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1 Introduction

Let C be a nonempty, closed, and convex subset of a real Hilbert space (H, (-, -)) with the
induced norm || - ||. Let Pc be the nearest point projection from H onto C. Given a non-
linear operator T': C — H, let Fix(T') and R indicate the fixed-points set of 7" and the set
of real numbers, respectively. Let — and — represent the strong and weak convergence
in H, respectively. An operator T : C — C is called asymptotically nonexpansive if there
exists {6;}7°) C [0, +00) such that lim;_,, 6; = 0 and

|T'u - Tl <@ +6)llu-v| Vi>LuvecC. (1.1)

In particular, whenever 6, = 0 V[ > 1, T is called nonexpansive. Given a self-mapping
A on H, the classical variational inequality problem (VIP) is finding u € C such that
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(Au,v—u) > 0 Vv € C. We denote the solutions set of VIP by VI(C, A). To the best of our
knowledge, one of the most popular approaches for solving the VIP is the extragradient
method put forward by Korpelevich [1] in 1976, i.e., for any initial point uy € C, let {1} be

the sequence constructed below

v = Pc(uy — LAwy),
up1 = Pc(u;— LAvy) VI>0,

(1.2)

where ¢ € (0, %) and L is Lipschitz constant of A. Whenever VI(C,A) # @, the sequence
{u;} converges weakly to a point in VI(C,A). At present, the vast literature on Korpele-
vich’s extragradient approach shows that many authors have paid great attention to it and
enhanced it in various ways; see, e.g., [2-26] and the references therein.

Suppose that B, B, : C — H are two nonlinear operators. Consider the following prob-
lem of finding (&*,v*) € C x C such that

(u1B1v +u*—v,,w—-u*)>0 VYwe(C, (13)
(UoBou™ + V' —u*, w—v*) >0 VYwe(C, '

with constants 11, (£ > 0. Problem (1.3) is called a general system of variational inequali-
ties (GSVI). Note that GSVI (1.3) can be transformed into the fixed-point problem below.

Lemma 1.1 ([6]) For given x*,y* € C,(x*,y*) is a solution of GSVI (1.3) if and only if x* €
Fix(G), where Fix(G) is the fixed point set of the mapping G := Pc(I — u1B1)Pc(I — poBy),
and y* = Pc(I — 1aBy)x*.

Suppose that the mappings B;, B, are a-inverse-strongly monotone and S-inverse-
strongly monotone, respectively. Let f : C — C be a contraction with coefficient § € [0, 1)
and F: C — H be k-Lipschitzian and n-strongly monotone with constants «,n > 0 such
that § < ¢ :=1-/1-p2n—-p«?) €(0,1] for p € (o,i—g). Let S: C — C be an asymp-
totically nonexpansive mapping with a sequence {6,}. Let {5;};°, be a countable fam-
ily of ¢-uniformly Lipschitzian pseudocontractive self-mappings on C such that 2 :=
Mz Fix(S;) N Fix(G) # @ where Sy := S and Fix(G) is the fixed-point set of the mapping
G :=Pc(I — 11B1)Pc(I — puoBy) for py € (0,2) and o € (0,28). Recently, Ceng and Wen
[21] proposed the hybrid extragradient-like implicit method for finding an element of £2,
that is, for any initial point x; € C, let {x;} be the sequence constructed below

u = By + (1= Br) Sy,

v = Pc(u; — paBauy), 14

¥ =Pc(vi— n1Byvy),
xp1 = Peloyf (k) + I — aypF)Sly) ] VI>1,

where {o;} and {;} are sequences in (0, 1] such that
(i) Z(l)zol laz1 — o] < 00 and Z}fl oy < 00;
(ii) limj— o o = 0 and lim;_, o 2—’1 =0;
(iif) Z(l)zol |Bir1 — Bil <00 and 0 < liminf,_, B <lim SUP._, oo Bi<1;
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(iv) 275 187y = Syl < oo
Under appropriate assumptions imposed on {S;}7°,, it was proved in [21] that the sequence
{x;} converges strongly to an element x* € £2. In 2019, Thong and Hieu [14] proposed the
inertial subgradient extragradient method with line-search process for solving the mono-
tone VIP with Lipschitz continuous A and the fixed-point problem (FPP) of a quasinonex-
pansive mapping S with a demiclosedness property. Assume that £2 := Fix(S) N VI(C,A) #
@. Let the sequences {«;} C [0,1] and {B;} C (0, 1) be given.

Algorithm 1.1 ([14]) Initialization: Given y > 0, £ € (0,1), u € (0,1), let x9,x, € H be
arbitrary.

Iterative Steps: Compute x;,1 below:

Step 1. Set w; = x; + oy(x; — x;_1) and calculate v; = Pc(w; — 1;,Aw;), where 1; is chosen to
be the largest T € {y, y £, y£2,...} satisfying 7| Aw; — Avi|| < u|lw; = vy

Step 2. Calculate z; = Pc,(w; — 1jAvy) with C;:={v e H : (w; — 1.Aw; — v}, v —v;) <0}

Step 3. Calculate x;,; = (1 - B))w; + B1Sz;. If wy = z; = x;,1 then w; € 2.

Again set /:=[/+ 1 and go to Step 1.

Under suitable assumptions, it was proven in [14] that {x;} converges weakly to an el-
ement of £2. Very recently, Ceng and Shang [22] introduced the hybrid inertial subgra-
dient extragradient method with line-search process for solving the pseudomonotone
VIP with Lipschitz continuous A and the common fixed-point problem (CFPP) of finitely
many nonexpansive mappings {Sl}ﬁ , and an asymptotically nonexpansive mapping S in
a real Hilbert space H. Assume that £2 := ﬂﬁo Fix(S;) N VI(C, A) # @ with Sy := S. Given
a contraction f : H — H with constant § € [0,1), and an 7-strongly monotone and «-
Lipschitzian mapping F: H - H with§ < ¢ :=1 - m for p € (0,2n/k?), let
{oy} € [0,1] and {B;},{ys} C (0,1) with B; + y; < 1 VI > 1. Besides, one writes S; := Sjmodn
for integer [/ > 1 with the mod function taking values in the set {1,2,..., N}, i.e., whenever
[ =jN + g for some integers j > 0 and 0 < g < N, one has that S; = Sy if g =0 and §; = S, if
O<g<N.

Algorithm 1.2 ([22]) Initialization: Given y > 0, £ € (0,1), u € (0,1), let xo,x; € H be
arbitrary.

Iterative Steps: Calculate x;,1 below:

Step 1. Set w; = Spx; + oy (Spe; — Syxy_1) and calculate v; = Pc(w; — 1;,Awy), where 1; is chosen
to be the largest T € {y, y ¢, y2,...} satisfying t ||Aw; — Av,|| < u|lw; - v,|.

Step 2. Calculate z; = Pc,(w; — 1Avy) with C;:= {v e H : (w; — tiAw; — v}, v —v;) < 0}.

Step 3. Calculate x;,, = Bif (x;) + yixs + (1 — y;)I — BipF)S'z;.

Again set /:=/+ 1 and go to Step 1.

Under appropriate assumptions, it was proven in [22] that if S'z; — §'*z; — 0, then
{x;} converges strongly to x* € 2 if and only if x; — x;,; — 0 and x; — v; —> 0 as [ — oo.
In a real Hilbert space H, we always assume that the CFPP and HVI denote a common
fixed-point problem of a countable family of uniformly Lipschitzian pseudocontractive
mappings {S5;};°, and an asymptotically nonexpansive mapping Sy := S and a hierarchical
variational inequality, respectively. Inspired by the above research works, we design two

Mann implicit composite subgradient extragradient algorithms with line-search process
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for finding a common solution of the CEPP of {S;}75,, the pseudomonotone VIP with Lips-
chitz continuous A and the GSVI for two inverse-strongly monotone By, By. The suggested
algorithms are based on the viscosity approximation method, subgradient extragradient
method with line-search process, and Mann implicit iteration method. Under mild as-
sumptions, we prove the strong convergence of the suggested algorithms to a common
solution of the CFPP, GSVI, and VIP, which solves a certain HVI defined on their com-
mon solution set. Finally, using the main results, we deal with the CFPP, GSVI, and VIP in
an illustrated example.

