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Abstract
Many practical problems, such as computer science, communications network,
product design, system control, statistics and finance, etc.,can be formulated as a
probabilistic constrained optimization problem (PCOP) which is challenging to solve
since it is usually nonconvex and nonsmooth. Effective methods for the probabilistic
constrained optimization problem mostly focus on approximation techniques, such
as convex approximation, D.C. (difference of two convex functions) approximation,
and so on. This paper aims at studying a smooth approximation approach. A smooth
approximation to the probabilistic constraint function based on a sigmoid function is
analyzed. Equivalence of PCOP and the corresponding approximation problem are
shown under some appropriate assumptions. Sequential convex approximation (SCA)
algorithm is implemented to solve the smooth approximation problem. Numerical
results suggest that the smooth approximation approach proposed is effective for
optimization problems with probabilistic constraints.

Keywords: Probabilistic constrained optimization problem; Sigmoid function;
Smooth approximation approach; Sequential convex approximation

1 Introduction
It is well known that the probabilistic constrained optimization has been applied exten-
sively to practical problems, such as computer science, communications network, product
design, system control, statistics and finance, etc. For instance, a manufacturer needs to
maximize its profit while satisfying demands from customers to make decisions on pro-
duction and inventory. However, there is often uncertainty in the demands of the cus-
tomers. To handle the uncertainty in the constraints, a natural approach is to require that
all constraints be satisfied with a given high probability e.g. 90%. The resulted optimization
problem is called a probabilistic constrained optimization problem (PCOP).

Consider the probabilistic constrained optimization problem as follows:

min
x∈X

h(x)

s.t. Pr
{

c1(x, ξ ) ≤ 0, c2(x, ξ ) ≤ 0, . . . , cm(x, ξ ) ≤ 0
} ≥ 1 – α,

(PCOP)
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where x is a d-dimensional vector of decision variables, ξ is a k-dimensional vector of
uncertain parameters, and support of ξ , denoted as �, is a closed subset of �k , X is a
subset of �d , h : �d → � and ci : �d × � → �, i = 1, . . . , m, are real-valued functions, and
functions h and ci, i = 1, . . . , m, are convex and continuously differentiable in x for every
ξ ∈ �.

Let c(x, ξ ) = max{c1(x, ξ ), . . . , cm(x, ξ )}. Note that c(x, ξ ) is a convex function of x since
ci(x, ξ ), i = 1, . . . , m, are all convex in x. Let

p(x) = 1 – Pr
{

c1(x, ξ ) ≤ 0, c2(x, ξ ) ≤ 0, . . . , cm(x, ξ ) ≤ 0
}

= Pr
{

c(x, ξ ) > 0
}

.

Then p(x) is the probability that at least one constraint is violated. Furthermore, the prob-
abilistic constrained optimization problem (PCOP) is reformulated as follows:

min
x∈X

h(x)

s.t. p(x) ≤ α.

The literature on PCOPs can be dated back to Charnes et al. [1], who first considered
a single probabilistic constrained optimization problem (SPCOP), and Miller and Wag-
ner [2], who first considered a joint probabilistic constrained optimization problem (JP-
COP). Since then, probabilistic constrained optimization has been studied extensively.
PCOPs are generally challenging to solve. There are three major difficulties in solving a
PCOP. First, the probabilistic constraint does not necessarily preserve the convexity. The
set defined by the probabilistic constraint may not be convex even if all ci are convex. Sec-
ond, it is difficult to evaluate the probabilistic constraint function, that is to say, there is no
closed-form expression of the probabilistic constraint generally. Third, the probabilistic
constraint does not necessarily preserve the smoothness.

Numerical methods for PCOP have attracted great attention in the field of optimization
(see [3–7]).

