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Abstract
In a real Hilbert space, let the VIP, GSVI, HVI, and CFPP denote a variational inequality
problem, a general system of variational inequalities, a hierarchical variational
inequality, and a common fixed-point problem of a countable family of uniformly
Lipschitzian pseudocontractive mappings and an asymptotically nonexpansive
mapping, respectively. We design two Mann implicit composite subgradient
extragradient algorithms with line-search process for finding a common solution of
the CFPP, GSVI, and VIP. The suggested algorithms are based on the Mann implicit
iteration method, subgradient extragradient method with line-search process, and
viscosity approximation method. Under mild assumptions, we prove the strong
convergence of the suggested algorithms to a common solution of the CFPP, GSVI,
and VIP, which solves a certain HVI defined on their common solutions set.
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1 Introduction
Let C be a nonempty, closed, and convex subset of a real Hilbert space (H , 〈·, ·〉) with the
induced norm ‖ · ‖. Let PC be the nearest point projection from H onto C. Given a non-
linear operator T : C → H , let Fix(T) and R indicate the fixed-points set of T and the set
of real numbers, respectively. Let → and ⇀ represent the strong and weak convergence
in H , respectively. An operator T : C → C is called asymptotically nonexpansive if there
exists {θl}∞l=1 ⊂ [0, +∞) such that liml→∞ θl = 0 and

∥
∥Tlu – Tlv

∥
∥ ≤ (1 + θl)‖u – v‖ ∀l ≥ 1, u, v ∈ C. (1.1)

In particular, whenever θl = 0 ∀l ≥ 1, T is called nonexpansive. Given a self-mapping
A on H , the classical variational inequality problem (VIP) is finding u ∈ C such that
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〈Au, v – u〉 ≥ 0 ∀v ∈ C. We denote the solutions set of VIP by VI(C, A). To the best of our
knowledge, one of the most popular approaches for solving the VIP is the extragradient
method put forward by Korpelevich [1] in 1976, i.e., for any initial point u0 ∈ C, let {ul} be
the sequence constructed below

⎧

⎨

⎩

vl = PC(ul – �Aul),

ul+1 = PC(ul – �Avl) ∀l ≥ 0,
(1.2)

where � ∈ (0, 1
L ) and L is Lipschitz constant of A. Whenever VI(C, A) �= ∅, the sequence

{ul} converges weakly to a point in VI(C, A). At present, the vast literature on Korpele-
vich’s extragradient approach shows that many authors have paid great attention to it and
enhanced it in various ways; see, e.g., [2–26] and the references therein.

Suppose that B1, B2 : C → H are two nonlinear operators. Consider the following prob-
lem of finding (u∗, v∗) ∈ C × C such that

⎧

⎨

⎩

〈μ1B1v∗ + u∗ – v∗, w – u∗〉 ≥ 0 ∀w ∈ C,

〈μ2B2u∗ + v∗ – u∗, w – v∗〉 ≥ 0 ∀w ∈ C,
(1.3)

with constants μ1,μ2 > 0. Problem (1.3) is called a general system of variational inequali-
ties (GSVI). Note that GSVI (1.3) can be transformed into the fixed-point problem below.

Lemma 1.1 ([6]) For given x∗, y∗ ∈ C, (x∗, y∗) is a solution of GSVI (1.3) if and only if x∗ ∈
Fix(G), where Fix(G) is the fixed point set of the mapping G := PC(I – μ1B1)PC(I – μ2B2),
and y∗ = PC(I – μ2B2)x∗.

Suppose that the mappings B1, B2 are α-inverse-strongly monotone and β-inverse-
strongly monotone, respectively. Let f : C → C be a contraction with coefficient δ ∈ [0, 1)
and F : C → H be κ-Lipschitzian and η-strongly monotone with constants κ ,η > 0 such
that δ < ζ := 1 –

√

1 – ρ(2η – ρκ2) ∈ (0, 1] for ρ ∈ (0, 2η

κ2 ). Let S : C → C be an asymp-
totically nonexpansive mapping with a sequence {θn}. Let {Sl}∞l=1 be a countable fam-
ily of ς -uniformly Lipschitzian pseudocontractive self-mappings on C such that Ω :=
⋂∞

l=0 Fix(Sl) ∩ Fix(G) �= ∅ where S0 := S and Fix(G) is the fixed-point set of the mapping
G := PC(I – μ1B1)PC(I – μ2B2) for μ1 ∈ (0, 2α) and μ2 ∈ (0, 2β). Recently, Ceng and Wen
[21] proposed the hybrid extragradient-like implicit method for finding an element of Ω ,
that is, for any initial point x1 ∈ C, let {xl} be the sequence constructed below

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ul = βlxl + (1 – βl)Slul,

vl = PC(ul – μ2B2ul),

yl = PC(vl – μ1B1vl),

xl+1 = PC[αlf (xl) + (I – αlρF)Slyl] ∀l ≥ 1,

(1.4)

where {αl} and {βl} are sequences in (0, 1] such that
(i)

∑∞
l=1 |αl+1 – αl| < ∞ and

∑∞
l=1 αl < ∞;

(ii) liml→∞ αl = 0 and liml→∞ θl
αl

= 0;
(iii)

∑∞
l=1 |βl+1 – βl| < ∞ and 0 < lim infl→∞ βl ≤ lim supl→∞ βl < 1;
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(iv)
∑∞

l=1 ‖Sl+1yl – Slyl‖ < ∞.
Under appropriate assumptions imposed on {Sl}∞l=1, it was proved in [21] that the sequence
{xl} converges strongly to an element x∗ ∈ Ω . In 2019, Thong and Hieu [14] proposed the
inertial subgradient extragradient method with line-search process for solving the mono-
tone VIP with Lipschitz continuous A and the fixed-point problem (FPP) of a quasinonex-
pansive mapping S with a demiclosedness property. Assume that Ω := Fix(S) ∩ VI(C, A) �=
∅. Let the sequences {αl} ⊂ [0, 1] and {βl} ⊂ (0, 1) be given.

Algorithm 1.1 ([14]) Initialization: Given γ > 0, � ∈ (0, 1), μ ∈ (0, 1), let x0, x1 ∈ H be
arbitrary.

Iterative Steps: Compute xl+1 below:
Step 1. Set wl = xl + αl(xl – xl–1) and calculate vl = PC(wl – τlAwl), where τl is chosen to

be the largest τ ∈ {γ ,γ �,γ �2, . . . } satisfying τ‖Awl – Avl‖ ≤ μ‖wl – vl‖.
Step 2. Calculate zl = PCl (wl – τlAvl) with Cl := {v ∈ H : 〈wl – τlAwl – vl, v – vl〉 ≤ 0}.
Step 3. Calculate xl+1 = (1 – βl)wl + βlSzl . If wl = zl = xl+1 then wl ∈ Ω .
Again set l := l + 1 and go to Step 1.

Under suitable assumptions, it was proven in [14] that {xl} converges weakly to an el-
ement of Ω . Very recently, Ceng and Shang [22] introduced the hybrid inertial subgra-
dient extragradient method with line-search process for solving the pseudomonotone
VIP with Lipschitz continuous A and the common fixed-point problem (CFPP) of finitely
many nonexpansive mappings {Sl}N

l=1 and an asymptotically nonexpansive mapping S in
a real Hilbert space H . Assume that Ω :=

⋂N
l=0 Fix(Sl) ∩ VI(C, A) �= ∅ with S0 := S. Given

a contraction f : H → H with constant δ ∈ [0, 1), and an η-strongly monotone and κ-
Lipschitzian mapping F : H → H with δ < ζ := 1 –

√

1 – ρ(2η – ρκ2) for ρ ∈ (0, 2η/κ2), let
{αl} ⊂ [0, 1] and {βl}, {γl} ⊂ (0, 1) with βl + γl < 1 ∀l ≥ 1. Besides, one writes Sl := SlmodN

for integer l ≥ 1 with the mod function taking values in the set {1, 2, . . . , N}, i.e., whenever
l = jN + q for some integers j ≥ 0 and 0 ≤ q < N , one has that Sl = SN if q = 0 and Sl = Sq if
0 < q < N .

Algorithm 1.2 ([22]) Initialization: Given γ > 0, � ∈ (0, 1), μ ∈ (0, 1), let x0, x1 ∈ H be
arbitrary.

Iterative Steps: Calculate xl+1 below:
Step 1. Set wl = Slxl +αl(Slxl – Slxl–1) and calculate vl = PC(wl –τlAwl), where τl is chosen

to be the largest τ ∈ {γ ,γ �,γ �2, . . . } satisfying τ‖Awl – Avl‖ ≤ μ‖wl – vl‖.
Step 2. Calculate zl = PCl (wl – τlAvl) with Cl := {v ∈ H : 〈wl – τlAwl – vl, v – vl〉 ≤ 0}.
Step 3. Calculate xl+1 = βlf (xl) + γlxl + ((1 – γl)I – βlρF)Slzl .
Again set l := l + 1 and go to Step 1.

Under appropriate assumptions, it was proven in [22] that if Slzl – Sl+1zl → 0, then
{xl} converges strongly to x∗ ∈ Ω if and only if xl – xl+1 → 0 and xl – vl → 0 as l → ∞.
In a real Hilbert space H , we always assume that the CFPP and HVI denote a common
fixed-point problem of a countable family of uniformly Lipschitzian pseudocontractive
mappings {Sl}∞l=1 and an asymptotically nonexpansive mapping S0 := S and a hierarchical
variational inequality, respectively. Inspired by the above research works, we design two
Mann implicit composite subgradient extragradient algorithms with line-search process
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for finding a common solution of the CFPP of {Sl}∞l=0, the pseudomonotone VIP with Lips-
chitz continuous A and the GSVI for two inverse-strongly monotone B1, B2. The suggested
algorithms are based on the viscosity approximation method, subgradient extragradient
method with line-search process, and Mann implicit iteration method. Under mild as-
sumptions, we prove the strong convergence of the suggested algorithms to a common
solution of the CFPP, GSVI, and VIP, which solves a certain HVI defined on their com-
mon solution set. Finally, using the main results, we deal with the CFPP, GSVI, and VIP in
an illustrated example.

2 Preliminaries
Let the nonempty set C be convex and closed in a real Hilbert space H . Given a sequence
{υi} ⊂ H , let υi → υ (resp., υi ⇀ υ) indicate the strong (resp., weak) convergence of {υi}
to υ . An operator S : C → H is called

(a) L-Lipschitz continuous (or L-Lipschitzian) if ∃L > 0 such that ‖Su – Sυ‖ ≤ L‖u – υ‖
∀u, υ ∈ C;

(b) pseudocontractive if 〈Su – Sυ, u – υ〉 ≤ ‖u – υ‖2 ∀u, υ ∈ C;
(c) pseudomonotone if 〈Su,υ – u〉 ≥ 0 ⇒ 〈Sυ,υ – u〉 ≥ 0 ∀u, υ ∈ C;
(d) α-strongly monotone if ∃α > 0 such that 〈Su – Sυ, u – υ〉 ≥ α‖u – υ‖2 ∀u, υ ∈ C;
(e) β-inverse-strongly monotone if ∃β > 0 such that 〈Su – Sυ, u – υ〉 ≥ β‖Su – Sυ‖2 ∀u,

υ ∈ C;
(f ) sequentially weakly continuous if ∀{υi} ⊂ C, the following relation holds:

υi ⇀ υ ⇒ Sυi ⇀ Sυ .
It is clear that each monotone mapping is pseudomonotone, but the converse is not true.