2 Preliminaries
Let the nonempty set C be convex and closed in a real Hilbert space H. Given a sequence
{vi} C H, let v; — v (resp., v; — v) indicate the strong (resp., weak) convergence of {v;}
to v. An operator S: C — H is called
(a) L-Lipschitz continuous (or L-Lipschitzian) if L > 0 such that ||Su — Sv|| < L|ju — v||
Yu,v e C;

(b) pseudocontractive if (Su — Sv,u — v) < ||u—v||*> Yu, v € C;

—~

¢) pseudomonotone if (Su,v —u) > 0= (Sv,v—u) >0 Vu, v € C;

—~

d) a-strongly monotone if 3o > 0 such that (Su — Sv,u — v) > allu — v||® Vu, v € C;
(e) B-inverse-strongly monotone if 38 > 0 such that (Su — Sv,u — v) > B|Su - Sv||?> Vu,
veC
(f) sequentially weakly continuous if Y{v;} C C, the following relation holds:
v, — v = Su; — Su.
It is clear that each monotone mapping is pseudomonotone, but the converse is not true.
It is known that Vu € H, 3! (nearest point) Pcu € C such that ||u — Pcu| < ||lu—v| Yv € C;
Pc is refereed to as a metric (or nearest point) projection of H onto C. Recall that the
following conclusions hold (see [27]):
(@) (u—v,Pcu—Pcv) > ||Pcu — Pcul|® Yu, v € H;
(b) w=Pcu< (u-w,v—w)<0VueH,veC(;
(© ll=v|?>=> |lu—-Pcull®+||lv-Pcul|> Yuc H, v e C;
) llu—vl? = ull?* - vl* - 2(u - v,v) Yu, v € H;
(&) llsu+ (1 =s)vl|®=slull>+ A =s)|v]>-s1-s)|u-vl|?VYu veH,secl0,1].
The following concept will be used in the convergence analysis of the proposed algo-
rithms.

Definition 2.1 ([21]) Let {S;}7°, be a sequence of continuous pseudocontractive self-
mappings on C. Then {5}, is called a countable family of ¢ -uniformly Lipschitzian pseu-
docontractive self-mappings on C if there exists a constant ¢ > 0 such that each S; is ¢-
Lipschitz continuous.

The following propositions and lemmas will be needed for demonstrating our main re-

sults.

Proposition 2.1 ([28]) Let C be a nonempty, closed, convex subset of a Banach space X.
Suppose that {S;}{°, is a countable family of self-mappings on C such that y_;°; sup{||Six —
Siix|l 1 x € C} < 0o. Then for each y € C, {S;y} converges strongly to some point of C.
Moreover, let S be a self-mapping on C, defined by Sy = lim;_. Syy for all y € C. Then
lim;_, o sup{||Sx — Six|| : x € C} = 0.
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Proposition 2.2 ([29]) Let C be a nonempty, closed, convex subset of a Banach space X
and T : C — C be a continuous and strong pseudocontraction mapping. Then, T has a
unique fixed point in C.

The following inequality is an immediate consequence of the subdifferential inequality
of the function | - [|%

llu+ vl < |lul® +2(v,u+v) VYu,veH.

Lemma 2.1 Let the mapping B: C — H be B-inverse-strongly monotone. Then, for a given
A=>0,

|7 = 2B)u - (I - xB)v ”2 < |lu-vl||* - AM(2a — 1)||Bu - Bu||%.
In particular, if 0 < . <2, then I — AB is nonexpansive.
Using Lemma 2.1, we immediately derive the following lemma.

Lemma 2.2 Let the mappings B1,B, : C — H be wa-inverse-strongly monotone and -
inverse-strongly monotone, respectively. Let the mapping G : C — C be defined as G :=
Pc(I = pu1B1)Pc(I — uaBy). If 0 < g <20 and 0 < py < 28, then G : C — C is nonexpan-

sive.

Lemma 2.3 ([6, Lemma 2.1]) Let A : C — H be pseudomonotone and continuous. Then
u € C is a solution to the VIP (Au,v —u) > 0 Vv € C ifand only if (Av,v —u) > 0Vv € C.

Lemma 2.4 ([30]) Let {a;} be a sequence of nonnegative numbers satisfying the following
conditions: aj.1 < (1= Xxp)a;+ Ay Yl > 1, where {1;} and {y,} are sequences of real numbers
such that (i) {;} C [0,1] and Y ;°) A = 00, and (ii) limsup,_, .. y1 < 0 or Y1) |\l < oo.
Then lim;_, oo a; = 0.

Lemma 2.5 ([31]) Let X be a Banach space which admits a weakly continuous duality
mapping, C be a nonempty, closed, convex subset of X, and T : C — C be an asymptotically
nonexpansive mapping with Fix(T) # ). Then I — T is demiclosed at zero, i.e., if {ux} is a
sequence in C such that uxy — u € C and (I — T)uxy — 0, then (I — T)u = 0, where I is the
identity mapping of X.

The following lemmas are crucial to the convergence analysis of the proposed algo-

rithms.

Lemma 2.6 ([25]) Let {I",,,} be a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence (I, } of {T',} which satisfies Ty, < Ty, 41 for
each integer k > 1. Define the sequence {t(m)},;>m, of integers by

t(m) = max{k <m: Ty < T},
where integer mo > 1 is such that {k < mq : T'x < T'ky1} # 9. Then the following hold:

(i) t(mo) <t(mo+1)<--- and t(m) — oc;
(11) 1—‘7:(m) < FT(W!)+1 and I‘m < F‘L’(Wl)+1 Ym = my.
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3 Main results
In this section, let the feasible set C be a nonempty, closed, convex subset of a real Hilbert
space H, and assume always that the following conditions hold:

+ A is pseudomonotone and L-Lipschitzian self-mapping on H such that
lAu|| <liminf,_, » ||[Av,]| for each {v,} C C with v, — u.

+ B1,By: C — H are a-inverse-strongly monotone and S-inverse-strongly monotone,
respectively, and f : C — C is a §-contraction with constant § € [0, 1).

o {8,152, is a countable family of ¢-uniformly Lipschitzian pseudocontractive
self-mappings on C and S: H — C is an asymptotically nonexpansive mapping with a
sequence {6,}.

o 2 =52, Fix(S,) NFix(G) N VI(C, A) # ¥ with Sy := S, and Fix(G) is the fixed point set
of mapping G = Pc(I — 1B1)Pc(I — pu2B;) for 0 < iy < 2 and 0 < pp < 28.

o >0 sup,ep ISux — Sp1x|l < 0o for any bounded subset D of C and

Fix(S) = (M, Fix(S,) where S:C — Cis defined as Sx = lim,,_, o0 Sux Vx € C.
{o,,} € (0,1] and {a,,}, {Bn}, {¥n} C (0,1) with &, + B, + y = 1 Y > 1 such that:
() Y02, o =00, lim, o, = 0 and lim,,_ o 2—’; =0;

.

(i) 0<liminf,_ s 0, <limsup,_, ., 0, <1;

(iii) 0<liminf,_, o B, <limsup,_, . By < 1.

Algorithm 3.1 Initialization: Given y >0, u € (0,1), £ € (0, 1), pick an initial x; € C arbi-
trarily.

Iterative steps: Compute x,,,1 below:

Step 1. Calculate u, = o,x, + (1 — 0,)S,u, and w, = Gu,,, and set y, = Pc(w, — t,Awy,),
where 1, is chosen to be the largest T € {y, y¢,y(2,...} satisfying

T||Aw, — Ay, |l < pllwy = yull. (3.1)

Step 2. Calculate z, = P¢c, (w,, — t,Ay,) with C,, :={y € H : (w,, — T,AWy — Y, ¥ — yu) < 0}.
Step 3. Calculate

Xni1 = Qf (%) + Bun + VuSnzn. (3.2)
Again put #:= n + 1 and return to Step 1.

Lemma 3.1 The Armijo-like search rule (3.1) is well defined, and the following inequality
holds: min{y, ul/L} <1, <y.

Proof Thanks to ||Aw,, — APc(w,, — y£"Aw,)|| < L||lw,, — Pc(w,, — y£" Aw,,)||, we know that
(3.1) holds for each y£” < % and so 1, is well defined. Obviously, 7, < y. In the case of
7, = ¥, the conclusion is true. In the case of 7, < y, from (3.1) one gets ||[Aw,, — APc(w,, —
AW, > (1':_/(3) Wy — Pc(w,, — % Aw,,) ||, which hence leads to 7, > ut/L. O

Lemma 3.2 Let the sequences {u,}, {wn}, {yu}, {24} be constructed by Algorithm 3.1. Then
foreach p € §2, one has

2
I

Iz —19||2 < lluy —17||2 -1 _/L)[”yn = zull” + lyn - Wn||2]

(3.3)
— 112(2B — p2)|Batty — Bop||* — p11(2e — 111)[|B1vy — Bagll?,

where q = Pc(p — waBop) and v, = Pc(u, — woBouy,).
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Proof Define T,x := Byx, + (1 — B,)Syx, x € C, for each n > 0. Then T, is continuous by
the continuity of S,, and

(Tyx = Ty, x—y) = (1= Bu)(Sux — Suy, % —y)
<(1-B)lx-ylI?

