∈ Fix(P). Since P(ν,ϑ ;R|P(E)) �= ∅ for all ϑ ,ν ∈ P(E), there
exists a path {Pz0,Pz1, . . . ,Pzk} of some length k in R|P(E) such that Pz0 = ν∗,Pzk = 


and (Pzj,Pzj+1) ∈R|P(E) for each j = 0, 1, 2, . . . , k – 1. Since R is P-transitive, we have

(ν∗,Pz1) ∈R, (Pz1,Pz2) ∈R, . . . , (Pzk–1,
 ) ∈ R⇒ (ν∗,
 ) ∈R.

Also, due to the fact 1
2 d(ν∗,Pν∗) < d(ν∗,
 ) and (ν∗,
 ) ∈R∗, we have

F
(
d(Pν∗,P
 )

)≤F
(
N(
 ,ν∗)

)
+ G
(
β
(
N(
 ,ν∗)

))
, (18)

where

N(
 ,ν∗) = max

{

d(ν∗,
 ), d(ν∗,Pν∗), d(
 ,P
 ),
d(ν∗,P
 ) + d(
 ,Pν∗)

2

}

= d(ν∗,
 ),

which on substituting in (18) gives

F
(
d(ν∗,
 )

)≤F
(
d(ν∗,
 )

)
+ G
(
β
(
d(ν∗,
 )

))
,

which gives G(β(d(ν∗,
 ))) ≥ 0 implies β(d(ν∗,
 )) ≥ 1, a contradiction. Therefore
d(ν∗,
 ) = 0. �

Theorem 3.5 In addition to the hypotheses of Theorem 3.3 (or Theorem 3.4), if any of the
following conditions is fulfilled:

(I) for all u, v ∈ E , there exists z ∈ E such that

{
(z,Pz), (z, u), (z, v)

}⊆R; (19)

(II) the set P(E) is R-directed;
(III) R|P(E) is complete;
(IV) Y(u, v, Fix(P),Rs) is nonempty for each u, v ∈ Fix(P),

then P has a unique fixed point.

Proof In view of Theorem 3.3 (or Theorem 3.4), Fix(P) �= ∅.
• Assume (I). Suppose that there exist distinct fixed points u and v of P . We will

consider the following two cases.
Case (A): We have (u, v) ∈R, then Pnu = u and Pnv = v such that (Pnu,Pnv) ∈R∗

for n = 0, 1, . . . . Now, we assert that

1
2

d
(
Pnu,Pn+1u

)
< d
(
Pnu,Pnv

)
or

1
2

d
(
Pn+1u,Pn+2u

)
< d
(
Pn+1u,Pnv

)
. (20)
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Let, to the contrary, there exist ς ∈N such that

1
2

d
(
Pnuς ,Pn+1uς

)≥ d
(
Pnuς ,Pnvς

)
(21)

and

1
2

d
(
Pn+1uς ,Pn+2uς

)≥ d
(
Pn+1uς ,Pnvς

)
. (22)

These imply that

2d
(
Pnuς ,Pnvς

)≤ d
(
Pnuς ,Pn+1uς

)≤ d
(
Pnuς ,Pnvς

)
+ d
(
Pnvς ,Pn+1uς

)
,

and so

d
(
Pnuς ,Pnvς

)≤ d
(
Pnvς ,Pn+1uς

)≤ 1
2

d
(
Pn+1uς ,Pn+2uς

)
. (23)

Now, from (5) and using (21)–(23), we have

d
(
Pn+1uς ,Pn+2uς

)
< d
(
Pnuς ,Pn+1uς

)

≤ d
(
Pnuς ,Pnvς

)
+ d
(
Pnvς ,Pn+1uς

)

≤ 1
2

d
(
Pn+1uς ,Pn+2uς

)
+

1
2

d
(
Pn+1uς ,Pn+2uς

)

= d
(
Pn+1uς ,Pn+2uς

)
,

a contradiction, and therefore (20) remains true. Therefore, using condition (2),

F (d
(
Pn+1u,Pn+1v

)≤F
(
N
(
Pnu,Pnv

))
+ G
(
β
(
N
(
Pnu,Pnv

)))
,

where

N
(
Pnu,Pnv

)
) = max

{
d
(
Pnu,Pnv

)
, d
(
Pnu,Pn+1u

)
, d
(
Pnv,Pn+1v

)
,

d(Pnu,Pn+1v)+d(Pnv,Pn+1u)
2

}

.