It is known that ∀u ∈ H , ∃! (nearest point) PCu ∈ C such that ‖u – PCu‖ ≤ ‖u – υ‖ ∀υ ∈ C;
PC is refereed to as a metric (or nearest point) projection of H onto C. Recall that the
following conclusions hold (see [27]):

(a) 〈u – υ, PCu – PCυ〉 ≥ ‖PCu – PCυ‖2 ∀u, υ ∈ H ;
(b) w = PCu ⇔ 〈u – w,υ – w〉 ≤ 0 ∀u ∈ H , υ ∈ C;
(c) ‖u – υ‖2 ≥ ‖u – PCu‖2 + ‖υ – PCu‖2 ∀u ∈ H , v ∈ C;
(d) ‖u – υ‖2 = ‖u‖2 – ‖υ‖2 – 2〈u – υ,υ〉 ∀u, υ ∈ H ;
(e) ‖su + (1 – s)υ‖2 = s‖u‖2 + (1 – s)‖υ‖2 – s(1 – s)‖u – υ‖2 ∀u, υ ∈ H , s ∈ [0, 1].
The following concept will be used in the convergence analysis of the proposed algo-

rithms.

Definition 2.1 ([21]) Let {Sl}∞l=1 be a sequence of continuous pseudocontractive self-
mappings on C. Then {Sl}∞l=1 is called a countable family of ς -uniformly Lipschitzian pseu-
docontractive self-mappings on C if there exists a constant ς > 0 such that each Sl is ς -
Lipschitz continuous.

The following propositions and lemmas will be needed for demonstrating our main re-
sults.

Proposition 2.1 ([28]) Let C be a nonempty, closed, convex subset of a Banach space X.
Suppose that {Sl}∞l=1 is a countable family of self-mappings on C such that

∑∞
l=1 sup{‖Slx –

Sl+1x‖ : x ∈ C} < ∞. Then for each y ∈ C, {Sly} converges strongly to some point of C.
Moreover, let Ŝ be a self-mapping on C, defined by Ŝy = liml→∞ Sly for all y ∈ C. Then
liml→∞ sup{‖Sx – Slx‖ : x ∈ C} = 0.



Ceng et al. Journal of Inequalities and Applications         (2022) 2022:78 Page 5 of 28

Proposition 2.2 ([29]) Let C be a nonempty, closed, convex subset of a Banach space X
and T : C → C be a continuous and strong pseudocontraction mapping. Then, T has a
unique fixed point in C.

The following inequality is an immediate consequence of the subdifferential inequality
of the function 1

2‖ · ‖2:

‖u + υ‖2 ≤ ‖u‖2 + 2〈υ, u + υ〉 ∀u,υ ∈ H .

Lemma 2.1 Let the mapping B : C → H be β-inverse-strongly monotone. Then, for a given
λ ≥ 0,

∥
∥(I – λB)u – (I – λB)υ

∥
∥

2 ≤ ‖u – υ‖2 – λ(2α – λ)‖Bu – Bυ‖2.

In particular, if 0 ≤ λ ≤ 2α, then I – λB is nonexpansive.

Using Lemma 2.1, we immediately derive the following lemma.

Lemma 2.2 Let the mappings B1, B2 : C → H be α-inverse-strongly monotone and β-
inverse-strongly monotone, respectively. Let the mapping G : C → C be defined as G :=
PC(I – μ1B1)PC(I – μ2B2). If 0 ≤ μ1 ≤ 2α and 0 ≤ μ2 ≤ 2β , then G : C → C is nonexpan-
sive.

Lemma 2.3 ([6, Lemma 2.1]) Let A : C → H be pseudomonotone and continuous. Then
u ∈ C is a solution to the VIP 〈Au,υ – u〉 ≥ 0 ∀υ ∈ C if and only if 〈Aυ,υ – u〉 ≥ 0 ∀υ ∈ C.

Lemma 2.4 ([30]) Let {al} be a sequence of nonnegative numbers satisfying the following
conditions: al+1 ≤ (1 – λl)al + λlγl ∀l ≥ 1, where {λl} and {γl} are sequences of real numbers
such that (i) {λl} ⊂ [0, 1] and

∑∞
l=1 λl = ∞, and (ii) lim supl→∞ γl ≤ 0 or

∑∞
l=1 |λlγl| < ∞.

Then liml→∞ al = 0.

Lemma 2.5 ([31]) Let X be a Banach space which admits a weakly continuous duality
mapping, C be a nonempty, closed, convex subset of X, and T : C → C be an asymptotically
nonexpansive mapping with Fix(T) �= ∅. Then I – T is demiclosed at zero, i.e., if {uk} is a
sequence in C such that uk ⇀ u ∈ C and (I – T)uk → 0, then (I – T)u = 0, where I is the
identity mapping of X.

The following lemmas are crucial to the convergence analysis of the proposed algo-
rithms.

Lemma 2.6 ([25]) Let {�m} be a sequence of real numbers that does not decrease at infinity
in the sense that there exists a subsequence {�mk } of {�m} which satisfies �mk < �mk +1 for
each integer k ≥ 1. Define the sequence {τ (m)}m≥m0 of integers by

τ (m) = max{k ≤ m : �k < �k+1},

where integer m0 ≥ 1 is such that {k ≤ m0 : �k < �k+1} �= ∅. Then the following hold:
(i) τ (m0) ≤ τ (m0 + 1) ≤ · · · and τ (m) → ∞;

(ii) �τ (m) ≤ �τ (m)+1 and �m ≤ �τ (m)+1 ∀m ≥ m0.
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3 Main results
In this section, let the feasible set C be a nonempty, closed, convex subset of a real Hilbert
space H , and assume always that the following conditions hold:

• A is pseudomonotone and L-Lipschitzian self-mapping on H such that
‖Au‖ ≤ lim infn→∞ ‖Aυn‖ for each {υn} ⊂ C with υn ⇀ u.

• B1, B2 : C → H are α-inverse-strongly monotone and β-inverse-strongly monotone,
respectively, and f : C → C is a δ-contraction with constant δ ∈ [0, 1).

• {Sn}∞n=1 is a countable family of ς -uniformly Lipschitzian pseudocontractive
self-mappings on C and S : H → C is an asymptotically nonexpansive mapping with a
sequence {θn}.

• Ω =
⋂∞

n=0 Fix(Sn) ∩ Fix(G) ∩ VI(C, A) �= ∅ with S0 := S, and Fix(G) is the fixed point set
of mapping G = PC(I – μ1B1)PC(I – μ2B2) for 0 < μ1 < 2α and 0 < μ2 < 2β .

•
∑∞

n=1 supx∈D ‖Snx – Sn+1x‖ < ∞ for any bounded subset D of C and
Fix(Ŝ) =

⋂∞
n=1 Fix(Sn) where Ŝ : C → C is defined as Ŝx = limn→∞ Snx ∀x ∈ C.

• {σn} ⊂ (0, 1] and {αn}, {βn}, {γn} ⊂ (0, 1) with αn + βn + γn = 1 ∀n ≥ 1 such that:
(i)

∑∞
n=1 αn = ∞, limn→∞ αn = 0 and limn→∞ θn

αn
= 0;

(ii) 0 < lim infn→∞ σn ≤ lim supn→∞ σn < 1;
(iii) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1.

Algorithm 3.1 Initialization: Given γ > 0, μ ∈ (0, 1), � ∈ (0, 1), pick an initial x1 ∈ C arbi-
trarily.

Iterative steps: Compute xn+1 below:
Step 1. Calculate un = σnxn + (1 – σn)Snun and wn = Gun, and set yn = PC(wn – τnAwn),

where τn is chosen to be the largest τ ∈ {γ ,γ �,γ �2, . . . } satisfying

τ‖Awn – Ayn‖ ≤ μ‖wn – yn‖. (3.1)

Step 2. Calculate zn = PCn (wn – τnAyn) with Cn := {y ∈ H : 〈wn – τnAwn – yn, y – yn〉 ≤ 0}.
Step 3. Calculate

xn+1 = αnf (xn) + βnxn + γnSnzn. (3.2)

Again put n := n + 1 and return to Step 1.

Lemma 3.1 The Armijo-like search rule (3.1) is well defined, and the following inequality
holds: min{γ ,μ�/L} ≤ τn ≤ γ .

Proof Thanks to ‖Awn – APC(wn – γ �mAwn)‖ ≤ L‖wn – PC(wn – γ �mAwn)‖, we know that
(3.1) holds for each γ �m ≤ μ

L and so τn is well defined. Obviously, τn ≤ γ . In the case of
τn = γ , the conclusion is true. In the case of τn < γ , from (3.1) one gets ‖Awn – APC(wn –
τn
�

Awn)‖ > μ

(τn/�)‖wn – PC(wn – τn
�

Awn)‖, which hence leads to τn > μ�/L. �

Lemma 3.2 Let the sequences {un}, {wn}, {yn}, {zn} be constructed by Algorithm 3.1. Then
for each p ∈ Ω , one has

‖zn – p‖2 ≤ ‖un – p‖2 – (1 – μ)
[‖yn – zn‖2 + ‖yn – wn‖2]

– μ2(2β – μ2)‖B2un – B2p‖2 – μ1(2α – μ1)‖B1υn – B1q‖2,
(3.3)

where q = PC(p – μ2B2p) and υn = PC(un – μ2B2un).
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Proof Define Tnx := βnxn + (1 – βn)Snx, x ∈ C, for each n ≥ 0. Then Tn is continuous by
the continuity of Sn and

〈Tnx – Tny, x – y〉 = (1 – βn)〈Snx – Sny, x – y〉
≤ (1 – βn)‖x – y‖2

≤ β̄n‖x – y‖2,

where β̄n := 1 – βn ∈ (0, 1) and this implies that Tn is a strong pseudocontractive mapping.
Hence, by Proposition 2.2, there exists a unique element un ∈ C such that for each n ≥ 0,

un = βnxn + (1 – βn)Snun.

Observe that for each p ∈ Ω ⊂ C ⊂ Cn,

‖zn – p‖2 =
∥
∥PCn (wn – τnAyn) – PCn p

∥
∥

2

≤ 〈zn – p, wn – τnAyn – p〉

=
1
2
(‖zn – p‖2 + ‖wn – p‖2 – ‖zn – wn‖2) – τn〈zn – p, Ayn〉,

which hence yields

‖zn – p‖2 ≤ ‖wn – p‖2 – ‖zn – wn‖2 – 2τn〈zn – p, Ayn〉.