< Bullx =1,

where B, := 1 - B, € (0,1) and this implies that T}, is a strong pseudocontractive mapping.
Hence, by Proposition 2.2, there exists a unique element u, € C such that for each n > 0,

U = Buxn + (1= B)Sutty.

Observe that foreachpe 2 Cc Cc C,,

| 2

[ —P||2 = ||PC,1(Wn - TnAyn) -Pc,p

= (zZn =P, Wn = Tulyn = p)
= 5 (I =PI+ 1w = pIP ~ Nz = ) ~ 52— s Ay,
which hence yields
e =PI = =PI ~ s~ wil? = 25,2~ Ay

Owing to z, = Pc, (W, — 1,Ay,) with C, :={y € H : (W, — T,AW,, — ¥,y — ¥u) < 0}, one gets
(Wy — TWAWy, — Yy, 2y — ¥y < 0. Combining (3.1) and the pseudomonotonicity of A guaran-
tees that

|E# _P”2 < lwy, _P||2 — |z — Wn||2 = 2Tn<Ayn,yn —-pt+zy _yn)
<|w, —P||2 =z, - Wn||2 - 27:71(Aymzn —yn>
= wn =PI = 2w = yull® = 190 = Wall® + 2(Wn = TwAYn = Y20 — V)

= 1wy = plI* = 2w = Yull* = 19 = Wall* + 2(Wy — AW, = Y1y 2 — V)
(3.4)

+ 21’,, (AWn —Aynrzn _yn>

2 2
[ [

=< ||Wn—P||2—||Zn—J/n =y = wall” + 20wy = yullllzn = yull

< llwy _P||2 —llzn _yn||2 = lym = Wrt”2 + M(”Wn _yn||2 + |12y _yn||2)

2
I

= [[wy _P”2 -Q _M)[”yn = zZul” + lyu _Wn||2]~

Note that g = Pc(p — n2Bop), v, = Pc(uy, — oBouy,), and wy, = Pc(vy, — u1B1vy,). Then wy, =
Gu,. By Lemma 2.1, one has

lun = gqll* < llun = plI* = 12(2B — p2) |1 Bouty, — Bop|?
and

wn = plI* < llu, = qll* = 112 = 11)|B1vs — Bagll*.
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Combining the last two inequalities, one gets
W = pII* < lttw — pII* = 11228 = p2)1Batty — Bopl|* — p1 (2 — p11) | Bruy — Bag|*.
This, together with (3.4), implies that inequality (3.3) holds. a

Lemma 3.3 Suppose that {u1,}, {x,} are bounded sequences constructed by Algorithm 3.1.
Assume that x, — %,.1 — 0, u,, — Gu,, — 0, and S"x,, — §"*'x,, — 0, and suppose there exists

a subsequence {x,, } C {x,} such that x,, —ze C. Thenz € 2.

Proof From Algorithm 3.1, we obtain that for each p € £2,

4y = PN = 0 (%n = Py thy — p) + (1 = 0,)(Syth — P, thyy — P)

< 0wl — Py tty — p) + (1 = 0l — plI?,

which hence yields

”un —P||2 =< (xn b Uy —19)

1
= S Lllen =21 + Nty = pI* = lltn = 2 ]1°].
This immediately implies that
240 =PI < 6 = PI* = 12 = 0l (3.5)

So it follows from (3.3) and the last inequality that

2
I

12 = pII* < Nl = p1I* = (L= 1) [0 = 2all* + 1y = wall’]

< llxx —P||2 = llxn = unllz -(1- M)[”yn _Zn||2 + lyn _Wn”Z]y

which, together with Algorithm 3.1, leads to

%1 = pII?
= |l (F @) = ) + Bul@n = ) + 7u(S"20 1) |
< [ Gn) = p|* + Bulltn =PI + ¥ "2~ || = Buv |2 — "2
< [ Gen) = B> + Bulltn = pI? + V(L + 012 =PI = By | = 820 |
< a0 [£Gn) = * + Bulltn =PI + vu(L + 02 { 160 = I = 13— 12
— (L= [y = 2l + 1y = wall®]} = Buvnl| 2 — "2
< £ Gn) = * + 100 = DI + 642 + 6,12 =PI = ¥ (1 + 6,)*{ 12 — 11>

2
[

+(1 _M)[”yn = Zull” + |yn - Wn||2]} = BuYu ”xn - 8"z, ”2
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This immediately ensures that

1+ 19 = wall?]} + Buvi | = 8720 |*

Yu(l+ 971)2{ Il — Mn”2 +(1- M)[Hyn —Zn
2
=< % —P||2 = %41 —19||2 + oy Hf(xn) —P” +0,(2 + 6,) ||, _P”2
2
< tn = Xt (160 = P+ (%6001 = PI) + 0t |[f () = p||” + 042 + 6) 10 — I

Note that lim,_, o @, = 0 and 0 < liminf,_.» 8, < limsup,,_, ., B, < 1. Thus we know that
liminf,_, o ¥, = liminf,, (1 -, — B,) = 1 -limsup,_, ., B, > 0. Since 6, — 0, x,, — X1 —
0 and u € (0,1), by the boundedness of {x,}, we get

lim ||, — ]l = lim ||y, — zull = lim [y, — w, || = lim | %, — $"2,| = 0. (3.6)
n—00 n—0o0 n—00 n—00
So it follows that ||w, —x,|| < |Gu, — uyll + |ty — %, = 0 (1 — 00),

1zn = %ull < 1z = wall + Wy — x4l

<zn = yull + Y0 = Wl + Iy —xu| = 0 (1 — 00),

and ”xn _yn” = ”xn _Zn” + ”Zn _yn” -0 (}’1 - OO)
We show that lim,,_, o [|%, — Sx,|| = 0. In fact, using the asymptotical nonexpansivity of
S, one obtains that

960 = Sxull < [|%n = "z || + || S"20 — "% || + || "% — S"* x|
+ 8" = §™ || + [ S 2 — St
< ||on = S"zu | + (X + 0)llz = xull + || "2 — S™ 0,
+ (L4 Opa1) 196 — zall + (1 +61) || S"2 — x|

= (2400 %0 — "z + 2+ 0 + Opat) |z — x| + || ™20 = S x|
Since x,, — $"z, — 0, x,, — z, — 0 and S"x,, — $"*1x,, — 0, we obtain

lim 1%, — Sx, | = 0. (3.7)
n— o0

We show that lim,,_, o ||, — S, || = 0 where S := (2] — 3)‘1. In fact, noticing u,, = o,x, +
(1-0,4)Syu, and x,, — u, — 0, we get

(1 = o) ISuttn — tnl = 0ullxy — tnll < %0 — unll — 0 (n— 00),
which, together with 0 < liminf,_, (1 — 0,,), yields

lim ||S,u, — u,|| = 0.

n—0oQ

Since {S,};2; is ¢-uniformly Lipschitzian on C, we deduce from x,, — u, — 0 and S,u, —
u, — 0 that

1S = xull < NSuxn = Suttnll + 1Suten — tnll + Nty — 24l

< (¢ + Dy —xull + ISutgy — unll = 0 (1 — 00).
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It is clear that S: C — C is pseudocontractive and ¢-Lipschitzian where S = limy,_ oo S
Vx € C. We claim that lim,,_, ||.§x,, — x|l = 0. Using the boundedness of {x,} and putting
D =conv{x, : n > 1} (the closed convex hull of the set {x, : n > 1}), by the hypothesis, we
get Z:il SUP,ep ISux — Spi1x|| < 00. So, by Proposition 2.1, we have lim,,_, o, SUp,p [| St —
.§x|| =0, which immediately arrives at

lim [|S,%, — Sx,|l = 0.
n—o0
Consequently,
11960 = Sxall < 11960 = St ll + 1S5 — Sl = 0 (n— 00).

Now, let us show that if we define S := (2I-S8)~!, thenS: C — Cis nonexpansive, Fix(S) =
Fix(S) = M52, Fix(S,), and limy, o |6, — Sx,|| = 0. As a matter of fact, it is known that S
is nonexpansive and Fix(S) = Fix(.§') =2, Fix(S,) as a consequence of [32, Theorem 6].
From x,, — S"x,, — 0, it follows that

[l%e,, — S'x,,ll = ||3'.§"1x,, - §x,, H
_ A A (3.8)
< ”S‘lxn — X, || = ”(ZI—S)x,, — X, ” = |2, = Sx,|l = 0 (n— 00).

Next, let us show z € VI(C,A). Indeed, noticing w, — x,, — 0 and x,, — z, we have
Wy, — z. We consider two cases below.

If Az =0, then it is clear that z € VI(C, A) because (Az,x —z) > 0Vx e C.