Since u and v are fixed points of P , we have

N
(
Pnu,Pnv

)
= d(u, v),

and so we get

F
(
d(u, v)

)≤F
(
d(u, v)

)
+ G
(
β
(
d(u, v)

))
,

which gives G(β(d(u, v))) ≥ 0, and so β(d(u, v)) ≥ 1, a contradiction. Therefore the
fixed point is unique.

Case (B): By assumption (I), there exists z ∈ E satisfying condition (19). Due to the
P-closedness of R, we get

(
Pn–1z, u

) ∈R,
(
Pn–1z, v

) ∈R.
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Now, we assert that

1
2

d
(
Pn–1z,Pnz

)
< d
(
Pn–1z, u

)
or

1
2

d
(
Pnz,Pn+1z

)
< d
(
Pnz, u

)
. (24)

Let, to the contrary, there exist ς ∈N such that

1
2

d
(
Pn–1zς ,Pnzς

)≥ d
(
Pn–1zς , uς

)
(25)

and

1
2

d
(
Pnzς ,Pn+1zς

)≥ d
(
Pnzς , uς

)
. (26)

These imply that

2d
(
Pn–1zς , uς

)≤ d
(
Pn–1zς ,Pnzς

)≤ d
(
Pn–1zς , uς

)
+ d
(
uς ,Pnzς

)
,

which implies that (using (26))

d
(
Pn–1zς , uς

)≤ d
(
uς ,Pnzς

)≤ 1
2

d
(
Pnzς ,Pn+1zς

)
. (27)

Now, from (5) and using (25)–(27), we have

d
(
Pnzς ,Pn+1zς

)
< d
(
Pn–1zς ,Pnzς

)

≤ d
(
Pn–1zς , uς

)
+ d
(
uς ,Pnzς

)

≤ 1
2

d
(
Pnzς ,Pn+1zς

)
+

1
2

d
(
Pnzς ,Pn+1zς

)

= d
(
Pnzς ,Pn+1zς

)
,

a contradiction, and therefore (24) remains true. Therefore, using condition (2),

F
(
d
(
Pnz, u

))≤F
(
N
(
Pn–1z, u

))
+ G
(
β
(
N
(
Pn–1z, u

)))
, (28)

where

N
(
Pn–1z, u

)

= max

{

d
(
Pn–1z, u

)
, d
(
Pn–1z,Pnz

)
, d(u,Pu),

d(Pn–1z,Pu) + d(u,Pnz)
2

}

≤ max

{

d
(
Pn–1z, u

)
, d
(
Pn–1z,Pnz

)
, d(u,Pu),

2d(Pn–1z, u) + d(Pn–1z,Pnz)
2

}

≤ max
{

d
(
Pn–1z, u

)
, d
(
Pn–1z,Pnz

)
, d(u,Pu)

}
.

Using (z,Pz) ∈R, similarly as in the proof of Theorem 3.3, it can be shown that
d(Pn–1z,Pnz) → 0 as n → ∞. Therefore, for n sufficiently large,

max
{

d
(
Pn–1z, u

)
, d
(
Pn–1z,Pnz

)
, d(u,Pu)

}
= d
(
Pn–1z, u

)



Nashine et al. Journal of Inequalities and Applications         (2022) 2022:79 Page 11 of 19

and from (28) we have

F
(
d
(
Pnz, u

))≤F
(
d
(
Pn–1z, u

))
+ G
(
β
(
d
(
Pn–1z, u

)))
.