Owing to zn = PCn (wn – τnAyn) with Cn := {y ∈ H : 〈wn – τnAwn – yn, y – yn〉 ≤ 0}, one gets
〈wn – τnAwn – yn, zn – yn〉 ≤ 0. Combining (3.1) and the pseudomonotonicity of A guaran-
tees that

‖zn – p‖2 ≤ ‖wn – p‖2 – ‖zn – wn‖2 – 2τn〈Ayn, yn – p + zn – yn〉
≤ ‖wn – p‖2 – ‖zn – wn‖2 – 2τn〈Ayn, zn – yn〉
= ‖wn – p‖2 – ‖zn – yn‖2 – ‖yn – wn‖2 + 2〈wn – τnAyn – yn, zn – yn〉
= ‖wn – p‖2 – ‖zn – yn‖2 – ‖yn – wn‖2 + 2〈wn – τnAwn – yn, zn – yn〉

+ 2τn〈Awn – Ayn, zn – yn〉
≤ ‖wn – p‖2 – ‖zn – yn‖2 – ‖yn – wn‖2 + 2μ‖wn – yn‖‖zn – yn‖
≤ ‖wn – p‖2 – ‖zn – yn‖2 – ‖yn – wn‖2 + μ

(‖wn – yn‖2 + ‖zn – yn‖2)

= ‖wn – p‖2 – (1 – μ)
[‖yn – zn‖2 + ‖yn – wn‖2].

(3.4)

Note that q = PC(p – μ2B2p), υn = PC(un – μ2B2un), and wn = PC(υn – μ1B1υn). Then wn =
Gun. By Lemma 2.1, one has

‖υn – q‖2 ≤ ‖un – p‖2 – μ2(2β – μ2)‖B2un – B2p‖2

and

‖wn – p‖2 ≤ ‖υn – q‖2 – μ1(2α – μ1)‖B1υn – B1q‖2.
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Combining the last two inequalities, one gets

‖wn – p‖2 ≤ ‖un – p‖2 – μ2(2β – μ2)‖B2un – B2p‖2 – μ1(2α – μ1)‖B1υn – B1q‖2.

This, together with (3.4), implies that inequality (3.3) holds. �

Lemma 3.3 Suppose that {un}, {xn} are bounded sequences constructed by Algorithm 3.1.
Assume that xn – xn+1 → 0, un – Gun → 0, and Snxn – Sn+1xn → 0, and suppose there exists
a subsequence {xnk } ⊂ {xn} such that xnk ⇀ z ∈ C. Then z ∈ Ω .

Proof From Algorithm 3.1, we obtain that for each p ∈ Ω ,

‖un – p‖2 = σn〈xn – p, un – p〉 + (1 – σn)〈Snun – p, un – p〉
≤ σn〈xn – p, un – p〉 + (1 – σn)‖un – p‖2,

which hence yields

‖un – p‖2 ≤ 〈xn – p, un – p〉

=
1
2
[‖xn – p‖2 + ‖un – p‖2 – ‖xn – un‖2].

This immediately implies that

‖un – p‖2 ≤ ‖xn – p‖2 – ‖xn – un‖2. (3.5)

So it follows from (3.3) and the last inequality that

‖zn – p‖2 ≤ ‖un – p‖2 – (1 – μ)
[‖yn – zn‖2 + ‖yn – wn‖2]

≤ ‖xn – p‖2 – ‖xn – un‖2 – (1 – μ)
[‖yn – zn‖2 + ‖yn – wn‖2],

which, together with Algorithm 3.1, leads to

‖xn+1 – p‖2

=
∥
∥αn

(

f (xn) – p
)

+ βn(xn – p) + γn
(

Snzn – p
)∥
∥

2

≤ αn
∥
∥f (xn) – p

∥
∥

2 + βn‖xn – p‖2 + γn
∥
∥Snzn – p

∥
∥

2 – βnγn
∥
∥xn – Snzn

∥
∥

2

≤ αn
∥
∥f (xn) – p

∥
∥

2 + βn‖xn – p‖2 + γn(1 + θn)2‖zn – p‖2 – βnγn
∥
∥xn – Snzn

∥
∥

2

≤ αn
∥
∥f (xn) – p

∥
∥

2 + βn‖xn – p‖2 + γn(1 + θn)2{‖xn – p‖2 – ‖xn – un‖2

– (1 – μ)
[‖yn – zn‖2 + ‖yn – wn‖2]} – βnγn

∥
∥xn – Snzn

∥
∥

2

≤ αn
∥
∥f (xn) – p

∥
∥

2 + ‖xn – p‖2 + θn(2 + θn)‖xn – p‖2 – γn(1 + θn)2{‖xn – un‖2

+ (1 – μ)
[‖yn – zn‖2 + ‖yn – wn‖2]} – βnγn

∥
∥xn – Snzn

∥
∥

2.
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This immediately ensures that

γn(1 + θn)2{‖xn – un‖2 + (1 – μ)
[‖yn – zn‖2 + ‖yn – wn‖2]} + βnγn

∥
∥xn – Snzn

∥
∥

2

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + αn
∥
∥f (xn) – p

∥
∥

2 + θn(2 + θn)‖xn – p‖2

≤ ‖xn – xn+1‖
(‖xn – p‖ + ‖xn+1 – p‖) + αn

∥
∥f (xn) – p

∥
∥

2 + θn(2 + θn)‖xn – p‖2.

Note that limn→∞ αn = 0 and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Thus we know that
lim infn→∞ γn = lim infn→∞(1 – αn – βn) = 1 – lim supn→∞ βn > 0. Since θn → 0, xn – xn+1 →
0 and μ ∈ (0, 1), by the boundedness of {xn}, we get

lim
n→∞‖xn – un‖ = lim

n→∞‖yn – zn‖ = lim
n→∞‖yn – wn‖ = lim

n→∞
∥
∥xn – Snzn

∥
∥ = 0. (3.6)

So it follows that ‖wn – xn‖ ≤ ‖Gun – un‖ + ‖un – xn‖ → 0 (n → ∞),

‖zn – xn‖ ≤ ‖zn – wn‖ + ‖wn – xn‖
≤ ‖zn – yn‖ + ‖yn – wn‖ + ‖wn – xn‖ → 0 (n → ∞),

and ‖xn – yn‖ ≤ ‖xn – zn‖ + ‖zn – yn‖ → 0 (n → ∞).
We show that limn→∞ ‖xn – Sxn‖ = 0. In fact, using the asymptotical nonexpansivity of

S, one obtains that

‖xn – Sxn‖ ≤ ∥
∥xn – Snzn

∥
∥ +

∥
∥Snzn – Snxn

∥
∥ +

∥
∥Snxn – Sn+1xn

∥
∥

+
∥
∥Sn+1xn – Sn+1zn

∥
∥ +

∥
∥Sn+1zn – Sxn

∥
∥

≤ ∥
∥xn – Snzn

∥
∥ + (1 + θn)‖zn – xn‖ +

∥
∥Snxn – Sn+1xn

∥
∥

+ (1 + θn+1)‖xn – zn‖ + (1 + θ1)
∥
∥Snzn – xn

∥
∥

= (2 + θ1)
∥
∥xn – Snzn

∥
∥ + (2 + θn + θn+1)‖zn – xn‖ +

∥
∥Snxn – Sn+1xn

∥
∥.

Since xn – Snzn → 0, xn – zn → 0 and Snxn – Sn+1xn → 0, we obtain

lim
n→∞‖xn – Sxn‖ = 0. (3.7)

We show that limn→∞ ‖xn – S̄xn‖ = 0 where S̄ := (2I – Ŝ)–1. In fact, noticing un = σnxn +
(1 – σn)Snun and xn – un → 0, we get

(1 – σn)‖Snun – un‖ = σn‖xn – un‖ ≤ ‖xn – un‖ → 0 (n → ∞),

which, together with 0 < lim infn→∞(1 – σn), yields

lim
n→∞‖Snun – un‖ = 0.

Since {Sn}∞n=1 is ς -uniformly Lipschitzian on C, we deduce from xn – un → 0 and Snun –
un → 0 that

‖Snxn – xn‖ ≤ ‖Snxn – Snun‖ + ‖Snun – un‖ + ‖un – xn‖
≤ (ς + 1)‖un – xn‖ + ‖Snun – un‖ → 0 (n → ∞).
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It is clear that Ŝ : C → C is pseudocontractive and ς -Lipschitzian where Ŝx = limn→∞ Snx
∀x ∈ C. We claim that limn→∞ ‖Ŝxn – xn‖ = 0. Using the boundedness of {xn} and putting
D = conv{xn : n ≥ 1} (the closed convex hull of the set {xn : n ≥ 1}), by the hypothesis, we
get

∑∞
n=1 supx∈D ‖Snx – Sn+1x‖ < ∞. So, by Proposition 2.1, we have limn→∞ supx∈D ‖Snx –

Ŝx‖ = 0, which immediately arrives at

lim
n→∞‖Snxn – Ŝxn‖ = 0.

Consequently,

‖xn – Ŝxn‖ ≤ ‖xn – Snxn‖ + ‖Snxn – Ŝxn‖ → 0 (n → ∞).

Now, let us show that if we define S̄ := (2I – Ŝ)–1, then S̄ : C → C is nonexpansive, Fix(S̄) =
Fix(Ŝ) =

⋂∞
n=1 Fix(Sn), and limn→∞ ‖xn – S̄xn‖ = 0. As a matter of fact, it is known that S̄

is nonexpansive and Fix(S̄) = Fix(Ŝ) =
⋂∞

n=1 Fix(Sn) as a consequence of [32, Theorem 6].
From xn – Ŝxn → 0, it follows that

‖xn – S̄xn‖ =
∥
∥S̄S̄–1xn – S̄xn

∥
∥

≤ ∥
∥S̄–1xn – xn

∥
∥ =

∥
∥(2I – Ŝ)xn – xn

∥
∥ = ‖xn – Ŝxn‖ → 0 (n → ∞).

(3.8)

Next, let us show z ∈ VI(C, A). Indeed, noticing wn – xn → 0 and xnk ⇀ z, we have
wnk ⇀ z. We consider two cases below.