Assume that Az # 0. Since w,,, — z as k — 00, utilizing the assumption on A4, instead of
the sequentially weak continuity of A, we get 0 < ||Az| <liminfi_ o [|Aw,,||. So, we could
suppose that ||Aw,, || # 0 Vk > 1. Moreover, from y, = Pc(w, — t,Aw,), we have (w, —
T, AWy, — Yy, % — yy) < 0 Vx € C, and hence

r_l,,(w” = Y% = Yn) + (AWn, Y = Wn) < (AW, X —wy)  Vx € C. (3.9)
According to the Lipschitz continuity of A, one knows that {Aw,} is bounded. Note that
{y} is bounded as well. Using Lemma 3.1, from (3.9) we get liminfy_, o (AW, , x— Wy, ) = 0
vxeC.

To show that z € VI(C, A), we now choose a sequence {ex} C (0,1) satisfying & | O as
k — oo. For each k > 1, we denote by m the smallest positive integer such that

(AW x —wy) + 6 =0 Vj > my. (3.10)

Since {&;} is decreasing, it can be readily seen that {m} is increasing. Noticing that
Awpy

AW, #0Vk > 1 (due to {Aw,, } C {Aw,, }), we set 0, = HAWWW, we get (AW, 0m;) = 1

Vk > 1. So, from (3.10) we get (AW, , X + £xQm; — Wi, ) = 0 Yk > 1. Again from the pseu-

domonotonicity of A, we have (A(x + k0, ), X+ €k0m; — Wi, ) = 0 Vk > 1. This immediately

leads to

(Ax, 0 = Wy ) > (Ax—A(x + EkQmy )s X + EkOmy — ka> - ex{Ax,0m,) Yk=1. (3.11)



Ceng et al. Journal of Inequalities and Applications (2022) 2022:78 Page 11 of 28

We claim that limy_ o &x@m; = 0. Note that {w,, } C {w,} and & | 0 as k — oo. So

limsupy_, o €k

. = 0. Hence
minfy_, 5o ”Awnk II

it follows that 0 < limsup,_, ., llex@m, || = limsup;_, o, \\A;ﬁqk =
we get £x0,,, —> 0 as k — oo. Thus, letting kK — 00, we deduce that the right-hand side of
(3.11) tends to zero by the Lipschitz continuity of A, the boundedness of {w,,, }, {0, } and
the limit limy_, o £x0m;, = 0. Therefore, we get (Ax,x — z) = liminfy_, o (A%, x — Wy, ) > 0
Vx € C. By Lemma 2.3, we have z € VI(C, A).

Next we show that z € £2. In fact, from x,, — u, — 0 and x,, — z, we get u,, — z. Note
that the condition u, — Gu,, — 0 guarantees u,, — Gu,, — 0. From Lemma 2.5, it follows
that / — G is demiclosed at zero. Hence we get (I — G)z = 0, i.e., z € Fix(G). In the meantime,
let us show that z € ﬂffo Fix(S;). Again from Lemma 2.5, we know that / — S and I — S are
demiclosed at zero. Noticing x,, — Sx,, — 0 (due to (3.7)) and x,,, — Sx,,k — 0 (due to
(3.8)), we deduce from x,,, — z that z € Fix(S) and z € Fix(S) = Mis; Fix(S;). Consequently,
z € N Fix(S;) N Fix(G) N VI(C, A) = £2 with Sy := S. This completes the proof. a

Theorem 3.1 Let {x,} be the sequence constructed in Algorithm 3.1. Then x, — x* € §2,
provided S"x, — S"*\x, — 0, where x* € 2 is the unique solution to the HVI, {(I - f)x*,p —
x)>0Vpe 2.

Proof First of all, since 0 < liminf,_,» 0, <limsup,_, ., 0, <1 and lim,_, » % =0, we may
assume, without loss of generality, that {o,} C [4,b] C (0,1) and 6, < w Vn>1 We
claim that Pg; o f : C — C is a contraction. In fact, it is clear that Py, o f is a contraction.
Banach’s contraction mapping principle guarantees that P o f has a unique fixed point,
say x* € C, i.e,, x* = Pof (x*). Thus, there exists a unique solution x* € £2 = ()75, Fix(S;) N

Fix(G) N VI(C,A) of the HVI
(U-f)x*p-x")>0 Vpe . (3.12)

Next we divide the rest of the proof into several steps.
Step 1. We show that {x,} is bounded. In fact, take an arbitrary p € £2 = (5, Fix(S;) N
Fix(G) N VI(C,A). Then Sp=p, S,p =p Vn > 1, Gp = p and (3.3) holds, i.e.,

2
I

Iz, —P||2 < llu, —17||2 -1 _ﬂ)[||yn = zull” + lyn = Wn||2]

(3.13)
— 112(28 — w2) | Batty — Bop||* — p11 (2 — 111)[1B1 vy — Bagll?,

where g = Pc(p — 2Bop) and vy, = Pe(uy, — oBauy,). Again from (3.4) and (3.5), we deduce
that

2w = pll < Wy —pll = |Gy = pll < llup —pll < X —pll Vn=1. (3.14)

Thus, using (3.14) and o, + B, + ¥, = 1 Vi > 1, from the asymptotical nonexpansivity of S,
we obtain

%01 =PIl < Hf(xn) —19” + Bullxy = pll + v ”Snzn _p”
<au(|[f@x) =L@ + [f®) = p|) + Bull%n =PIl + vu(1 + 6,) 120 - Pl
< audllxn = pll + @ [f ) = p|| + Bull®n =PIl + (Vi + 0a) %0 — pl
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L(1—5
< au8llxn —pll +an|lf(p) —p| + A = )llxn —pll + i) . = plI

2
(1= 22 -t -

) [1 a —a)}”xn %029 20 @)~

2 2 1-46

21/ () - pl }

fmaX{llxn—pll, 13

By induction, we obtain ||x, — p|| < max{|x; — p|, W} Vn > 1. Therefore, {x,} is
bounded, and so are the sequences {u,,}, {w,}, {y.}, {z.}, {fx0)}, {Ayu), {Snun}, {8724}
Step 2. We show that
Vn{”xn - un”2 +(1- M)[”yn _Zn”2 + [lyn = Wn||2] + 12(2B — 12)
X |Batt = Bop|* + p1 (2 = p1) | Brvy, — Bag®} (3.15)

< |lxx —P||2 — |l%n+1 —19||2 +0,(2 + 6,)Mo + 20, M,
and

yn[”un —Uptqg —P||2 +vy—wy+p— 6I||2]
< 1% = pII* = %41 = pII* + 21211 Bop — Bost ||| vy — gl (3.16)
+ 21 ”qu _B1Un|| ”Wn —19|| + 9,,(2 + en)MO + 20, My,

for some M, > 0. In fact, using (3.5), (3.13), (3.14), and the convexity of the function ¢(s) =
52 Vs € R, we get

us1 - pII>
= (£ i) £ B)) + Bultn =) + 7a(S"2n = P) + n(f () ~ ) |
< ot (f Gen) = £ @) + Buln =) + ¥u(5"20 ~ P) | + 20alf (0) ~ P, 1 — )
< au[f @) = @) + Bulltn = pI1% + 72| Sz = p||* + 200a{f B) = P %1 — )
< @l = pII* + Bullon = pI* + a1 + 6,12, = pII* + 20u{f (p) = p, %1 — p)
< &%y — plI* + Bulln =PI + [y + 042+ 6,) 20 — pII* + 20{f (B) — ps 21 — )

2 2
12 + 11y = wal®]

< a8l = pII* + Bullxn — pI> + vl =PI = (1= )] Iyn — 2
— u2(2B — p2) | Baty — Bop||* — pa (2 — 1) | Byvy, — Bigl|*}
+64(2 + 0) %0 — pII* + 20, {f (p) = ps X1 — ) (3.17)

< 8|10 =PI + Bulltn — pI* + vu{ 160 — pI* = 1120 — all* = (1 = )[ 1970 — 2all®
+ 1190 = Wall*] = 112(28 = w2)I1Batty — Bop|* — 1 (2 — 1) | Bruy — Bag*}
+0n(2 + 0) 5 = pII* + 20 {f (P) = P> X1 — D)

= [l —a,(1 _5)] [l —P||2 - Vn{”xn - un”2 +(1 _//L)[”.yn _Zn||2

+ ”yn - Wn||2]

+ u2(2B — w2)IBatty — Bop||* + (2 — 1) l1B1vy, — B gll*}

Page 12 of 28
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+ Gn(z + Gn)llxn _P”2 + 20{n(f(p) —PrXn+1 —P>

2
[

< [l%n _P”2 - Vn{”xn - un||2 +(1- ,U«)[”yn =zZullI" + llyn _Wn||2]