Convex conservative approximations have been proposed e.g. the quadratic approxi-
mation [8], the Bernstein approximation [9], and the conditional value-at-risk (CVaR) ap-
proximation [10]. These methods seek to find a convex subset of the (possible nonconvex)
feasible set and find the optimal solution in the subset. To solve JPCOPs, probabilistic in-
equalities (e.g. Bonferroni’s inequality) have to be used to break a joint probabilistic con-
straint into multiple single probabilistic constraints, which often makes approximations
even more conservative.

Monte Carlo simulation is often used to evaluate p(x) when its closed-form is not avail-
able. Luedtke and Ahmed [11] studied the sample average approximation of the PCOPs.
Moreover, the scenario approach is introduced by Calafiore and Campi [12, 13] and De
Farias and Van Roy [14]), which solves the following problem:

min
x∈X

h(x)

s.t. ci(x, ξl) ≤ 0, i = 1, . . . , m, l = 1, . . . , n,

where ξ1, ξ2, . . . , ξn are independent observations of ξ which are often generated from a
Monte Carlo simulation. The critical issue is how to determine the sample size n to en-
sure the probability requirement. The new problem under the scenario approach is easier
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to solve because ci is convex, smooth, and easy to evaluate. Yang et al. [15] presented a
scenario-based method to solve the chance constrained optimization for the nonconvex
program.

Hong et al. [16] proposed an ε-approximation approach, which reformulated a PCOP
into a D.C. (difference of convex) program, which is solved by an ε-approximation together
with a sequence convex approximation (SCA) algorithm. Under some technical condi-
tions, the solutions of the sequences of approximations converge to the set of Karush–
Kuhn–Tucker (KKT) points of the PCOP. Based on the ε-approximation approach, Hu
et al. [17] proposed a smooth Monte Carlo (SMC) approach. Shan et al. [18] proposed a
class of smoothing functions to approximate the joint probabilistic constraint function,
based on which smooth optimization problems are constructed to approximate PCOP.
They show that the solutions of a sequence of smoothing approximations converge to a
KKT point of PCOP under a certain asymptotic regime.

Owing to the nonsmoothness of the probabilistic constraint, we establish a smooth ap-
proximation technique based on sigmoid function, which has many desired properties.
Moreover, the sequential convex approximation (SCA) algorithm is implemented to solve
the smooth approximate problem. In each iteration of the SCA algorithm, a gradient-based
Monte Carlo method is applied to solve a convex stochastic program. We prove that, un-
der some assumptions, a KKT point of PCOP can be obtained by solving the sequence of
convex programs.

The rest of this paper is organized as follows. In Sect. 2, we provide the smooth tech-
nique based on sigmoid function to approximate problem (PCOP) and show the desired
convergence properties. Sequential convex approximation algorithm is discussed to solve
the smoothing approximation problem. The numerical results are reported in Sect. 3, and
some conclusions are presented in Sect. 4.

2 Materials and methods
2.1 Sigmoid approximation to PCOP
In this section, we use a sigmoid function to approximate a probabilistic constraint func-
tion, and obtain an approximation problem based on the sigmoid function.

2.1.1 Sigmoid function
Probabilistic constrained optimization problem (PCOP) can be reformulated as follows:

lim
x∈X

h(x)

s.t. p(x) ≤ α,
(P)

where p(x) = Pr{c(x, ξ ) > 0} = E[1(0,+∞)(c(x, ξ ))] and

1(0,+∞)(z) :=

⎧
⎨

⎩
1 if z ∈ (0, +∞),

0 if z /∈ (0, +∞).

Consider the sigmoid function

ψ(z,μ) =
1

1 + e–μ–1z
,
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where μ > 0 is a parameter and ψ : �2 → � is a real-valued function. It is obvious that
ψ(z,μ) ∈ (0, 1) for any z ∈ �.

Proposition 2.1 For μ > 0, the sigmoid function has the following properties.
(i) For any z ∈ �\{0}, limμ↘0 ψ(z,μ) = 1(0,+∞)(z).