If Az = 0, then it is clear that z ∈ VI(C, A) because 〈Az, x – z〉 ≥ 0 ∀x ∈ C.
Assume that Az �= 0. Since wnk ⇀ z as k → ∞, utilizing the assumption on A, instead of

the sequentially weak continuity of A, we get 0 < ‖Az‖ ≤ lim infk→∞ ‖Awnk ‖. So, we could
suppose that ‖Awnk ‖ �= 0 ∀k ≥ 1. Moreover, from yn = PC(wn – τnAwn), we have 〈wn –
τnAwn – yn, x – yn〉 ≤ 0 ∀x ∈ C, and hence

1
τn

〈wn – yn, x – yn〉 + 〈Awn, yn – wn〉 ≤ 〈Awn, x – wn〉 ∀x ∈ C. (3.9)

According to the Lipschitz continuity of A, one knows that {Awn} is bounded. Note that
{yn} is bounded as well. Using Lemma 3.1, from (3.9) we get lim infk→∞〈Awnk , x – wnk 〉 ≥ 0
∀x ∈ C.

To show that z ∈ VI(C, A), we now choose a sequence {εk} ⊂ (0, 1) satisfying εk ↓ 0 as
k → ∞. For each k ≥ 1, we denote by mk the smallest positive integer such that

〈Awnj , x – wnj〉 + εk ≥ 0 ∀j ≥ mk . (3.10)

Since {εk} is decreasing, it can be readily seen that {mk} is increasing. Noticing that
Awmk �= 0 ∀k ≥ 1 (due to {Awmk } ⊂ {Awnk }), we set �mk = Awmk

‖Awmk ‖2 , we get 〈Awmk ,�mk 〉 = 1
∀k ≥ 1. So, from (3.10) we get 〈Awmk , x + εk�mk – wmk 〉 ≥ 0 ∀k ≥ 1. Again from the pseu-
domonotonicity of A, we have 〈A(x+εk�mk ), x+εk�mk –wmk 〉 ≥ 0 ∀k ≥ 1. This immediately
leads to

〈Ax, x – wmk 〉 ≥ 〈

Ax – A(x + εk�mk ), x + εk�mk – wmk

〉

– εk〈Ax,�mk 〉 ∀k ≥ 1. (3.11)
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We claim that limk→∞ εk�mk = 0. Note that {wmk } ⊂ {wnk } and εk ↓ 0 as k → ∞. So
it follows that 0 ≤ lim supk→∞ ‖εk�mk ‖ = lim supk→∞

εk
‖Awmk ‖ ≤ lim supk→∞ εk

lim infk→∞ ‖Awnk ‖ = 0. Hence
we get εk�mk → 0 as k → ∞. Thus, letting k → ∞, we deduce that the right-hand side of
(3.11) tends to zero by the Lipschitz continuity of A, the boundedness of {wmk }, {�mk } and
the limit limk→∞ εk�mk = 0. Therefore, we get 〈Ax, x – z〉 = lim infk→∞〈Ax, x – wmk 〉 ≥ 0
∀x ∈ C. By Lemma 2.3, we have z ∈ VI(C, A).

Next we show that z ∈ Ω . In fact, from xn – un → 0 and xnk ⇀ z, we get unk ⇀ z. Note
that the condition un – Gun → 0 guarantees unk – Gunk → 0. From Lemma 2.5, it follows
that I – G is demiclosed at zero. Hence we get (I – G)z = 0, i.e., z ∈ Fix(G). In the meantime,
let us show that z ∈ ⋂∞

i=0 Fix(Si). Again from Lemma 2.5, we know that I – S and I – S̄ are
demiclosed at zero. Noticing xnk – Sxnk → 0 (due to (3.7)) and xnk – S̄xnk → 0 (due to
(3.8)), we deduce from xnk ⇀ z that z ∈ Fix(S) and z ∈ Fix(S̄) =

⋂∞
i=1 Fix(Si). Consequently,

z ∈ ⋂∞
i=0 Fix(Si) ∩ Fix(G) ∩ VI(C, A) = Ω with S0 := S. This completes the proof. �

Theorem 3.1 Let {xn} be the sequence constructed in Algorithm 3.1. Then xn → x∗ ∈ Ω ,
provided Snxn – Sn+1xn → 0, where x∗ ∈ Ω is the unique solution to the HVI, 〈(I – f )x∗, p –
x∗〉 ≥ 0 ∀p ∈ Ω .

Proof First of all, since 0 < lim infn→∞ σn ≤ lim supn→∞ σn < 1 and limn→∞ θn
αn

= 0, we may
assume, without loss of generality, that {σn} ⊂ [a, b] ⊂ (0, 1) and θn ≤ αn(1–δ)

2 ∀n ≥ 1. We
claim that PΩ ◦ f : C → C is a contraction. In fact, it is clear that PΩ ◦ f is a contraction.
Banach’s contraction mapping principle guarantees that PΩ ◦ f has a unique fixed point,
say x∗ ∈ C, i.e., x∗ = PΩ f (x∗). Thus, there exists a unique solution x∗ ∈ Ω =

⋂∞
i=0 Fix(Si) ∩

Fix(G) ∩ VI(C, A) of the HVI

〈

(I – f )x∗, p – x∗〉 ≥ 0 ∀p ∈ Ω . (3.12)

Next we divide the rest of the proof into several steps.
Step 1. We show that {xn} is bounded. In fact, take an arbitrary p ∈ Ω =

⋂∞
i=0 Fix(Si) ∩

Fix(G) ∩ VI(C, A). Then Sp = p, Snp = p ∀n ≥ 1, Gp = p and (3.3) holds, i.e.,

‖zn – p‖2 ≤ ‖un – p‖2 – (1 – μ)
[‖yn – zn‖2 + ‖yn – wn‖2]

– μ2(2β – μ2)‖B2un – B2p‖2 – μ1(2α – μ1)‖B1υn – B1q‖2,
(3.13)

where q = PC(p – μ2B2p) and υn = PC(un – μ2B2un). Again from (3.4) and (3.5), we deduce
that

‖zn – p‖ ≤ ‖wn – p‖ = ‖Gun – p‖ ≤ ‖un – p‖ ≤ ‖xn – p‖ ∀n ≥ 1. (3.14)

Thus, using (3.14) and αn + βn + γn = 1 ∀n ≥ 1, from the asymptotical nonexpansivity of S,
we obtain

‖xn+1 – p‖ ≤ αn
∥
∥f (xn) – p

∥
∥ + βn‖xn – p‖ + γn

∥
∥Snzn – p

∥
∥

≤ αn
(∥
∥f (xn) – f (p)

∥
∥ +

∥
∥f (p) – p

∥
∥
)

+ βn‖xn – p‖ + γn(1 + θn)‖zn – p‖
≤ αnδ‖xn – p‖ + αn

∥
∥f (p) – p

∥
∥ + βn‖xn – p‖ + (γn + θn)‖xn – p‖
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≤ αnδ‖xn – p‖ + αn
∥
∥f (p) – p

∥
∥ + (1 – αn)‖xn – p‖ +

αn(1 – δ)
2

‖xn – p‖

=
[

1 –
αn(1 – δ)

2

]

‖xn – p‖ + αn
∥
∥f (p) – p

∥
∥

=
[

1 –
αn(1 – δ)

2

]

‖xn – p‖ +
αn(1 – δ)

2
2‖f (p) – p‖

1 – δ

≤ max

{

‖xn – p‖,
2‖f (p) – p‖

1 – δ

}

.

By induction, we obtain ‖xn – p‖ ≤ max{‖x1 – p‖, 2‖f (p)–p‖
1–δ

} ∀n ≥ 1. Therefore, {xn} is
bounded, and so are the sequences {un}, {wn}, {yn}, {zn}, {f (xn)}, {Ayn}, {Snun}, {Snzn}.

Step 2. We show that

γn
{‖xn – un‖2 + (1 – μ)

[‖yn – zn‖2 + ‖yn – wn‖2] + μ2(2β – μ2)

× ‖B2un – B2p‖2 + μ1(2α – μ1)‖B1υn – B1q‖2}

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + θn(2 + θn)M0 + 2αnM0

(3.15)

and

γn
[‖un – υn + q – p‖2 + ‖υn – wn + p – q‖2]

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + 2μ2‖B2p – B2un‖‖υn – q‖
+ 2μ1‖B1q – B1υn‖‖wn – p‖ + θn(2 + θn)M0 + 2αnM0,

(3.16)

for some M0 > 0. In fact, using (3.5), (3.13), (3.14), and the convexity of the function φ(s) =
s2 ∀s ∈ R, we get

‖xn+1 – p‖2

=
∥
∥αn

(

f (xn) – f (p)
)

+ βn(xn – p) + γn
(

Snzn – p
)

+ αn
(

f (p) – p
)∥
∥

2

≤ ∥
∥αn

(

f (xn) – f (p)
)

+ βn(xn – p) + γn
(

Snzn – p
)∥
∥

2 + 2αn
〈

f (p) – p, xn+1 – p
〉

≤ αn
∥
∥f (xn) – f (p)

∥
∥

2 + βn‖xn – p‖2 + γn
∥
∥Snzn – p

∥
∥

2 + 2αn
〈

f (p) – p, xn+1 – p
〉

≤ αnδ‖xn – p‖2 + βn‖xn – p‖2 + γn(1 + θn)2‖zn – p‖2 + 2αn
〈

f (p) – p, xn+1 – p
〉

≤ αnδ‖xn – p‖2 + βn‖xn – p‖2 +
[

γn + θn(2 + θn)
]‖zn – p‖2 + 2αn

〈

f (p) – p, xn+1 – p
〉

≤ αnδ‖xn – p‖2 + βn‖xn – p‖2 + γn
{‖un – p‖2 – (1 – μ)

[‖yn – zn‖2 + ‖yn – wn‖2]

– μ2(2β – μ2)‖B2un – B2p‖2 – μ1(2α – μ1)‖B1υn – B1q‖2}

+ θn(2 + θn)‖xn – p‖2 + 2αn
〈

f (p) – p, xn+1 – p
〉

(3.17)

≤ αnδ‖xn – p‖2 + βn‖xn – p‖2 + γn
{‖xn – p‖2 – ‖xn – un‖2 – (1 – μ)

[‖yn – zn‖2

+ ‖yn – wn‖2] – μ2(2β – μ2)‖B2un – B2p‖2 – μ1(2α – μ1)‖B1υn – B1q‖2}

+ θn(2 + θn)‖xn – p‖2 + 2αn
〈

f (p) – p, xn+1 – p
〉

=
[

1 – αn(1 – δ)
]‖xn – p‖2 – γn

{‖xn – un‖2 + (1 – μ)
[‖yn – zn‖2 + ‖yn – wn‖2]

+ μ2(2β – μ2)‖B2un – B2p‖2 + μ1(2α – μ1)‖B1υn – B1q‖2}
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+ θn(2 + θn)‖xn – p‖2 + 2αn
〈

f (p) – p, xn+1 – p
〉

≤ ‖xn – p‖2 – γn
{‖xn – un‖2 + (1 – μ)

[‖yn – zn‖2 + ‖yn – wn‖2]

+ μ2(2β – μ2)‖B2un – B2p‖2 + μ1(2α – μ1)‖B1υn – B1q‖2}

+ θn(2 + θn)M0 + 2αnM0,

where supn≥1{‖xn – p‖2 + ‖f (p) – p‖‖xn – p‖} ≤ M0 for some M0 > 0. This ensures that
(3.15) holds.