As in the proof of Theorem 3.3, it can be shown that d(Pnz, u) ≤ d(Pn–1z, u). It
follows that the sequence {d(Pnz, u)} is nonincreasing. As earlier, we have

lim
n→∞ d

(
Pnz, u

)
= 0.

Also, since (z, v) ∈ R, proceeding as earlier, we can prove that

lim
n→∞ d

(
Pnz, v

)
= 0,

and by using limit uniqueness, we infer that u = v; i.e., the fixed point of P is unique.
• Assume (II). For any two fixed points u, v of P , there must be an element z ∈P(E)

such that

(z, u) ∈R and (z, v) ∈ R.

As R is P-closed, so for all n ∈N∪ {0},

(
Pnz, u

) ∈R and
(
Pnz, v

) ∈ R.

In the line of proof of Case(B) (I), we obtain u = v, i.e., P has a unique fixed point.
• Assume (III). Suppose that u, v are two fixed points of P . Then we must have

(u, v) ∈R, and since u �= Pv, we have (v, u) ∈R∗. Also we can get 1
2 d(u,Pu) ≤ d(u, v)

following the lines of the proof of Case A (I). Therefore, using condition (2),

F (d(Pu,Pv) ≤F (N(u, v) + G
(
β
(
N(u, v)

))
,

where

N(u, v) = max

{

d(u, v), d(u,Pu), d(v,Pv),
d(u,Pv) + d(v,Pu)

2

}

= d(u, v),

which gives G(β(d(u, v)) ≥ 0, and so β(d(u, v) ≥ 1, a contradiction. Therefore the fixed
point is unique. In a similar way, if (v, u) ∈ R, we have u = v.

• Assume (IV). Suppose that u, v are two fixed points of P . Let {z0, z1, . . . , zk} be an
Rs-path in Fix(P) connecting u and v. As in Case(A) (I), it must be zi–1 = zi for each
i = 1, 2, . . . , k, and it follows that u = v.

�

If we take R = {(ν,ν) ∈ E × E | ν � ν}, then we have more new results as consequences
of Theorem 3.3.

Corollary 3.6 Let (E , d,�) be an ordered complete metric space. Let P : E → E be in-
creasing and (SFG)R on E�. Suppose that there exists ν0 ∈ E such that ν0 � Pν0. If P
is E�-continuous or E� is d-self-closed, then ν∗ ∈ Fix(P). Moreover, for each ν0 ∈ E with
ν0 �Pν0, the Picard sequence Pn(ν0) for all n ∈N converges to a ν∗ ∈ Fix(P).
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Corollary 3.7 Let (E , d,R) be an RMS and P : E → E . Suppose that the following condi-
tions hold:

(I) X(P ,R) �= ∅;
(II) R is P-closed and P-transitive;

(III) E is R-complete;
(IV) P is FG-contraction, that is, there exists G ∈G such that, for (ν,ϑ) ∈ E with

(ν,ϑ) ∈R,

F
(
d(Pν,Pϑ)

)≤F
(
N(ν,ϑ)

)
+ G
(
β
(
N(ν,ϑ)

))
, (29)

where N(ν,ϑ) is defined in (3);
(V) P is R-continuous, or
(V’) R is d-self-closed.

Then there exists a point ν∗ ∈ Fix(P).

4 Illustrations
Example 4.1 Let E = [0, 8) be equipped with usual metric d. Consider the binary relation
on E as follows:

R =
{

(0, 1), (1, 3), (2, 1), (2, 2), (2, 5), (3, 1), (3, 2), (3, 3), (3, 5), (5, 1), (5, 2), (5, 5)
}

.

Define a mapping P : E → E by

Pν =

⎧
⎪⎪⎨

⎪⎪⎩

1, 0 ≤ ν < 1;

3, ν = 1;

5, 1 < ν < 8.

Then P is not continuous while P is R-continuous, R is P-closed, and P-transitive; E is
R-complete. Also R∗ = {(0, 1), (1, 3), (5, 1)} and X(P ;R) �= ∅ as (5,P5) = (5, 5) ∈R.