(ii) ψ(z,μ) is nondecreasing in z.
(iii) ψ(z,μ) is monotone increasing in μ when z < 0, ψ(z,μ) is monotone decreasing in μ

when z > 0.
(iv) ψ(z,μ) is smooth with respect to z.

Proof (i) When z > 0, we have

lim
μ↘0

ψ(z,μ) = lim
μ↘0

1
1 + e–μ–1z

= 1.

When z < 0, we have

lim
μ↘0

ψ(z,μ) = lim
μ↘0

1
1 + e–μ–1z

= 0.

(ii) Differentiating the function ψ(z,μ) with respect to z yields

∂

∂z
ψ(z,μ) =

e–μ–1z

μ(1 + e–μ–1z)2
> 0.

(iii) Differentiating the function ψ(z,μ) with respect to μ, we obtain

∂

∂μ
ψ(z,μ) =

–ze–μ–1z

(μ + μe–μ–1z)2
.

Obviously, ∂
∂μ

ψ(z,μ) < 0, when z > 0; ∂
∂μ

ψ(z,μ) > 0, when z < 0.
(iv) The result is obvious. �

We can observe that the sigmoid function ψ(z,μ) approximates the characteristic func-
tion 1(0,+∞)(z) when parameter μ > 0 is small enough(see Fig. 1).

2.1.2 Sigmoid approximation
Let

p̃(x,μ) := E
[
ψ(z,μ)

]
= E

[
ψ

(
c(x, ξ ),μ

)]
,

then we have p̃(x) = limμ↘0 p̃(x,μ). The approximation problem is built as follows:

min
x∈X

h(x)

s.t. p̃(x) ≤ α.
(̃P)

Let �̃ and � denote the feasible sets of problem (̃P) and problem (P), respectively.
Now we make the following assumptions.
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Figure 1 Sigmoid function ψ (z,μ) and the characteristic function 1(0,+∞)(z)

Assumption 1 The set X is a compact and convex subset of �d , and the support of ξ ,
denoted as �, is a closed subset of �k . For any ξ ∈ �, h(x) and ci(x, ξ ), i = 1, . . . , m, are
continuously differentiable and convex in x for any x ∈O, where O is a bounded open set
such that X ⊂O.

Assumption 2 Function c(x, ·) is measurable for every x ∈ �d and c(·, ξ ) is continuous for
a.e. ξ ∈ �.

Assumption 3 For every x̄ ∈ X, the set {ξ ∈ � : c(x̄, ξ ) = 0} has P-measure zero i.e. c(x̄, ξ ) 
=
0, w.p.1.

Assumption 4 For any x ∈O, Pr{ci(x, ξ ) = cj(x, ξ )} = 0, i 
= j i.e. c(x, ξ ) is differentiable with
respect to x w.p.1.

The following theorem suggests the equivalence between problem (̃P) and problem (P).

Theorem 2.2 Assume that Assumptions 1–4 hold. Then, for any x ∈ X and μ > 0,

lim
μ↘0

p̃(x,μ) = p(x).

Proof Let z = c(x, ξ ), it follows from Proposition 2.1 and the Lebesgue control convergence
theorem that

p̃(x) = lim
μ↘0

p̃(x,μ) = lim
μ↘0

E
[
ψ

(
c(x, ξ ),μ

)]

= lim
μ↘0

∫

�

ψ
(
c(x, ξ ),μ

)
dp(ξ )

=
∫

�

lim
μ↘0

ψ
(
c(x, ξ ),μ

)
dp(ξ )
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=
∫

�

1(0,+∞)
(
c(x, ξ )

)
dp(ξ )

= E
[
1(0,+∞)

(
c(x, ξ )

)]

= p(x). �

An important question for sigmoid approximation is how to choose parameter μ. Con-
sider the parameterized approximation of problem (̃P) as follows:

min
x∈X

h(x)

s.t. p̃(x,μ) ≤ α.
(̃Pμ)

Denote �μ := {x ∈ X : p̃(x,μ) ≤ α} as the feasible set of problem (̃Pμ). Let Sμ and νμ

be the set of optimal solutions and the optimal value of problem (̃Pμ), respectively. The
following theorem describes the properties of problem (̃Pμ).