On the other hand, by the firm nonexpansivity of PC we obtain that

‖wn – p‖2 ≤ 〈υn – q, wn – p〉 + μ1〈B1q – B1υn, wn – p〉

≤ 1
2
[‖υn – q‖2 + ‖wn – p‖2 – ‖υn – wn + p – q‖2]

+ μ1‖B1q – B1υn‖‖wn – p‖,

which hence gives

‖wn – p‖2 ≤ ‖υn – q‖2 – ‖υn – wn + p – q‖2 + 2μ1‖B1q – B1υn‖‖wn – p‖. (3.18)

In a similar way, we have

‖υn – q‖2 ≤ ‖un – p‖2 – ‖un – υn + q – p‖2 + 2μ2‖B2p – B2un‖‖υn – q‖. (3.19)

Substituting (3.19) for (3.18), from (3.14) we deduce that

‖wn – p‖2 ≤ ‖xn – p‖2 – ‖un – υn + q – p‖2 – ‖υn – wn + p – q‖2

+ 2μ2‖B2p – B2un‖‖υn – q‖ + 2μ1‖B1q – B1υn‖‖wn – p‖,

which, together with (3.14) and (3.17), leads to

‖xn+1 – p‖2 ≤ αnδ‖xn – p‖2 + βn‖xn – p‖2 +
[

γn + θn(2 + θn)
]‖zn – p‖2

+ 2αn
〈

f (p) – p, xn+1 – p
〉

≤ αnδ‖xn – p‖2 + βn‖xn – p‖2 + γn‖wn – p‖2 + θn(2 + θn)‖xn – p‖2

+ 2αn
〈

f (p) – p, xn+1 – p
〉

≤ αnδ‖xn – p‖2 + βn‖xn – p‖2

+ γn
{‖xn – p‖2 – ‖un – υn + q – p‖2 – ‖υn – wn + p – q‖2

+ 2μ2‖B2p – B2un‖‖υn – q‖ + 2μ1‖B1q – B1υn‖‖wn – p‖} (3.20)

+ θn(2 + θn)‖xn – p‖2 + 2αn
〈

f (p) – p, xn+1 – p
〉

≤ [

1 – αn(1 – δ)
]‖xn – p‖2 – γn

[‖un – υn + q – p‖2 + ‖υn – wn + p – q‖2]

+ 2μ2‖B2p – B2un‖‖υn – q‖ + 2μ1‖B1q – B1υn‖‖wn – p‖
+ θn(2 + θn)‖xn – p‖2 + 2αn

〈

f (p) – p, xn+1 – p
〉



Ceng et al. Journal of Inequalities and Applications         (2022) 2022:78 Page 14 of 28

≤ ‖xn – p‖2 – γn
[‖un – υn + q – p‖2 + ‖υn – wn + p – q‖2]

+ 2μ2‖B2p – B2un‖‖υn – q‖
+ 2μ1‖B1q – B1υn‖‖wn – p‖ + θn(2 + θn)M0 + 2αnM0.

This ensures that (3.16) holds.
Step 3. We show that

‖xn+1 – p‖2 ≤ [

1 – αn(1 – δ)
]‖xn – p‖2

+ αn(1 – δ)
{

2〈(f – I)p, xn+1 – p〉
1 – δ

+
θn

αn
· (2 + θn)M0

1 – δ

}

.

In fact, from (3.14) and (3.17), we have

‖xn+1 – p‖2

≤ αnδ‖xn – p‖2 + βn‖xn – p‖2 +
[

γn + θn(2 + θn)
]‖zn – p‖2

+ 2αn
〈

f (p) – p, xn+1 – p
〉

≤ αnδ‖xn – p‖2 + βn‖xn – p‖2 + γn‖xn – p‖2 + θn(2 + θn)M0

+ 2αn
〈

f (p) – p, xn+1 – p
〉

=
[

1 – αn(1 – δ)
]‖xn – p‖2 + θn(2 + θn)M0 + 2αn

〈

f (p) – p, xn+1 – p
〉

=
[

1 – αn(1 – δ)
]‖xn – p‖2

+ αn(1 – δ)
{

2〈(f – I)p, xn+1 – p〉
1 – δ

+
θn

αn
· (2 + θn)M0

1 – δ

}

.

(3.21)

Step 4. We show that {xn} converges strongly to the unique solution x∗ ∈ Ω of the HVI
(3.12). In fact, putting p = x∗, we deduce from (3.21) that

∥
∥xn+1 – x∗∥∥2 ≤ [

1 – αn(1 – δ)
]∥
∥xn – x∗∥∥2 + αn(1 – δ)

[
2〈(f – I)x∗, xn+1 – x∗〉

1 – δ

+
θn

αn
· (2 + θn)M0

1 – δ

]

.
(3.22)

Putting �n = ‖xn – x∗‖2, we show the convergence of {�n} to zero by the following two
cases.

Case 1. Suppose that there exists an integer n0 ≥ 1 such that {�n} is nonincreasing. Then
the limit limn→∞ �n = � < +∞ and limn→∞(�n – �n+1) = 0. Putting p = x∗ and q = y∗, from
(3.15) and (3.16) we obtain

γn
{‖xn – un‖2 + (1 – μ)

[‖yn – zn‖2 + ‖yn – wn‖2] + μ2(2β – μ2)

× ∥
∥B2un – B2x∗∥∥2 + μ1(2α – μ1)

∥
∥B1υn – B1y∗∥∥2}

≤ ∥
∥xn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2 + θn(2 + θn)M0 + 2αnM0

= �n – �n+1 + θn(2 + θn)M0 + 2αnM0

(3.23)
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and

γn
[∥
∥un – υn + y∗ – x∗∥∥2 +

∥
∥υn – wn + x∗ – y∗∥∥2]

≤ ∥
∥xn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2 + 2μ2

∥
∥B2x∗ – B2un

∥
∥
∥
∥υn – y∗∥∥

+ 2μ1
∥
∥B1y∗ – B1υn

∥
∥
∥
∥wn – x∗∥∥ + θn(2 + θn)M0 + 2αnM0

= �n – �n+1 + 2μ2
∥
∥B2x∗ – B2un

∥
∥
∥
∥υn – y∗∥∥

+ 2μ1
∥
∥B1y∗ – B1υn

∥
∥
∥
∥wn – x∗∥∥ + θn(2 + θn)M0 + 2αnM0.

(3.24)

Noticing 0 < lim infn→∞(1 – αn – βn) = lim infn→∞ γn, αn → 0, θn → 0 and �n – �n+1 → 0,
one has from (3.23) that

lim
n→∞‖xn – un‖ = lim

n→∞‖yn – zn‖ = lim
n→∞‖yn – wn‖ = 0, (3.25)

and

lim
n→∞

∥
∥B2un – B2x∗∥∥ = lim

n→∞
∥
∥B1υn – B1y∗∥∥ = 0. (3.26)

Since 0 < lim infn→∞ γn, αn → 0, θn → 0 and �n – �n+1 → 0, from (3.24), (3.26), and the
boundedness of {υn}, {wn}, we deduce that

lim
n→∞

∥
∥un – υn + y∗ – x∗∥∥ = lim

n→∞
∥
∥υn – wn + x∗ – y∗∥∥ = 0. (3.27)

Therefore,

‖un – Gun‖ = ‖un – wn‖
≤ ∥

∥un – υn + y∗ – x∗∥∥ +
∥
∥υn – wn + x∗ – y∗∥∥

→ 0 (n → ∞).

(3.28)

Furthermore, using (3.14), gives

∥
∥xn+1 – x∗∥∥2

≤ ∥
∥αn

(

f (xn) – x∗) + βn
(

xn – x∗) + γn
(

Snzn – x∗)∥∥2

≤ αn
∥
∥f (xn) – x∗∥∥2 + βn

∥
∥xn – x∗∥∥ + γn

∥
∥Snzn – x∗∥∥2 – βnγn

∥
∥xn – Snzn

∥
∥

2

≤ αn
∥
∥f (xn) – x∗∥∥2 + βn

∥
∥xn – x∗∥∥ + γn(1 + θn)2∥∥zn – x∗∥∥2 – βnγn

∥
∥xn – Snzn

∥
∥

2

≤ αn
∥
∥f (xn) – x∗∥∥2 + (1 – αn)

∥
∥xn – x∗∥∥2 + θn(2 + θn)

∥
∥xn – x∗∥∥2 – βnγn

∥
∥xn – Snzn

∥
∥

2

≤ αn
∥
∥f (xn) – x∗∥∥2 + (1 – αn)

∥
∥xn – x∗∥∥2 + θn(2 + θn)

∥
∥xn – x∗∥∥2 – βnγn

∥
∥xn – Snzn

∥
∥

2

≤ ∥
∥xn – x∗∥∥2 + αnM1 + θn(2 + θn)M1 – βnγn

∥
∥xn – Snzn

∥
∥

2,

where supn≥1{‖f (xn) – x∗‖2 + ‖xn – x∗‖2} ≤ M1 for some M1 > 0. This immediately implies

βnγn
∥
∥xn – Snzn

∥
∥

2 ≤ ∥
∥xn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2 + αnM1 + θn(2 + θn)M1

= �n – �n+1 + αnM1 + θn(2 + θn)M1.
(3.29)
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Since 0 < lim infn→∞ βn, 0 < lim infn→∞ γn, αn → 0, θn → 0, and �n – �n+1 → 0, we infer
from (3.29) that

lim
n→∞

∥
∥xn – Snzn

∥
∥ = 0,

which, together with the boundedness of {xn}, implies that

‖xn+1 – xn‖ =
∥
∥αn

(

f (xn) – xn
)

+ γn
(

Snzn – xn
)∥
∥

≤ αn
∥
∥f (xn) – xn

∥
∥ + γn

∥
∥Snzn – xn

∥
∥

≤ αn
∥
∥f (xn) – xn

∥
∥ +

∥
∥Snzn – xn

∥
∥ → 0 (n → ∞).

(3.30)

From the boundedness of {xn}, it follows that there exists a subsequence {xnk } of {xn} such
that

lim sup
n→∞

〈

(f – I)x∗, xn – x∗〉 = lim
k→∞

〈

(f – I)x∗, xnk – x∗〉. (3.31)

Since H is reflexive and {xn} is bounded, we may assume, without loss of generality, that
xnk ⇀ x̃. Thus, from (3.31) one gets

lim sup
n→∞

〈

(f – I)x∗, xn – x∗〉 = lim
k→∞

〈

(f – I)x∗, xnk – x∗〉

=
〈

(f – I)x∗, x̃ – x∗〉.
(3.32)

Since Snxn – Sn+1xn → 0 (due to the assumption), un – Gun → 0 (due to (3.28)), xn – xn+1 →
0 (due to (3.30)), and xnk ⇀ x̃ for {xnk } ⊂ {xn}, by Lemma 3.3, we obtain that x̃ ∈ Ω . Hence
from (3.12) and (3.32), one gets

lim sup
n→∞

〈

(f – I)x∗, xn – x∗〉 =
〈

(f – I)x∗, x̃ – x∗〉 ≤ 0, (3.33)

which, together with (3.30), leads to

lim sup
n→∞

〈

(f – I)x∗, xn+1 – x∗〉

= lim sup
n→∞

[〈

(f – I)x∗, xn+1 – xn
〉

+
〈

(f – I)x∗, xn – x∗〉]

≤ lim sup
n→∞

[∥
∥(f – I)x∗∥∥‖xn+1 – xn‖ +

〈

(f – I)x∗, xn – x∗〉] ≤ 0.