Now we take F(t) = – 1√
t , G(t) = ln t (t > 0) and β(t) = λ ∈ (0, 1), τ = – lnλ > 0, then (2)

converted to

1
2

d(ν,Pν) ≤ d(ν,ϑ) implies

d(Pν,Pϑ) ≤ N(ν,ϑ)
(1 + τ

√
N(ν,ϑ))2

, (30)

where N(ν,ϑ) given in (3).
Consider (ν,ϑ) = (5, 1) ∈ R∗ with 1

2 d(ν,Pν) = 0 < 4 = d(ν,ϑ). Then d(Pν,Pϑ) = 2 and
N(ν,ϑ) = 4. Therefore, condition (30) reduces to 2 ≤ 4

(1+τ
√

4)2 , which is true for τ = 0.1.
Similarly, we can check for (ν,ϑ) = (1, 3) ∈R∗. Thus all the conditions of Theorem 3.3 are
satisfied, hence P has a fixed point. Moreover, R|P(E) is transitive, while R is not, and
for all ν,ϑ ∈P(E), we have (ν,ϑ) ∈R, so P(ν,ϑ ,R)|P(E)) is nonempty for all ν,ϑ ∈P(E).
Following Theorem 3.4, P has a unique fixed point which is ν∗ = 5.

Now, for (0, 1) ∈R,

d(Pν,Pϑ) = 2 � 2k = k max

{

d(ν,ϑ), d(ν,Pν), d(ϑ ,Pϑ),
1
2
[
d(ν,Pϑ) + d(ϑ ,Pν)

]
}

,
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which is not true for any k ∈ (0, 1), and henceP is not an implicit type mapping on (E , d,R).
Hence [10, Theorem 1 and Theorem 2] cannot be applied to the present example.

Also, as 1, 0 ∈ E , (1, 0) /∈ R with P1 = 3 �= 1 = P0 such that 1
2 d(1,P1) = d(1, 0) but

d(P1,P0) � k d(1, 0) and

d(Pν,Pϑ) = 2 � 2k = k max

{

d(ν,ϑ), d(ν,Pν), d(ϑ ,Pϑ),
1
2
[
d(ν,Pϑ) + d(ϑ ,Pν)

]
}

,

which shows that P is neither Suzuki-contraction nor generalized Suzuki-contraction for
any k ∈ [0, 1). Hence the results of Suzuki [19] and Popescu [20] cannot be applied to the
present example, while our Theorem 3.3 and Theorem 3.4 are applicable. This shows that
our results are genuine improvements over the corresponding results contained in Suzuki
[19], Popescu [20], and Ahmadullah et al. [10, Theorem 1 and Theorem 2].

Example 4.2 Consider the set E = [0, 1] with the usual metric d. Define a binary relation
R by

R =
{

(0, 0), (0, 1)
(

1
5

, 1
)

,
(

1
5

, 0
)

,
(

0,
1
5

)

,
(

1
5

,
1
5

)}

.

Consider the self-mapping P on E given by

P(ϑ) =

⎧
⎨

⎩

0, 0 ≤ ϑ ≤ 1
5 ,

1
5 , 1

5 < ϑ ≤ 1.

It is clear that E is R is complete and R is P-closed. Also R∗ = {(0, 1), ( 1
5 , 1)} and X(P ;R) �=

∅ as (0,P0) = (0, 0) ∈ R.
We consider (30) of previous Example 4.1 to verify P ∈ (SFG)R.
• Let (ϑ ,ν) = (0, 1) with 1

2 d(ν,Pν) = 0 < 1 = d(ν,ϑ). Then d(Pϑ ,Pν) = 1
5 and

N(ν,ϑ) = 1. Therefore, condition (30) reduces to 1/5 ≤ 1
(1+τ )2 .