+ U2(2B = 12)|Batsy — Bopl* + 1 (200 — ) | Brvy — Bigl*}
+ Gn(2 + QH)MO + Z(XnMo,

where sup,,.,{llx, — plI* + IIf (p) — pllx, — plI} < Mo for some M, > 0. This ensures that
(3.15) holds.
On the other hand, by the firm nonexpansivity of Pc we obtain that
Wy = pII* < (Un = g, W = p) + 11 (B1q = B1vy, Wy — p)
1
= Sllvw=al* + lw, = pI” = vy = wn + p = qI’]

+ (11Big — Brugllwn - pll,

which hence gives

1Wn =PI < 1un = q11* = 103 = Wa + p = q11* + 214111 B1q ~ B1val [ Wn ~ plI- (3.18)
In a similar way, we have

lvw = ql1* < st = pII* = Nty = v + g = P11 + 20021 Bop — Bota || v, — . (3.19)
Substituting (3.19) for (3.18), from (3.14) we deduce that

2 2 2 2
wn =PI~ < llxw —pII" = lttyy =V + g — pII” = lUy — Wy + P — 1|

+ 20| Bop = Bottu||[|Un — qll + 2p1[1B1g = Brunlllwn = pl,

which, together with (3.14) and (3.17), leads to

%01 = PI> < @nd 1% =PI + Bulltn — pII* + [V + 0u(2 + 6,)]ll20 — pII>

+ 200, (f () = P, Xns1 — )

< @n8l|xn =PI + Bulltn = pI* + Yl W = pII> + 0,2 + 6,) |, — pII>
+20(f () = P X1 — )

< @u8l|%n =PI + Bullxn — pII>
+ Yl 1%0 =PI = 1160 = Vu + g = pI* = U — W + p — gl
+ 2142 Bap — Bottu | |Un = gl + 20111 Brq = Byog |l | wy — plI} (3.20)
+ 02 + 0,) 10 — pII* + 20, {f (D) = P, Xina1 = )

< [1- a1 =8)]l%n =PI = Vu[lthr = Vu + g = PI* + 1V = wn + p — qlI*]
+242]|Bop — Bt ||||Un — qll + 2141 1B1g — Bruy || |wy - p|

+0,(2 + 0,) 1% — pII* + 20 {f (P) = P> X1 — D)
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< N%n = pI* = Vu[ Ntbw = Vu + g = PI* + |y = Wy + p = ql*]
+ 245 | Bop — Battl||vy — 4|

+2p111B1q — B1vu |l |wn = pll + 0(2 + 6,)Mo + 20, Mo.

This ensures that (3.16) holds.
Step 3. We show that

%241 —P||2 = [1 —a,(1- 8)]”xn —P||2

+an(1_8){2((f—lip_,9;n+1—p) Lo (2+9,,)M0}.

oy, 1-6
In fact, from (3.14) and (3.17), we have

2
[%n1 =l

< aud|xn = plI” + Bullxn — pII* + [V + 042+ 6,) ] 20 — pII”
+ 20{n(f(p) —PrXnsl _P>

< au8 %0 = pII* + Bull%n — pI” + Valltn — I + 64(2 + 6,)Mo

+20,{f(8) - p,rr — ) (821)
=[1 - au(1 = 8)]I1%n = P11 + 64(2 + 6,)Mo + 20, (p) = P, %ins1 — )
= [1 - a1 = 8] - pII?

+a,(1 - 3){ 2((f _Iip_”;ml -p)

0, (2+06,)M,
+— —1.
oy, 1-6

Step 4. We show that {x,} converges strongly to the unique solution x* € §2 of the HVI
(3.12). In fact, putting p = x*, we deduce from (3.21) that

”anrl o HZ < [1 —Oln(l —8)] “xn o H2 +Oln(1 _8)[2((f—1)x*,xn+1 _x*)

1-6
(3.22)
9;4 (2 + 9n)MO
+— .
oy, 1-6

Putting T, = ||x, — x*||2, we show the convergence of {I",,} to zero by the following two
cases.

Case 1. Suppose that there exists an integer 7y > 1 such that {I",;} is nonincreasing. Then

the limit lim,,, o, I',, = i < +00 and lim,,—, 5o ([, — T'jy41) = 0. Putting p = x* and g = y*, from
(3.15) and (3.16) we obtain

V{120 — all® + (L= 1) [Iyn = 2a > + Iy = wall*] + 112(28 — 112)
x | Bauty — Box* “2 + w1 (2 = 11)||B1vy — B1y* “2}

) ) (3.23)
< ||xn —x* || - ||xy,+1 —x* || +0,2+6,)My + 20,,My
=T, =T, +0,(2+6,)My + 2a,,M,

Page 14 of 28
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and
Yl = v+ =" |+ [vw = wn + 2" -y |]
< [l = |* = [t =2 [* + 2012 | Box” = Bata | v - 57|
+ 201 HBly* — By, H Hw,, —x* H +6,(2 +6,)My + 20,M, (3.24)
=Ty = Tpat + 22 | Box™ — Bouy || 0w = |

+ 21 | Bry* = Biu ||| wn — &% | +64(2 + 6,)Mo + 20, M.

Noticing 0 < liminf,_, (1 — &, — B,) = liminf,, o ¥, @y = 0,60, - 0and I';, - [',,;; — 0,
one has from (3.23) that

lim [, — ]| = Him ||y, =z, = lim [y, —w,|l =0, (3.25)
n—00 n—0o0 n—oo

and
lim || Byuy, — Box™ | = lim | Byv, — Bry*| =0. (3.26)
n—00 n— 00

Since 0 < liminf,, o ¥4, @y — 0,6, — 0and '), — ',,,; — 0, from (3.24), (3.26), and the
boundedness of {v,}, {w,}, we deduce that

lim ”u,, — Uy + Y =" H = lim ”U,, —wy +x" —y* H =0. (3.27)
n—00 n—oo
Therefore,
”un - Gun” = ”un - Wn”
5Hu,,—v,,+y*—x*”+HU,,—W,,+x*—y*H (3.28)

-0 (n— 00).
Furthermore, using (3.14), gives

-
< [otn(F @) = %) + Bl = x°) + (8720 — 27 ||
< [ fGen) =% |* + B n = || + v "2 = 2| = Byl = "2
< @[ f @) =2+ B n = 2| + 7u (L + 60|20 = 5% |* = By n — S
< |[f (i) =P + (1= @) [0 =% |* 4 022 + 0,) |20 = || = By |00 — "2
< |[f @) = 2| + (1= 0|0 = 2| + 0,2 + 0,) [0 = x| * = By | %0 = §"2. |

2

’

< ||on - x* ||2 + &My +0,(2 + 0,) My — BV | %0 — 20

where sup,,_; {|[f (x,) — x*[|*> + ||, — x*[|*} < M for some M; > 0. This immediately implies

BV ||xy, -8"z, ||2 < ||xn —x* ||2 - ||xy,+1 —x* ||2 + o, M7 +0,(2 +6,)M;
(3.29)
= F,, - Fn+1 + O[an + 9;,,(2 + Qn)Ml.
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Since 0 < liminf, . B,, 0 < liminf, . » ¥, @, = 0,6, — 0, and [, — ',,,; — 0, we infer
from (3.29) that

lim ||x,, - 8"z, || =0,
n—00

which, together with the boundedness of {x,}, implies that

%01 = xull = ”0{,, (f(xn) _xn) +Vn (Snzn _xn) H
< || (en) = % || + V| S"2n — | (3.30)
<ay Hf(x,,) — Xy H + ”S"z,, —Xp ” -0 (n— ).

From the boundedness of {x,}, it follows that there exists a subsequence {x,, } of {x,,} such
that

lim sup((f - Dx*, x, —x*) = klim ((f - Dx*, %, —x*). (3.31)
—00

n—0o0

Since H is reflexive and {x,} is bounded, we may assume, without loss of generality, that
%4, — %. Thus, from (3.31) one gets

lim sup((f—l)x*,x,, —x*) = lim ((f—])x*,x,,k —x*)
oo ke (3.32)
=((f - Dx*, % — x*).

Since §"x, — §"*1x, — 0 (due to the assumption), u,, — Gu,, — 0 (due to (3.28)), x,, — %,..1 —
0 (due to (3.30)), and x,,, — X for {x,, } C {«x,}, by Lemma 3.3, we obtain that ¥ € £2. Hence
from (3.12) and (3.32), one gets

lim sup((f —Dx*,x, —x*) = ((f —I)x*,?c'—x*) <0, (3.33)

n—0o0

which, together with (3.30), leads to

limsup((f — D)x*, %1 — x*)

n—00

= limsup[((f—l)x*,xn+1 —xn) + ((f_l)x*’xn —x*)] (3.34)

n—0o0

< timsup[ || (f = Dx* || 1241 = 2l + ((f = Dac*,x, - 2%)] <O
n—0oQ0

Note that {o,,(1 -8)} € [0,1], > 0, @u(1 = 8) = 00, and

lim sup 13 " Y
_ B _

n—00

[2((f—1)x*,xn+1 — ") O (2+0n)M0] <0

Consequently, applying Lemma 2.4 to (3.22), one has lim,,_, « ||, —x*||> = 0.
Case 2. Suppose that 3{T",, } C {T',} such that ', < T, .1 Yk € N, where N is the set of
all positive integers. Define the mapping 7 : NV — N by

t(n):=max{k <nm:Tp <Tr1}.