(3.34)

Note that {αn(1 – δ)} ⊂ [0, 1],
∑∞

n=1 αn(1 – δ) = ∞, and

lim sup
n→∞

[
2〈(f – I)x∗, xn+1 – x∗〉

1 – δ
+

θn

αn
· (2 + θn)M0

1 – δ

]

≤ 0.

Consequently, applying Lemma 2.4 to (3.22), one has limn→∞ ‖xn – x∗‖2 = 0.
Case 2. Suppose that ∃{�nk } ⊂ {�n} such that �nk < �nk +1 ∀k ∈N , where N is the set of

all positive integers. Define the mapping τ : N →N by

τ (n) := max{k ≤ n : �k < �k+1}.
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By Lemma 2.6, we get

�τ (n) ≤ �τ (n)+1 and �n ≤ �τ (n)+1.

Putting p = x∗ and q = y∗, from (3.15) and (3.16), we obtain

γτ (n)
{‖xτ (n) – uτ (n)‖2 + (1 – μ)

[‖yτ (n) – zτ (n)‖2 + ‖yτ (n) – wτ (n)‖2] + μ2(2β – μ2)

× ∥
∥B2uτ (n) – B2x∗∥∥2 + μ1(2α – μ1)

∥
∥B1υτ (n) – B1y∗∥∥2}

≤ �τ (n) – �τ (n)+1 + θτ (n)(2 + θτ (n))M0 + 2ατ (n)M0

(3.35)

and

γτ (n)
[∥
∥uτ (n) – υτ (n) + y∗ – x∗∥∥2 +

∥
∥υτ (n) – wτ (n) + x∗ – y∗∥∥2]

≤ �τ (n) – �τ (n)+1 + 2μ2
∥
∥B2x∗ – B2uτ (n)

∥
∥
∥
∥υτ (n) – y∗∥∥

+ 2μ1
∥
∥B1y∗ – B1υτ (n)

∥
∥
∥
∥wτ (n) – x∗∥∥ + θτ (n)(2 + θτ (n))M0 + 2ατ (n)M0.

(3.36)

So it follows from (3.35) that

lim
n→∞‖xτ (n) – uτ (n)‖ = lim

n→∞‖yτ (n) – zτ (n)‖ = lim
n→∞‖yτ (n) – wτ (n)‖ = 0, (3.37)

and

lim
n→∞

∥
∥B2uτ (n) – B2x∗∥∥ = lim

n→∞
∥
∥B1υτ (n) – B1y∗∥∥ = 0. (3.38)

Further, from (3.36), (3.38), and the boundedness of {υτ (n)}, {wτ (n)}, we deduce that

lim
n→∞

∥
∥uτ (n) – υτ (n) + y∗ – x∗∥∥ = lim

n→∞
∥
∥υτ (n) – wτ (n) + x∗ – y∗∥∥ = 0.

Therefore,

‖uτ (n) – Guτ (n)‖ = ‖uτ (n) – wτ (n)‖
≤ ∥

∥uτ (n) – υτ (n) + y∗ – x∗∥∥ +
∥
∥υτ (n) – wτ (n) + x∗ – y∗∥∥

→ 0 (n → ∞).

(3.39)

Utilizing the same inferences as in the proof of Case 1, we deduce that

lim
n→∞‖xτ (n)+1 – xτ (n)‖ = 0 (3.40)

and

lim sup
n→∞

〈

(f – I)x∗, xτ (n)+1 – x∗〉 ≤ 0. (3.41)
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On the other hand, from (3.22) we obtain

ατ (n)(1 – δ)�τ (n) ≤ �τ (n) – �τ (n)+1 + ατ (n)(1 – δ)
[

2〈(f – I)x∗, xτ (n)+1 – x∗〉
1 – δ

+
θτ (n)

ατ (n)
· (2 + θτ (n))M0

1 – δ

]

≤ ατ (n)(1 – δ)
[

2〈(f – I)x∗, xτ (n)+1 – x∗〉
1 – δ

+
θτ (n)

ατ (n)
· (2 + θτ (n))M0

1 – δ

]

,

which hence yields

lim sup
n→∞

�τ (n) ≤ lim sup
n→∞

[
2〈(f – I)x∗, xτ (n)+1 – x∗〉

1 – δ
+

θτ (n)

ατ (n)
· (2 + θτ (n))M0

1 – δ

]

≤ 0.

Thus, limn→∞ ‖xτ (n) – x∗‖2 = 0. Also, note that

∥
∥xτ (n)+1 – x∗∥∥2 –

∥
∥xτ (n) – x∗∥∥2

= 2
〈

xτ (n)+1 – xτ (n), xτ (n) – x∗〉 + ‖xτ (n)+1 – xτ (n)‖2

≤ 2‖xτ (n)+1 – xτ (n)‖
∥
∥xτ (n) – x∗∥∥ + ‖xτ (n)+1 – xτ (n)‖2.

(3.42)

Owing to �n ≤ �τ (n)+1, we get

∥
∥xn – x∗∥∥2 ≤ ∥

∥xτ (n)+1 – x∗∥∥2

≤ ∥
∥xτ (n) – x∗∥∥2 + 2‖xτ (n)+1 – xτ (n)‖

∥
∥xτ (n) – x∗∥∥ + ‖xτ (n)+1 – xτ (n)‖2

→ 0 (n → ∞).

That is, xn → x∗ as n → ∞. This completes the proof. �

Theorem 3.2 Let S : H → C be nonexpansive and the sequence {xn} be constructed by the
modified version of Algorithm 3.1, that is, for any initial x1 ∈ C,

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = σnxn + (1 – σn)Snun,

wn = Gun,

yn = PC(wn – τnAwn),

zn = PCn (wn – τnAyn),

xn+1 = αnf (xn) + βnxn + γnSzn ∀n ≥ 1,

(3.43)

where for each n ≥ 1, Cn and τn are chosen as in Algorithm 3.1. Then xn → x∗ ∈ Ω , where
x∗ ∈ Ω is the unique solution to the HVI, 〈(I – f )x∗, p – x∗〉 ≥ 0 ∀p ∈ Ω .

Proof We divide the proof into several steps.
Step 1. We show that {xn} is bounded. Indeed, using the same arguments as in Step 1 of

the proof of Theorem 3.1, we obtain the desired assertion.
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Step 2. We show that

γn
{‖xn – un‖2 + (1 – μ)

[‖yn – zn‖2 + ‖yn – wn‖2] + μ2(2β – μ2)

× ‖B2un – B2p‖2 + μ1(2α – μ1)‖B1υn – B1q‖2}

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + 2αnM0

and

γn
[‖un – υn + q – p‖2 + ‖υn – wn + p – q‖2]

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + 2μ2‖B2p – B2un‖‖υn – q‖
+ 2μ1‖B1q – B1υn‖‖wn – p‖ + 2αnM0,

where supn≥1{‖xn – p‖2 +‖f (p) – p‖‖xn – p‖} ≤ M0 for some M0 > 0. In fact, using the same
arguments as in Step 2 of the proof of Theorem 3.1, we obtain the desired assertion.

Step 3. We show that

‖xn+1 – p‖2 ≤ [

1 – αn(1 – δ)
]‖xn – p‖2 + αn(1 – δ)

2〈(f – I)p, xn+1 – p〉
1 – δ

.

In fact, using the same arguments as in Step 3 of the proof of Theorem 3.1, we obtain the
desired assertion.

Step 4. We show that {xn} converges strongly to the unique solution x∗ ∈ Ω to the HVI
(3.12), with S0 = S a nonexpansive mapping. In fact, putting p = x∗, we deduce from Step 3
that

∥
∥xn+1 – x∗∥∥2 ≤ [

1 – αn(1 – δ)
]∥
∥xn – x∗∥∥2 + αn(1 – δ)

2〈(f – I)x∗, xn+1 – x∗〉
1 – δ

. (3.44)

Putting �n = ‖xn – x∗‖2, we show the convergence of {�n} to zero by the following two
cases.

Case 1. Suppose that there exists an integer n0 ≥ 1 such that {�n} is nonincreasing. Then
the limit limn→∞ �n = � < +∞ and limn→∞(�n – �n+1) = 0. Putting p = x∗ and q = y∗, from
Step 2 we obtain

γn
{‖xn – un‖2 + (1 – μ)

[‖yn – zn‖2 + ‖yn – wn‖2] + μ2(2β – μ2)

× ∥
∥B2un – B2x∗∥∥2 + μ1(2α – μ1)

∥
∥B1υn – B1y∗∥∥2}

≤ �n – �n+1 + 2αnM0

and

γn
[∥
∥un – υn + y∗ – x∗∥∥2 +

∥
∥υn – wn + x∗ – y∗∥∥2]

≤ �n – �n+1 + 2μ2
∥
∥B2x∗ – B2un

∥
∥
∥
∥υn – y∗∥∥

+ 2μ1
∥
∥B1y∗ – B1υn

∥
∥
∥
∥wn – x∗∥∥ + 2αnM0.

By the same inferences as in Case 1 of the proof of Theorem 3.1, we deduce that

lim
n→∞‖un – Gun‖ = 0, (3.45)
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lim
n→∞‖xn – xn+1‖ = 0 and lim sup

n→∞
〈

(f – I)x∗, xn+1 – x∗〉 ≤ 0. (3.46)

Consequently, applying Lemma 2.4 to (3.44), we obtain limn→∞ ‖xn – x∗‖2 = 0.
Case 2. Suppose that ∃{�nk } ⊂ {�n} such that �nk < �nk +1 ∀k ∈N , where N is the set of

all positive integers. Define the mapping τ : N →N by

τ (n) := max{k ≤ n : �k < �k+1}.

By Lemma 2.6, we get

�τ (n) ≤ �τ (n)+1 and �n ≤ �τ (n)+1.

The conclusion follows using the same arguments as in Case 2 of the proof of Theo-
rem 3.1. �

Next, we introduce another composite subgradient extragradient algorithm.

Algorithm 3.2 Initialization: Given γ > 0, μ ∈ (0, 1), � ∈ (0, 1), pick an initial x1 ∈ C arbi-
trarily.