• Let (ϑ ,ν) = ( 1
5 , 1) with 1

2 d(ν,Pν) = 0 < 4
5 = d(ν,ϑ). Then d(Pϑ ,Pν) = 1

5 and
N(ν,ϑ) = 4/5. Therefore, condition (30) reduces to 1/5 ≤ 4/5

(1+τ
√

4/5)2 .
It can be easily checked that the above cases hold true for τ > 0 (in particular τ = 0.1).
Thus P ∈ (SFG)R.

Let (νn) be an R-preserving sequence converging to ν as n → ∞. Then we must have

(νn,νn+1) ∈
{

(0, 0),
(

1
5

, 0
)

,
(

0,
1
5

)

,
(

1
5

,
1
5

)}

implies that

νn ∈
{

0,
1
5

}

.

This implies that either νn → 0 or νn → 1
5 as n → ∞, and clearly we have [νn,ν] ∈ R for

all n ∈N, where ν = 0 and 1
5 . This shows that R is d-self-closed. Thus all the conditions of

Theorem 3.3 are satisfied, hence P has a fixed point (ϑ∗ = 1/5).
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5 Application to nonlinear matrix equations
For a matrix B ∈ H(n), we will denote by s(B) any of its singular values and by s+(B) the
sum of all of its singular values, that is, the trace norm ‖B‖tr = s+(B). For C,D ∈ H(n),
C �D (resp. C �D) will mean that the matrix C–D is positive semi-definite (resp. positive
definite).

The following lemmas are needed in the subsequent discussion.

Lemma 5.1 ([1]) If A� O and B � O are n × n matrices, then

0 ≤ tr(AB) ≤ ‖A‖ tr(B).

Lemma 5.2 ([1]) If A ∈H(n) such that A≺ In, then ‖A‖ < 1.

We establish the existence and uniqueness of the solution of the nonlinear matrix equa-
tion (NME)

X = Q +
m∑

i=1

A∗
i G(X )Ai, (31)

where Q is a Hermitian positive definite matrix, A∗
i stands for the conjugate transpose of

an n × n matrix Ai, and G is an order-preserving continuous mapping from the set of all
Hermitian matrices to the set of all positive definite matrices such that G(O) = O.

Theorem 5.3 Consider NME (31). Assume that there exists a positive real number η such
that

(H1) There exists Q ∈P(n) such that
∑m

i=1 A∗
i G(Q)Ai � 0;

(H2)
∑m

i=1 AiA∗
i ≺ ηIn.

(H3) For every X ,Y ∈P(n) such that X � Y with

m∑

i=1

A∗
i G(X )Ai �=

m∑

i=1

A∗
i G(Y)Ai

and if

∣
∣
∣
∣
∣
s+

(

X – Q –
m∑

i=1

A∗
i G(X )Ai

)∣
∣
∣
∣
∣

< 2
∣
∣s+(X – Y)

∣
∣

holds, then for τ > 0 we have

∣
∣s+(G(X ) – G(Y)

)∣
∣

≤ 1
η

× max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|s+(X–Y)|
[1+τ |s+(X–Y)|1/2]2 , |s+(X–Q–

∑m
i=1 A∗

i G(X )Ai)|
[1+τ |s+(X–Q–

∑m
i=1 A∗

i G(X )Ai)|1/2]2 ,
|s+(Y–Q–

∑m
i=1 A∗

i G(Y)Ai)|
[1+τ |s+(Y–Q–

∑m
i=1 A∗

i G(Y)Ai)|1/2]2 ,
|s+(X–Q–

∑m
i=1 A∗

i G(Y)Ai)|
[1+τ |s+(X–Q–

∑m
i=1 A∗

i G(Y)Ai)|1/2]2 ,
|s+(Y–Q–

∑m
i=1 A∗

i G(X )Ai)|
[1+τ |s+(Y–Q–

∑m
i=1 A∗

i G(X )Ai)|1/2]2 .