Ceng et al. Journal of Inequalities and Applications (2022) 2022:78 Page 17 of 28

By Lemma 2.6, we get
1—‘r(n) < FI(VI)+1 and I, < FI(VI)+1'
Putting p = x* and g = y*, from (3.15) and (3.16), we obtain

Yeon { 1% n) — e > + (1= ) [1¥260) = 2o II” + 1Y) = Weon 2] + 122(28 — pa)
x || Batte(ny — Box* ||2 + w120 = 1) | B1ve(ny — Bry* ||2} (3.35)

=< Iﬂ'L'(n) - F1:(;'1)+1 + 01(71)(2 + gr(n))MO + 20‘1(;’1)]\40
and

Ve[t = Ve + 3" =" + Ve = wegn + 4" = y* ]
=< 1_"[(n) - 1—‘l'r(n)Jrl + 2“2 ”BZx* - BZ”r(n) || || Uz (n) _y* || (336)

+ 2/L1 ||Bl_y>‘< - Blv,(n) “ “W,(n) - x* “ + «91-(,,)(2 + Qr(n))Mo + ZQT(H)M().

So it follows from (3.35) that

nlglc}o %62 (n) — Uzl = nlin;o 1Y) = 2ol = nlin;o 1ye6i) = Wemll = 0, (3.37)
and

lim || Bytto(m) — Box™ | = lim || Byve(s) — Bry*| = 0. (3.38)

n—00 n—oo

Further, from (3.36), (3.38), and the boundedness of {v; ()}, {W: ()}, we deduce that

lim ”ur(,,) — Uy + ¥ —&F ” = lim H Ur(n) — Wem) + &5 —y* H =0.
n—00 n—oo

Therefore,

”ur(n) - Guf(n)” = ”ur(n) - Wr(n)”
< ||Mr(n) — Uy + Y — " || + H Ur(n) — Wem) +&° —y* H (3.39)

-0 (n— 00).

Utilizing the same inferences as in the proof of Case 1, we deduce that

lim ||xr(n)+1 —Xt(n) ” =0 (340)
n—00

and
lim sup((f = DX, % ()41 —x*) <0. (3.41)

n—0o0
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On the other hand, from (3.22) we obtain

2<(f - I)x*’xr(n)+l - x*>

at(n)(l - S)Fr(n) = 1—“[(n) - 1—‘l'r(n)Jrl + ar(n)(l - 8)|:

1-6
N Ory (2 +Oz0)Mo
Uz (n) 1-6
50‘:(”)(1 ~5) 2<(f—1)x »Xr(n)4l —X ) + 97(,,) . (2+87(n))M0 ’
1-6 Az (n) 1-§

which hence yields

limsup I';¢,) < limsup
n—0o0 n—0oQ

2<(f_1)x*:xr(n)+l _x*> + 91’(;«1) . (2 + er(n))MO <0
1-6 Oz () 1-$6 -

Thus, lim,_, o [|%;(») —*[|> = 0. Also, note that

et =2 [* = e =27
= 2(xr(n)+1 —Xt(n)) Xt (n) — x*> + ||xt(n)+1 —Xt(n) ”2 (342)

= 2||x1:(r1)+1 —X1(n) ” ||xt(n) - x* || + ||x1:(n)+1 —X1(n) ”2

Owing to I', < T';(n)+1, we get

= = o -

= ||xt(}’l) -x* “2 + 2”xr(n)+1 —Xt(n) ” ”xr(n) -x* “ + ||xr(n)+1 —Xt(n) ”2

-0 (n— 00).
That is, x,, — x* as n — oo. This completes the proof. g

Theorem 3.2 Let S: H — C be nonexpansive and the sequence {x,} be constructed by the
modified version of Algorithm 3.1, that is, for any initial x, € C,

Up = 0%y + (1 = 0,)Spthy,

wy, = Guy,

Yn = Pc(Wy — T,Aw,), (3.43)
zy = Pc,(Wy — T, Ayn),

Xn+l = ar(f(xn) + ,ann + VnSZn Vn = 17

where for each n > 1, C, and t, are chosen as in Algorithm 3.1. Then x,, — x* € §2, where
x* € §2 is the unique solution to the HVI, (I — f)x*,p —x*) > 0 Vp € £2.

Proof We divide the proof into several steps.
Step 1. We show that {x,} is bounded. Indeed, using the same arguments as in Step 1 of

the proof of Theorem 3.1, we obtain the desired assertion.

Page 18 of 28
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Step 2. We show that

V{10 = all® + (L= 1[Iy = 2> + Ny = wall*] + 122(28 = 112)
X ||Battn = Bop|* + i1 (200 — 1) | Byvy — Biql*}
< |12 = plI* = %41 — pII* + 20, Mo

and

Vn[”un —Uptq —P||2 +lup —wy +p— Q||2]
< 1% = pII* = 1%ns1 = PI? + 242 Bop — Byt || |Un = 4|
+ 201 [1B1g = Brug [ | W — plI + 206, Mo,
where sup,,.., {lx, —pII* + || (p) - pll 1%, — ||} < M, for some M, > 0. In fact, using the same

arguments as in Step 2 of the proof of Theorem 3.1, we obtain the desired assertion.
Step 3. We show that

2<(f_1)prxn+1 -p)
1-6 '

ls1 =PI < [1 = atu(1 = 8)]llwn — pII* + (1 - )

In fact, using the same arguments as in Step 3 of the proof of Theorem 3.1, we obtain the
desired assertion.

Step 4. We show that {x,} converges strongly to the unique solution x* € £2 to the HVI
(3.12), with Sy = S a nonexpansive mapping. In fact, putting p = x*, we deduce from Step 3
that

2((f — D™, %1 — %)
1-6 ’

|1 = |* < [1 = au(1 = 8)] | n = #*||* + 21 = ) (3.44)

Putting T', = ||x,, — x*||%, we show the convergence of {I',;} to zero by the following two
cases.

Case 1. Suppose that there exists an integer 1y > 1 such that {I',,} is nonincreasing. Then
the limit lim,,, oo I, = i < +00 and lim,,—, 5o (I, — T'y41) = 0. Putting p = x* and g = y*, from
Step 2 we obtain

Vil 1% = w1 + (L= p) [y = 2all® + 1970 = Wl *] + 142(28 = 22)
2 2
X || Batty = Box™ | + 1 (200 = 111) | Brvw = Biy* |}

<Ty-Tu1+20,Mo
and

Valltn = vn 45" ="+ Jon = w427 =5[]
= Fn - 1_‘;'1+1 + 2“2 ”ng* _BZMn H || Upn —)/* H

+ 201 HBly* - By, ” Hw,, —x* H + 200, M.
By the same inferences as in Case 1 of the proof of Theorem 3.1, we deduce that

lim ||u, — Gu,| =0, (3.45)
n— 00
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lim [|lx, — %41l =0 and  limsup((f — D)a*, %1 — ") < 0. (3.46)
n—00 =00

Consequently, applying Lemma 2.4 to (3.44), we obtain lim,,_, o [|%, —x*[|> = 0.
Case 2. Suppose that I, } C {I",} such that I';;, < T 41 Vk € N, where N is the set of
all positive integers. Define the mapping 7 : ' — N by

t(n) :=max{k <n:Ti < Tiu1}
By Lemma 2.6, we get
1—11'(;1) =< Ft(n)+1 and rn =< Fr(n)+1'

The conclusion follows using the same arguments as in Case 2 of the proof of Theo-
rem 3.1. 0

Next, we introduce another composite subgradient extragradient algorithm.

Algorithm 3.2 Initialization: Given y >0, u € (0,1), £ € (0, 1), pick an initial x; € C arbi-
trarily.

Iterative steps: Compute x,,,; below:

Step 1. Calculate u, = o,x, + (1 — 0,)S,u, and w,, = Gu,, and set y, = Pc(w, — t,Aw,),

where 7, is chosen to be the largest T € {y, v ¢, y¢2,...} satisfying
T Aw, — Ayl < llwy = yull- (3.47)

Step 2. Calculate z,, = Pc, (W, — 1,Ay,) with C,, :={y € H : (W, — T,AW,, = Y11,y — ¥u) < O}.
Step 3. Calculate

KXntl = ar(f(xn) + ﬁnun + VnSnZn- (348)
Again put #:= n + 1 and return to Step 1.