Iterative steps: Compute xn+1 below:
Step 1. Calculate un = σnxn + (1 – σn)Snun and wn = Gun, and set yn = PC(wn – τnAwn),

where τn is chosen to be the largest τ ∈ {γ ,γ �,γ �2, . . . } satisfying

τ‖Awn – Ayn‖ ≤ μ‖wn – yn‖. (3.47)

Step 2. Calculate zn = PCn (wn – τnAyn) with Cn := {y ∈ H : 〈wn – τnAwn – yn, y – yn〉 ≤ 0}.
Step 3. Calculate

xn+1 = αnf (xn) + βnun + γnSnzn. (3.48)

Again put n := n + 1 and return to Step 1.

It is worth pointing out that inequality (3.5) and Lemmas 3.1–3.3 are still valid for Al-
gorithm 3.2.

Theorem 3.3 Let {xn} be the sequence constructed in Algorithm 3.2. Then xn → x∗ ∈ Ω ,
provided Snxn – Sn+1xn → 0, where x∗ ∈ Ω is the unique solution to the HVI, 〈(I – f )x∗, p –
x∗〉 ≥ 0 ∀p ∈ Ω .

Proof Using the same arguments as in the proof of Theorem 3.1, we deduce that there
exists the unique solution x∗ ∈ Ω =

⋂∞
i=0 Fix(Si) ∩ Fix(G) ∩ VI(C, A) to the HVI (3.12). We

divide the rest of the proof into several steps.
Step 1. We show that {xn} is bounded. In fact, using the same arguments as in Step 1 of

the proof of Theorem 3.1, we obtain that inequalities (3.13) and (3.14) hold. Thus, from
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(3.14) it follows that

‖xn+1 – p‖ ≤ αn
∥
∥f (xn) – p

∥
∥ + βn‖un – p‖ + γn

∥
∥Snzn – p

∥
∥

≤ αn
(∥
∥f (xn) – f (p)

∥
∥ +

∥
∥f (p) – p

∥
∥
)

+ βn‖un – p‖ + γn(1 + θn)‖zn – p‖
≤ αn

(

δ‖xn – p‖ +
∥
∥f (p) – p

∥
∥
)

+ βn‖xn – p‖ + (γn + θn)‖xn – p‖

≤
[

1 –
αn(1 – δ)

2

]

‖xn – p‖ + αn
∥
∥f (p) – p

∥
∥

=
[

1 –
αn(1 – δ)

2

]

‖xn – p‖ +
αn(1 – δ)

2
2‖f (p) – p‖

1 – δ

≤ max

{

‖xn – p‖,
2‖f (p) – p‖

1 – δ

}

.

By induction, we obtain ‖xn – p‖ ≤ max{‖x1 – p‖, 2‖f (p)–p‖
1–δ

} ∀n ≥ 1. Therefore, {xn} is
bounded, and so are the sequences {un}, {wn}, {yn}, {zn}, {f (xn)}, {Ayn}, {Snun}, {Snzn}.

Step 2. We show that

γn
{‖xn – un‖2 + (1 – μ)

[‖yn – zn‖2 + ‖yn – wn‖2] + μ2(2β – μ2)

× ‖B2un – B2p‖2 + μ1(2α – μ1)‖B1υn – B1q‖2}

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + θn(2 + θn)M0 + 2αnM0

(3.49)

and

γn
[‖un – υn + q – p‖2 + ‖υn – wn + p – q‖2]

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + 2μ2‖B2p – B2un‖‖υn – q‖
+ 2μ1‖B1q – B1υn‖‖wn – p‖ + θn(2 + θn)M0 + 2αnM0,

(3.50)

for some M0 > 0. In fact, using (3.5), (3.13), (3.14), and the convexity of the function φ(s) =
s2 ∀s ∈ R, we get

‖xn+1 – p‖2

≤ αn
∥
∥f (xn) – f (p)

∥
∥

2 + βn‖un – p‖2 + γn
∥
∥Snzn – p

∥
∥

2 + 2αn
〈

f (p) – p, xn+1 – p
〉

≤ αnδ‖xn – p‖2 + βn‖un – p‖2 +
[

γn + θn(2 + θn)
]‖zn – p‖2 + 2αn

〈

f (p) – p, xn+1 – p
〉

≤ αnδ‖xn – p‖2 + βn‖xn – p‖2 + γn
{‖xn – p‖2 – ‖xn – un‖2 – (1 – μ)

[‖yn – zn‖2

+ ‖yn – wn‖2] – μ2(2β – μ2)‖B2un – B2p‖2 – μ1(2α – μ1)‖B1υn – B1q‖2}

+ θn(2 + θn)‖xn – p‖2 + 2αn
〈

f (p) – p, xn+1 – p
〉

≤ ‖xn – p‖2 – γn
{‖xn – un‖2 + (1 – μ)

[‖yn – zn‖2 + ‖yn – wn‖2]

+ μ2(2β – μ2)‖B2un – B2p‖2 + μ1(2α – μ1)‖B1υn – B1q‖2}

+ θn(2 + θn)M0 + 2αnM0

(3.51)

where supn≥1{‖xn –p‖2 +‖f (p)–p‖‖xn –p‖} ≤ M0 for some M0 > 0. This ensures that (3.49)
holds. Further, using similar arguments to those of (3.16), we obtain that (3.50) holds.
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Step 3. We show that

‖xn+1 – p‖2 ≤ [

1 – αn(1 – δ)
]‖xn – p‖2

+ αn(1 – δ)
{

2〈(f – I)p, xn+1 – p〉
1 – δ

+
θn

αn
· (2 + θn)M0

1 – δ

}

.

In fact, from (3.14) and (3.51), we have

‖xn+1 – p‖2

≤ αnδ‖xn – p‖2 + βn‖un – p‖2 +
[

γn + θn(2 + θn)
]‖zn – p‖2 + 2αn

〈

f (p) – p, xn+1 – p
〉

≤ αnδ‖xn – p‖2 + βn‖xn – p‖2 + γn‖xn – p‖2 + θn(2 + θn)M0

+ 2αn
〈

f (p) – p, xn+1 – p
〉

=
[

1 – αn(1 – δ)
]‖xn – p‖2 + αn(1 – δ)

{
2〈(f – I)p, xn+1 – p〉

1 – δ
+

θn

αn
· (2 + θn)M0

1 – δ

}

.

Step 4. We show that {xn} converges strongly to the unique solution x∗ ∈ Ω of the HVI
(3.12). In fact, putting p = x∗, we deduce from Step 3 that

∥
∥xn+1 – x∗∥∥2 ≤ [

1 – αn(1 – δ)
]∥
∥xn – x∗∥∥2

+ αn(1 – δ)
{

2〈(f – I)x∗, xn+1 – x∗〉
1 – δ

+
θn

αn
· (2 + θn)M0

1 – δ

}

.
(3.52)

Putting �n = ‖xn – x∗‖2, we show the convergence of {�n} to zero by the following two
cases.

Case 1. Suppose that there exists an integer n0 ≥ 1 such that {�n} is nonincreasing. Then
the limit limn→∞ �n = � < +∞ and limn→∞(�n – �n+1) = 0. Putting p = x∗ and q = y∗, from
(3.49) and (3.50), we obtain that

γn
{‖xn – un‖2 + (1 – μ)

[‖yn – zn‖2 + ‖yn – wn‖2] + μ2(2β – μ2)

× ∥
∥B2un – B2x∗∥∥2 + μ1(2α – μ1)

∥
∥B1υn – B1y∗∥∥2}

≤ �n – �n+1 + θn(2 + θn)M0 + 2αnM0

and

γn
[∥
∥un – υn + y∗ – x∗∥∥2 +

∥
∥υn – wn + x∗ – y∗∥∥2]

≤ �n – �n+1 + 2μ2
∥
∥B2x∗ – B2un

∥
∥
∥
∥υn – y∗∥∥

+ 2μ1
∥
∥B1y∗ – B1υn

∥
∥
∥
∥wn – x∗∥∥ + θn(2 + θn)M0 + 2αnM0.

By the same inferences as in Case 1 of the proof of Theorem 3.1, we deduce that un –Gun →
0, xn – xn+1 → 0 and

lim sup
n→∞

〈

(f – I)x∗, xn+1 – x∗〉 ≤ 0.

Consequently, applying Lemma 2.4 to (3.52), we obtain limn→∞ ‖xn – x∗‖2 = 0.
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Case 2. Suppose that ∃{�nk } ⊂ {�n} such that �nk < �nk +1 ∀k ∈N , where N is the set of
all positive integers. Define the mapping τ : N →N by

τ (n) := max{k ≤ n : �k < �k+1}.

By Lemma 2.6, we get

�τ (n) ≤ �τ (n)+1 and �n ≤ �τ (n)+1.

In the remainder of the proof, using the same arguments as in Case 2 of Step 4 in the proof
of Theorem 3.1, we obtain the desired conclusion. �

Theorem 3.4 Let S : H → C be nonexpansive and the sequence {xn} be constructed by the
modified version of Algorithm 3.1, that is, for any initial x1 ∈ C,

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = σnxn + (1 – σn)Snun,

wn = Gun,

yn = PC(wn – τnAwn),

zn = PCn (wn – τnAyn),

xn+1 = αnf (xn) + βnun + γnSzn ∀n ≥ 1,

(3.53)

where for each n ≥ 1, Cn and τn are chosen as in Algorithm 3.2. Then xn → x∗ ∈ Ω , where
x∗ ∈ Ω is the unique solution to the HVI, 〈(I – f )x∗, p – x∗〉 ≥ 0 ∀p ∈ Ω .

Proof We divide the proof into several steps.
Step 1. We show that {xn} is bounded. Indeed, using the same arguments as in Step 1 of

the proof of Theorem 3.3, we obtain the desired assertion.
Step 2. We show that

γn
{‖xn – un‖2 + (1 – μ)

[‖yn – zn‖2 + ‖yn – wn‖2] + μ2(2β – μ2)

× ‖B2un – B2p‖2 + μ1(2α – μ1)‖B1υn – B1q‖2}

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + 2αnM0

and

γn
[‖un – υn + q – p‖2 + ‖υn – wn + p – q‖2]

≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + 2μ2‖B2p – B2un‖‖υn – q‖
+ 2μ1‖B1q – B1υn‖‖wn – p‖ + 2αnM0,

where supn≥1{‖xn – p‖2 +‖f (p) – p‖‖xn – p‖} ≤ M0 for some M0 > 0. In fact, using the same
arguments as in Step 2 of the proof of Theorem 3.3, we obtain the desired assertion.

Step 3. We show that

‖xn+1 – p‖2 ≤ [

1 – αn(1 – δ)
]‖xn – p‖2 + αn(1 – δ)

2〈(f – I)p, xn+1 – p〉
1 – δ

.
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In fact, using the same arguments as in Step 3 of the proof of Theorem 3.3, we obtain the
desired assertion.