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭
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Then NME (31) has a unique solution. Moreover, the iteration

Xn = Q +
m∑

i=1

A∗
i G(Xn–1)Ai, (32)

where X0 ∈P(n) satisfies

X0 �Q +
m∑

i=1

A∗
i G(X0)Ai,

converges in the sense of trace norm ‖ · ‖tr to the solution of matrix equation (31).

Proof Define a mapping T : P(n) →P(n) by

T (X ) = Q +
m∑

i=1

A∗
i G(X )Ai for all X ∈P(n),

and a binary relation

R =
{

(X ,Y) ∈P(n) ×P(n) : X � Y
}

.

Then a fixed point of the mapping T is a solution of matrix equation (31). Notice that T
is well defined, R-continuous, and R is T -closed. Since

m∑

i=1

A∗
i G(Q)Ai � 0,

for some Q ∈P(n), we have (Q,T (Q)) ∈R, and hence P(n)(T ;R) �= ∅.
Now, let (X ,Y) ∈R∗ = {(X ,Y) ∈R : T (X ) �= T (Y)} such that

1
2
∥
∥X – T (X )

∥
∥

tr < ‖X – Y‖tr.

Then

∥
∥T (X ) – T (Y)

∥
∥

tr

= s+(T (X ) – T (Y)
)

= s+

( m∑

i=1

A∗
i
(
G(X ) – G(Y)

)
Ai

)

=
m∑

i=1

s+(A∗
i
(
G(X ) – G(Y)

)
Ai
)

=
m∑

i=1

s+(AiA∗
i
(
G(X ) – G(Y)

))

= s+

( m∑

i=1

AiA∗
i

)

s+(G(X ) – G(Y)
)
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≤ ‖∑m
i=1 AiA∗

i ‖
η

× max

⎧
⎨

⎩

‖X–Y‖tr
[1+τ‖X–Y‖1/2

tr ]2 , ‖X–T X ‖tr
[1+τ‖X–T X ‖1/2

tr ]2 , ‖Y–T Y‖tr
[1+τ‖Y–T Y‖1/2

tr ]2 ,
‖X–T Y‖tr

[1+τ‖X–T Y‖1/2
tr ]2 , ‖Y–T X ‖tr

[1+τ‖Y–T X ‖1/2
tr ]2

⎫
⎬

⎭

≤ �(X ,Y)
[1 + τ (�(X ,Y))1/2]2 , (33)

where

�(X ,Y) = max

⎧
⎨

⎩

‖X–Y‖tr
[1+τ‖X–Y‖1/2

tr ]2 , ‖X–T X ‖tr
[1+τ‖X–T X ‖1/2

tr ]2 , ‖Y–T Y‖tr
[1+τ‖Y–T Y‖1/2

tr ]2 ,
‖X–T Y‖tr

[1+τ‖X–T Y‖1/2
tr ]2 , ‖Y–T X ‖tr

[1+τ‖Y–T X ‖1/2
tr ]2

⎫
⎬

⎭
. (34)

Consider F (t) = – 1√
t , G(t) = ln t (t > 0) and β(t) = λ ∈ (0, 1), τ = – lnλ > 0, then (33) con-

verted to

1
2
∥
∥X – T (X )

∥
∥

tr < ‖X – Y‖tr implies

F
(∥
∥T (X ) – T (Y)

∥
∥

tr

)≤F
(
�(X ,Y)

)
+ G
(
β
(
�(X ,Y)

))
,

where �(X ,Y) is given in (34). Thus all the hypotheses of Theorem 3.3 are satisfied, there-
fore there exists X̂ ∈ P(n) such that T (X̂ ) = X̂ , and hence matrix equation (31) has a so-
lution in P(n). Furthermore, due to the existence of least upper bound and greatest lower
bound for each X ,Y ∈ T (P(n)), we have P(X ,Y ;R|T (P(n))) �= ∅ for all X ,Y ∈ T (P(n)).
Hence, on using Theorem 3.4, T has a unique fixed point, and hence we conclude that
matrix equation (31) has a unique solution in P(n). �

Example 5.4 Consider NME (31) for m = 3, η = 4.5, n = 3 with G(X ) = X 1/5, i.e.,

X = Q + A∗
1X 1/5A1 + A∗

2X 1/5A2 + A∗
3X 1/5A3, (35)

where

Q =

⎡

⎢
⎣

11.699540782825979 0.914622941324684 1.507188535497828
0.914622941324684 10.833657911203609 1.249452950221198
1.507188535497828 1.249452950221198 12.080319343374171

⎤

⎥
⎦ ,

A1 =

⎡

⎢
⎣

0.082250000000000 0.110600000000000 0.218400000000000
0.088900000000000 0.053900000000000 0.223300000000000
0.228900000000000 0.090300000000000 0.042700000000000

⎤

⎥
⎦ ,

A2 =

⎡

⎢
⎣

0.028000000000000 0.036250000000000 0.041250000000000
0.058750000000000 0.039250000000000 0.046000000000000
0.061250000000000 0.059750000000000 0.039750000000000

⎤

⎥
⎦ ,

A3 =

⎡

⎢
⎣

0.679012345679012 1.061728395061728 0.333333333333333
0.567901234567901 0.296296296296296 0.641975308641975
1.185185185185185 0.444444444444444 0.691358024691358

⎤

⎥
⎦ .
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The conditions of Theorem 5.3 can be checked numerically, taking various special values
for matrices involved. For example, they can be tested (and verified to be true) for

X =

⎡

⎢
⎣

1.699436061575979 0.914189910074684 1.507087334247828
0.914189910074684 0.822435604328608 1.248590153939948
1.507087334247828 1.248590153939948 2.080170705685109

⎤

⎥
⎦ ,

Y =

⎡

⎢
⎣

10.000104721250000 0.000433031250000 0.000101201250000
0.000433031250000 10.011222306875000 0.000862796281250
0.000101201250000 0.000862796281250 10.000148637689062

⎤

⎥
⎦ .

To see the convergence of the sequence {Xn} defined in (32), we start with three different
initial values

U0 =

⎡

⎢
⎣

0.015970559290683 0.014219828729812 0.004760641350592
0.014219828729812 0.045823355744100 0.011986278815522
0.004760641350592 0.011986278815522 0.014342909184651

⎤

⎥
⎦

with ‖U0‖ = 0.076136824219434,

V0 =

⎡

⎢
⎣

1 0 0
0 1 0
0 0 1

⎤

⎥
⎦

with ‖V0‖ = 1,

W0 =

⎡

⎢
⎣

64.303848221681193 14.585212879712167 16.765822087028965
14.585212879712167 54.844490660932415 11.815345676105265
16.765822087028969 11.815345676105263 57.346307431417692

⎤

⎥
⎦

with ‖W0‖ = 1.764946463140313 × 102.
After 10 iterations, we have the following approximation of the unique positive definite

solution of system (31):

Û ≈ U10 =

⎡

⎢
⎣

15.825962055386070 3.646303219900028 4.191455521733169
3.646303219900028 13.461122665210109 2.953836419006667
4.191455521733170 2.953836419006668 14.086576857837056

⎤

⎥
⎦

V̂ ≈ V10 =

⎡

⎢
⎣

15.825962055420298 3.646303219928042 4.191455521757241
3.646303219928042 13.461122665233104 2.953836419026316
4.191455521757242 2.953836419026316 14.086576857854423

⎤

⎥
⎦

Ŵ ≈W10 =

⎡

⎢
⎣

15.825962055444425 3.646303219947785 4.191455521774207
3.646303219947785 13.461122665249309 2.953836419040164
4.191455521774207 2.953836419040163 14.086576857866664

⎤

⎥
⎦

Also, the elements of each sequence are order preserving. The graphical representation
of convergence of a sequence and a surface plot of solution are shown in Figs. 1 and 2,
respectively.
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Figure 1 Convergence behavior

Figure 2 Solution surface plot
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