It is worth pointing out that inequality (3.5) and Lemmas 3.1-3.3 are still valid for Al-
gorithm 3.2.

Theorem 3.3 Let {x,} be the sequence constructed in Algorithm 3.2. Then x, — x* € §2,
provided S"x, — S"'x, — 0, where x* € 2 is the unique solution to the HVI, {(I - f)x*,p —
x)>0Vpes2.

Proof Using the same arguments as in the proof of Theorem 3.1, we deduce that there
exists the unique solution x* € £2 = (75, Fix(S;) N Fix(G) N VI(C, A) to the HVI (3.12). We
divide the rest of the proof into several steps.

Step 1. We show that {x,} is bounded. In fact, using the same arguments as in Step 1 of
the proof of Theorem 3.1, we obtain that inequalities (3.13) and (3.14) hold. Thus, from
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(3.14) it follows that

[%ns1 =PIl < tu|[f (%) = 2| + Bullttn =PIl + v | S"20 — p||
<au([[feen) —f@)| + |f @) = p|) + Ballttw =PIl + vu(1 + 6,) 120 — Pl
a(anxn p||+|Lf(p) p|) + Bullxn = pll + (v + 6,) % — pll

[ ]nxn pl+alf@) -p|
= [1 - @]nxn ~-pll+ “"(12— %) 2|Lfip_) S—pn
< max{ b, -, 2L,

By induction, we obtain |x, — p|| < max{|x; — p|l, W} Vn > 1. Therefore, {x,} is
bounded, and so are the sequences {u,}, {(w,}, (¥}, (20}, f xn)}, {Ayn}s (Suttn}, {872}
Step 2. We show that

2 2
I [

Y lo6n = > + (L= ) [I1yn = Zu > + 170 = wall®] + 112(28 — 12)
X ||Battn — Bop||* + i1 (200 — 1) | B1un — Bigl*} (3.49)

< 1% = pI* = %041 = PII* + 6,(2 + 6,)Mo + 20, Mo
and

Yalllttn = Vn + g =PI + U — W + p = qlI*]
< 1% = pII> = %41 = PII* + 21211 Bop — Bous ||| vy — gl (3.50)
+ 241 |B1g = Bivallll Wy = pll + 6,4(2 + 6,)Mo + 20, Mo,

for some M, > 0. In fact, using (3.5), (3.13), (3.14), and the convexity of the function ¢(s) =
5% Vs € R, we get

%1 — pII”
< @u[f @) = @) + Bullitn =PI + ¥ | "2 = | + 20ulf (0) = P, %1 — )
< 0ud|xn = plI* + Bullttn = pII* + [V + 0u(2 + 0)]ll20 — PII* + 20{f (p) = P, X1 — )
< @ 8% = pI% + Bulltn = I + v {15 = PIZ = 1% = wall? = (1 = ) [l1ys = 2all?
19 = wall?] = 14228 = w2) 1Batt — Bopl|® = 1112t — 1) [1Brv - Brgl?}  (351)

+0,(2 + 0,) 1%, = pII* + 200 {f (B) = P, %11 — P)

2 2
I I

= ||xn—P||2—Vn{||xn—Mn +(1_//«)[”yn_zn + ||yn_Wn||2]
+ 12(28 — w2) | Batty — Bopl|* + p1 (2 — 1) | Bruy — Bag*}

+ 9,,,(2 + Qn)M() + 2a,,M0

where sup,,.., {[|x, —plI2+lf @) -pllllx.—pll} < M for some M, > 0. This ensures that (3.49)
holds. Further, using similar arguments to those of (3.16), we obtain that (3.50) holds.

Page 21 of 28
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Step 3. We show that

%1 = pI1* < [1 = atu(1 = 8)] Il — pII?
2((f_1)p;xn+l —P> + 9_71 ) (2 +9n)M0 }

+“”(1_8){ 1-5 @ 1=

In fact, from (3.14) and (3.51), we have

||xn+1 —P||2
< a,llxn —P||2 + Bulluy —P||2 + [Vn +0,(2 + 071)]”2;1 —P||2 + 2an(f(p) —Pr%Xn+1 —P>
< @8l =PI + Bulln =PI + vullw — pII* + 6,(2 + 6,)Mo

+ 20!n(f(10) —Pr¥ns1 —P>

2(f = Dp,xn1 —p)  On (2+6,)Mo
=[1-a,1=8)]lxs—plI* + an(l -6 L=t
(1=t =80, - piP s a1 -y TR 2 B 0
Step 4. We show that {x,} converges strongly to the unique solution x* € §2 of the HVI
(3.12). In fact, putting p = x*, we deduce from Step 3 that

[ = = [1 =1 = 8)] s =

ek e (3.52)
+an(1—8){2((f 1);6_,9;,,+1 ¥ + z—n . 7(2:61"2;\/[0}.

Putting ', = ||x,, — x*||2, we show the convergence of {I',} to zero by the following two
cases.

Case 1. Suppose that there exists an integer #y > 1 such that {I',,} is nonincreasing. Then
the limit lim,,—, oo I, = i < +00 and lim,,—, 5o (I, — T'y41) = 0. Putting p = x* and g = y*, from
(3.49) and (3.50), we obtain that

Vil 1% = w1 + (L= g [y = 2all® + 170 = Wl *] + 102(28 — 22)
2 2
x || Batty = Bax™|” + 1 (2 — 11)|| Brvw — B1y* |}

<I',-T,a+ 9,,,(2 + Gn)MO + ZOlnM()
and

V[l = vn + 5" =" | + o= + 5" 57| °]
= Fn - 1—‘n+1 + 2,“«2 ||B2x* _B2Mn H || Un _y* H

+ 201 | Buy* = Brug | | wa — 8*|| + 64(2 + 6,)Mo + 206, M.

By the same inferences as in Case 1 of the proof of Theorem 3.1, we deduce that u, — Gu,, —

0, x, —x,:1 — 0and

lim sup((f —Dx*, %41 —x*) <o0.

n—00

Consequently, applying Lemma 2.4 to (3.52), we obtain lim,, ., [|x, —x*[|> = 0.

Page 22 of 28
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Case 2. Suppose that 3{T",, } C {I',} such that ', < T, 41 Yk € N, where N is the set of
all positive integers. Define the mapping 7 : A" — N by

t(n):=max{k <nm:Tj<Tr1}.
By Lemma 2.6, we get
Iﬂ'L'(n) =< r'L'(n)+1 and r, =< 1_‘1'(;'1)+1~

In the remainder of the proof, using the same arguments as in Case 2 of Step 4 in the proof

of Theorem 3.1, we obtain the desired conclusion. O

Theorem 3.4 Let S: H — C be nonexpansive and the sequence {x,} be constructed by the
modified version of Algorithm 3.1, that is, for any initial x, € C,

Uy = 0%y + (1 = 0,) Syt

wy, = Guy,

Yn = Pc(wy — T,Aw,), (3.53)
zy = Pc,(Wy — T, AYn),

Xn+l = ar(f(xn) + ﬂnun + VnSZn Vn > 1:

where for each n > 1, C, and t, are chosen as in Algorithm 3.2. Then x,, — x* € §2, where
x* € §2 is the unique solution to the HVI, (I — f)x*,p —x*) > 0 Vp € £2.

Proof We divide the proof into several steps.

Step 1. We show that {x,} is bounded. Indeed, using the same arguments as in Step 1 of
the proof of Theorem 3.3, we obtain the desired assertion.

Step 2. We show that

Vn{”xn - un”2 +(1- M)[”yn _Zn”2 + [lyn = Wn||2] + 12(2B — p2)
X ||Baity = Bopl|* + p1(20 = )| B1vy — Bagl|* |
< |lxx —P||2 — |l%n+1 —19||2 + 20, My
and
Valltn = v+ q=pI* + Vs = w +p = qlI’]
< 1% = pII* = 1%na1 = pII* + 221 Bop — Bo |l [[vs — 4|
+2p11B1g — Biug|lllwy, — pll + 20, Mo,
where sup,..; {[|x, -plI2+1f () -pllllx. —pll} < M, for some My > 0. In fact, using the same

arguments as in Step 2 of the proof of Theorem 3.3, we obtain the desired assertion.
Step 3. We show that

2<(f_1)pyxn+1 -p)
1-6 '

le1 =PI < [1 = au(1 = 8)]llwn — pII* + (1 - 8)
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In fact, using the same arguments as in Step 3 of the proof of Theorem 3.3, we obtain the
desired assertion.

Step 4. We show that {x,} converges strongly to the unique solution x* € £2 to the HVI
(3.12), with Sy = S a nonexpansive mapping. In fact, putting p = x*, we deduce from Step 3
that

2((f — D™, %01 — %)
1-6 )

||xn+1 —x* ||2 < [1 —a,(1 - 8)] ||x,, —x* ||2 +a,(1=96) (3.54)

Putting ', = ||x,, — x*||2, we show the convergence of {I',} to zero by the following two
cases.