Step 4. We show that {xn} converges strongly to the unique solution x∗ ∈ Ω to the HVI
(3.12), with S0 = S a nonexpansive mapping. In fact, putting p = x∗, we deduce from Step 3
that

∥
∥xn+1 – x∗∥∥2 ≤ [

1 – αn(1 – δ)
]∥
∥xn – x∗∥∥2 + αn(1 – δ)

2〈(f – I)x∗, xn+1 – x∗〉
1 – δ

. (3.54)

Putting �n = ‖xn – x∗‖2, we show the convergence of {�n} to zero by the following two
cases.

Case 1. Suppose that there exists an integer n0 ≥ 1 such that {�n} is nonincreasing. Then
the limit limn→∞ �n = � < +∞ and limn→∞(�n – �n+1) = 0. Putting p = x∗ and q = y∗, from
Step 2 we obtain

γn
{‖xn – un‖2 + (1 – μ)

[‖yn – zn‖2 + ‖yn – wn‖2] + μ2(2β – μ2)

× ∥
∥B2un – B2x∗∥∥2 + μ1(2α – μ1)

∥
∥B1υn – B1y∗∥∥2}

≤ �n – �n+1 + 2αnM0

and

γn
[∥
∥un – υn + y∗ – x∗∥∥2 +

∥
∥υn – wn + x∗ – y∗∥∥2]

≤ �n – �n+1 + 2μ2
∥
∥B2x∗ – B2un

∥
∥
∥
∥υn – y∗∥∥

+ 2μ1
∥
∥B1y∗ – B1υn

∥
∥
∥
∥wn – x∗∥∥ + 2αnM0.

By the same arguments as in Case 1 of the proof of Theorem 3.3, we deduce that un –
Gun → 0, xn – xn+1 → 0 and

lim sup
n→∞

〈

(f – I)x∗, xn+1 – x∗〉 ≤ 0.

Consequently, applying Lemma 2.4 to (3.54), we obtain limn→∞ ‖xn – x∗‖2 = 0.
Case 2. Suppose that ∃{�nk } ⊂ {�n} such that �nk < �nk +1 ∀k ∈N , where N is the set of

all positive integers. Define the mapping τ : N →N by

τ (n) := max{k ≤ n : �k < �k+1}.

By Lemma 2.6, we get

�τ (n) ≤ �τ (n)+1 and �n ≤ �τ (n)+1.

The conclusion follows using the same arguments as in Case 2 of the proof of Theo-
rem 3.3. �

Remark 3.1 Compared with the corresponding results in Ceng and Wen [21], Ceng and
Shang [22], and Thong and Hieu [14], our results improve and extend them in the following
aspects:
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(i) The problem of finding an element of
⋂∞

i=0 Fix(Si) ∩ Fix(G) in [21] is extended to de-
velop our problem of finding an element of

⋂∞
i=0 Fix(Si) ∩ Fix(G) ∩ VI(C, A) where {Si}∞i=1

is a countable family of ς -uniformly Lipschitzian pseudocontractive mappings and S0 = S
is asymptotically nonexpansive. The hybrid extragradient-like implicit method for finding
an element of

⋂∞
i=0 Fix(Si) ∩ Fix(G) in [21] is extended to develop our Mann implicit com-

posite subgradient extragradient method with line-search process for finding an element
of

⋂∞
i=0 Fix(Si) ∩ Fix(G) ∩ VI(C, A), which is based on the Mann implicit iteration method,

subgradient extragradient method with line-search process, and viscosity approximation
method.

(ii) The problem of finding an element of Fix(S)∩VI(C, A) with quasinonexpansive map-
ping S in [14] is extended to develop our problem of finding an element of

⋂∞
i=0 Fix(Si) ∩

Fix(G) ∩ VI(C, A) where {Si}∞i=1 is a countable family of ς -uniformly Lipschitzian pseu-
docontractive mappings and S0 = S is asymptotically nonexpansive. The inertial subgra-
dient extragradient method with linear-search process for finding an element of Fix(S) ∩
VI(C, A) in [14] is extended to develop our Mann implicit composite subgradient extra-
gradient method with line-search process for finding an element of

⋂∞
i=0 Fix(Si)∩Fix(G)∩

VI(C, A), which is based on the Mann implicit iteration method, subgradient extragradient
method with line-search process, and viscosity approximation method.

(iii) The problem of finding an element of Ω =
⋂N

i=0 Fix(Si) ∩ VI(C, A) with finitely many
nonexpansive mappings {Si}N

i=1 is extended to develop our problem of finding an ele-
ment of Ω =

⋂∞
i=0 Fix(Si) ∩ Fix(G) ∩ VI(C, A) with a countable family of ς -uniformly Lip-

schitzian pseudocontractive mappings {Si}∞i=1. The hybrid inertial subgradient extragra-
dient method with line-search process in [22] is extended to develop our Mann implicit
composite subgradient extragradient method with line-search process, e.g., the original
inertial approach wn = Snxn + αn(Snxn – Snxn–1) is replaced by Mann implicit composite
iteration method un = σnxn + (1 – σn)Sun and wn = Gun. In addition, it was shown in [22]
that, under condition Snzn – Sn+1zn → 0, the conclusion holds:

xn → x∗ ∈ Ω ⇔ ‖xn – yn‖ + ‖xn – xn+1‖ → 0 with x∗ = PΩ (I – ρF + f )x∗.

In this paper, using Lemma 2.6, we show that, under condition Snxn – Sn+1xn → 0, the
following conclusion holds:

xn → x∗ ∈ Ω with x∗ = PΩ f
(

x∗).

4 Applications
In this section, applying our main results, we deal with the GSVI, VIP, and CFPP in an
illustrated example. Put μ1 = μ2 = 1

3 , γ = 1, μ = � = 1
2 , σn = 2

3 , αn = 1
3(n+1) , βn = n

3(n+1) , and
γn = 2

3 .
We first provide an example of two inverse-strongly monotone mappings B1, B2 : C →

H , Lipschitz continuous and pseudomonotone mapping A, asymptotically nonexpansive
mapping S, and countably many ς -uniformly Lipschitzian pseudocontractive mappings
{Si}∞i=1 with Ω =

⋂∞
i=0 Fix(Si) ∩ Fix(G) ∩ VI(C, A) �= ∅ with S0 := S. Let C = [–3, 3] and H = R

with the inner product 〈a, b〉 = ab and induced norm ‖ · ‖ = | · |. The initial point x1 is ran-
domly chosen in C. Take f (x) = 1

2 x ∀x ∈ C with δ = 1
2 , and put B1x = B2x := Bx = x – 1

2 sin x
∀x ∈ C. Let A : H → H and S, Si : C → C be defined as Au := 1

1+| sin u| – 1
1+|u| , Su := 5

6 sin u,
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and Siu = Tu = sin u ∀u ∈ H , i ≥ 1. We now claim that B is 2
9 -inverse-strongly monotone.

In fact, since B is 1
2 -strongly monotone and 3

2 -Lipschitz continuous, we know that B is
2
9 -inverse-strongly monotone with α = β = 2

9 . Let us show that A is pseudomonotone and
Lipschitz continuous. In fact, for all u, v ∈ H , we have

‖Au – Av‖ ≤
∣
∣
∣
∣

‖v‖ – ‖u‖
(1 + ‖u‖)(1 + ‖v‖)

∣
∣
∣
∣

+
∣
∣
∣
∣

‖ sin v‖ – ‖ sin u‖
(1 + ‖ sin u‖)(1 + ‖ sin v‖)

∣
∣
∣
∣

≤ ‖v – u‖
(1 + ‖u‖)(1 + ‖v‖)

+
‖ sin v – sin u‖

(1 + ‖ sin u‖)(1 + ‖ sin v‖)

≤ ‖u – v‖ + ‖ sin u – sin v‖ ≤ 2‖u – v‖.

This implies that A is Lipschitz continuous with L = 2. Next, we show that A is pseu-
domonotone. For each u, v ∈ H , it is easy to see that

〈Au, v – u〉 =
(

1
1 + | sin u| –

1
1 + |u|

)

(v – u) ≥ 0

⇒ 〈Av, v – u〉 =
(

1
1 + | sin v| –

1
1 + |v|

)

(v – u) ≥ 0.

Besides, it is easy to verify that S is asymptotically nonexpansive with θn = ( 5
6 )n ∀n ≥ 1,

such that ‖Sn+1xn – Snxn‖ → 0 as n → ∞. Indeed, we observe that

∥
∥Snu – Snv

∥
∥ ≤ 5

6
∥
∥Sn–1u – Sn–1v

∥
∥ ≤ · · · ≤

(
5
6

)n

‖u – v‖ ≤ (1 + θn)‖u – v‖

and

∥
∥Sn+1xn – Snxn

∥
∥ ≤

(
5
6

)n–1
∥
∥S2xn – Sxn

∥
∥ =

(
5
6

)n–1∥
∥
∥
∥

5
6

sin(Sxn) –
5
6

sin xn

∥
∥
∥
∥

≤ 2
(

5
6

)n

→ 0.

It is clear that Fix(S) = {0} and

lim
n→∞

θn

αn
= lim

n→∞
(5/6)n

1/3(n + 1)
= 0.

In addition, it is clear that Si = T is nonexpansive and Fix(T) = {0}. Therefore, Ω = Fix(T)∩
Fix(S)∩Fix(G)∩VI(C, A) = {0} �= ∅. In this case, noticing Sn = T and G = PC(I –μ1B1)PC(I –
μ2B2) = [PC(I – 1

3 B)]2, we rewrite Algorithm 3.1 as follows:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = 2
3 xn + 1

3 Tun,

wn = [PC(I – 1
3 B)]2un,

yn = PC(wn – τnAwn),

zn = PCn (wn – τnAyn),

xn+1 = 1
3(n+1) · 1

2 xn + n
3(n+1) xn + 2

3 Snzn ∀n ≥ 1,

(4.1)
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where for each n ≥ 1, Cn and τn are chosen as in Algorithm 3.1. Then, by Theorem 3.1, we
know that {xn} converges to 0 ∈ Ω = Fix(T) ∩ Fix(S) ∩ Fix(G) ∩ VI(C, A).

In particular, since Su := 5
6 sin u is also nonexpansive, we consider the modified version

of Algorithm 3.1, that is,

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = 2
3 xn + 1

3 Tun,

wn = [PC(I – 1
3 B)]2un,

yn = PC(wn – τnAwn),

zn = PCn (wn – τnAyn),

xn+1 = 1
3(n+1) · 1

2 xn + n
3(n+1) xn + 2

3 Szn ∀n ≥ 1,

(4.2)

where for each n ≥ 1, Cn and τn are chosen as above. Then, by Theorem 3.2, we know that
{xn} converges to 0 ∈ Ω = Fix(T) ∩ Fix(S) ∩ Fix(G) ∩ VI(C, A).
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