Case 1. Suppose that there exists an integer 7y > 1 such that {I',;} is nonincreasing. Then
the limit lim,,_, .o I',, = i < +00 and lim,,—, 5o ([",, — T')41) = 0. Putting p = x* and g = y*, from
Step 2 we obtain

)/n{”xn - Z’ln||2 +(1- M)[”yn _Zn||2 + {|yn — Wn||2] + 12(2B — ua2)
2 2
x || Batty = Box™ |” + 1 (2 = u1)||Brvw — B1y* |7}

= Iﬂn - I‘n+1 + 2an[\/IO
and

V[l = vn + 5" =" + o= + 5" 57| °]
= Fn - 1—‘n+1 + 2,“«2 ”BZx* _B2un ” || Un _y* ”

+ 21 ||B1y* — B, ” ||w,, —x* || + 20, M.

By the same arguments as in Case 1 of the proof of Theorem 3.3, we deduce that u, —

Gu, — 0, x, —x,,1 — 0 and

lim sup((f = Dx*, %1 —x*) =<0.
n—00

Consequently, applying Lemma 2.4 to (3.54), we obtain lim,,_, o [|%, —x*[|> = 0.
Case 2. Suppose that I, } C {I",} such that I',;, < Ty 41 Vk € N, where N is the set of
all positive integers. Define the mapping 7 : A" — N by
t(n) :=max{k <n:Ti < Tru1}
By Lemma 2.6, we get

1—“[(n) =< Fr(n)+1 and Fn =< Fr(n}+1-

The conclusion follows using the same arguments as in Case 2 of the proof of Theo-
rem 3.3. O

Remark 3.1 Compared with the corresponding results in Ceng and Wen [21], Ceng and
Shang [22], and Thong and Hieu [14], our results improve and extend them in the following
aspects:
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(i) The problem of finding an element of ()5, Fix(S;) N Fix(G) in [21] is extended to de-
velop our problem of finding an element of (15, Fix(S;) N Fix(G) N VI(C, A) where {S;}2°,
is a countable family of ¢-uniformly Lipschitzian pseudocontractive mappings and Sp = §
is asymptotically nonexpansive. The hybrid extragradient-like implicit method for finding
an element of ()5, Fix(S;) N Fix(G) in [21] is extended to develop our Mann implicit com-
posite subgradient extragradient method with line-search process for finding an element
of (M5, Fix(S;) N Fix(G) N VI(C, A), which is based on the Mann implicit iteration method,
subgradient extragradient method with line-search process, and viscosity approximation
method.

(ii) The problem of finding an element of Fix(S) N VI(C, A) with quasinonexpansive map-
ping S in [14] is extended to develop our problem of finding an element of ()5, Fix(S;) N
Fix(G) N VI(C,A) where {S;}) is a countable family of ¢-uniformly Lipschitzian pseu-
docontractive mappings and Sy = S is asymptotically nonexpansive. The inertial subgra-
dient extragradient method with linear-search process for finding an element of Fix(S) N
VI(C,A) in [14] is extended to develop our Mann implicit composite subgradient extra-
gradient method with line-search process for finding an element of ()5 Fix(S;) NFix(G) N
VI(C, A), which is based on the Mann implicit iteration method, subgradient extragradient
method with line-search process, and viscosity approximation method.

(iii) The problem of finding an element of £2 = ﬂf\io Fix(S;) N VI(C, A) with finitely many
nonexpansive mappings {S;}Y, is extended to develop our problem of finding an ele-
ment of £2 = ()5, Fix(S;) N Fix(G) N VI(C, A) with a countable family of ¢-uniformly Lip-
schitzian pseudocontractive mappings {S;}7°,. The hybrid inertial subgradient extragra-
dient method with line-search process in [22] is extended to develop our Mann implicit
composite subgradient extragradient method with line-search process, e.g., the original
inertial approach w, = S,x, + @,(S,x, — S,x,-1) is replaced by Mann implicit composite
iteration method u, = o,%x,, + (1 — 6,,)Su,, and w,, = Gu,,. In addition, it was shown in [22]
that, under condition S”z, — $"*'z, — 0, the conclusion holds:

x> x" €2 S %y —yull + 1%y — %1l > 0 with x* = Po(I — pF +f)x*.

In this paper, using Lemma 2.6, we show that, under condition S"x, — S"* 1%, — 0, the
following conclusion holds:

x, = x* €2 withx* = P_Qf(x*).

4 Applications

In this section, applying our main results, we deal with the GSVI, VIP, and CFPP in an
illustrated example. Put uy = uy = %, y=1u=4~4= %, 0y = %, o, = ﬁ, B = %, and
Yn = %

We first provide an example of two inverse-strongly monotone mappings By,B; : C —
H, Lipschitz continuous and pseudomonotone mapping A, asymptotically nonexpansive
mapping S, and countably many ¢-uniformly Lipschitzian pseudocontractive mappings
{8,155, with £ = (%%, Fix(S;) NFix(G) N VI(C, A) # @ with Sy := S. Let C = [-3,3] and H = R
with the inner product (a, b) = ab and induced norm || - || = | - |. The initial point x; is ran-
domly chosen in C. Take f(x) = %x Vx e Cwith § = %, and put Bix = Byx:=Bx =x — % sinx

VxeC.LetA:H — Hand S,S;: C — C be defined as Au:= —L— — —L_ Sy := 2sinuy,

1+|sinu| 1+|u|’ 6
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and S;u = Tu = sinu Yu € H, i > 1. We now claim that B is %—inverse—strongly monotone.
In fact, since B is %-strongly monotone and %-Lipschitz continuous, we know that B is
%—inverse—strongly monotone with @ = § = %. Let us show that A is pseudomonotone and

Lipschitz continuous. In fact, for all &, v € H, we have

VI =l +‘ [l sin vl — || sin ||
L+ [T+ VD | |+ I sinal)(@+ [[sinvi])
[lv—ul || sinv — sin u||
= @ e+ ) T (U [sinul)(@ + [[sinv])

lAu — Av|| <

<|lu-v| + | sinu —sinv| <2|u-v|.

This implies that A is Lipschitz continuous with L = 2. Next, we show that A is pseu-

domonotone. For each u,v € H, it is easy to see that

1 1
(Au,v—u)z( >(V—u)20

1+|sinu| 1+ |4l

1 1
= (AV,V—M)=< )(V—M)ZO.

1+|sinv|_1+|v|

Besides, it is easy to verify that S is asymptotically nonexpansive with 6, = (g)” Vn > 1,
such that ||S"*1x,, — S"x,|| — 0 as # — co. Indeed, we observe that

|S"u - s"v| < g”s"*lu-s"*lvu <. < (%) ll = vl < @+ 6) |l = vl

and

n-1 n-1
It -5l < (3) Istm-snl = (3) |3
6 6

5
— sin(Sx,) — — sinx;,
(5>n
<2(-=-] —0.
6

6 6
It is clear that Fix(S) = {0} and

. Oy . (5/6)"
lim — = lim ———— =0.
n—00 @, H—>00 1/3(1/1 + 1)
In addition, it is clear that S; = T is nonexpansive and Fix(T) = {0}. Therefore, £2 = Fix(T)N
Fix(S)NFix(G)NVI(C, A) = {0} # (. In this case, noticing S, = T and G = Pc({ — u1B1)Pc(I -
UaBy) = [Pc(I - %B)]z, we rewrite Algorithm 3.1 as follows:

U, = %x,, + %Tu,,,
W, = [Pe(l - 1B)]u,,
In = Pc(wy, — T,Awy), (4.1)

Zn = PC,, (Wn - TnAyn)r

-1 1
Xn+l = 3(n+l) 2

n 2¢n
—_— = v >
Xy + 3(n+1)x,, + 3S Zn n 1,
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where for each n > 1, C,, and 1, are chosen as in Algorithm 3.1. Then, by Theorem 3.1, we
know that {x,} converges to 0 € £2 = Fix(T) N Fix(S) N Fix(G) N VI(C, A).

In particular, since Su := % sinu is also nonexpansive, we consider the modified version
of Algorithm 3.1, that is,

2 1
U, = gx,, + gTMn,

Wy = [PC(I_ %B)]zum

Yn = Pc(wy — T,Aw,), (4.2)
zn = Pc, (Wi — T0Ayn),
Xn+l = % . %xn + %xn + %Szn Vn>1,

where for each n > 1, C,, and 7, are chosen as above. Then, by Theorem 3.2, we know that
{x,} converges to 0 € £2 = Fix(T) N Fix(S) N Fix(G) N VI(C, A).
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