Assumption 5 Let � = {x ∈ X : p(x) ≤ α} and �I = {x ∈ X : p(x) < α}. Then � = cl�I .

Theorem 2.3 Suppose that Assumptions 1 to 5 are satisfied. Then limμ↘0 �μ = �.

Proof It suffices to prove that the inclusions

lim sup
μ↘0

�μ ⊂ � ⊂ lim inf
μ↘0

�μ

are valid.
Given any x̄ ∈ lim supμ↘0 �μ, there exist μk → 0 and xk ∈ �μk such that xk → x̄, which

means that the inequality

p̃
(
xk ,μk

) ≤ α

holds. Taking k → +∞, we have

lim
μk→0,xk→x̄

p̃
(
xk ,μk

) ≤ α.

Owing to the continuity of function p̃(x,μ) in x, it follows that p(x̄) ≤ α, which means
x̄ ∈ �.

Consequently, inclusion lim supμ↘0 �μ ⊂ � holds.
For any x̄ ∈ �I , we have p(x̄) < α. It follows from Theorem 2.2 that

lim
μ↘0

p̃(x̄,μ) < α.

Consider ε = 1
2 (α – p(x̄)) > 0, given any μk ↘ 0, there exists N ∈N∞ for k ∈ N , one has

p̃(x̄,μk) ≤ p(x̄) + ε =
1
2
(
α + p(x̄)

)
< α
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i.e. x̄ ∈ int(�μk ). So there exist N ⊃ N1 ∈ N∞ and xk ∈ �μk , k ∈ N1 such that xk −→
N1

x̄,

which implies that the inclusion �I ⊂ lim infμ↘0 �μ holds. Since the set lim infμ↘0 �μ is
closed, it follows by Assumption 5 that

� = cl�I ⊂ lim inf
μ↘0

�μ.

As a result, limμ↘0 �μ = � holds. �

For sets A, B ⊂ �d , let d(x, A) = infx′∈A ‖x – x′‖ denote the distance from x ∈ �d to A,
and D(A, B) = supx∈A d(x, B) denote the deviation of the set A from the set B, see [19].
Note that it is a measure of the distance between two sets. Let S and ν denote the set of
optimal solutions and optimal value of problem (P), respectively. It is easy to prove the
following theorem.

Theorem 2.4 Suppose that Assumptions 1 to 5 are satisfied. Then, for any x ∈ X,
limμ↘0 νμ = ν and limμ↘0 D(Sμ, S) = 0.

Proof Define

h̄(x) = h(x) + I�(x), h̄μ(x) = h(x) + I�μ (x),

where

IA(x) =

⎧
⎨

⎩
0 if x ∈ A,

+∞ if x /∈ A.

In view of Theorem 2.3 and [20, Proposition 7.4(f )], we have that I�μ (·) epi-converges to
I�(·) as μ ↘ 0. Since h(·) is continuous, it follows that h̄μ(·) epi-converges to h̄(·) as μ ↘ 0.
Note that �μ and � are compact, we have that h̄μ(·) and h̄(·) are lower semi-continuous
and proper. Then, by [20, Theorem 7.33], we have νμ → ν and

lim sup
μ↘0

Sμ ⊂ S
(
as c(x, ξ ) < 0

)
or lim inf

μ↘0
Sμ ⊃ S

(
as c(x, ξ ) > 0

)
.

Since Sμ and S are subsets of the compact set X, they are uniformly compact. According
to [20, Example 4.13], we have that limμ↘0 D(Sμ, S) = 0. This concludes the proof of the
theorem. �

Theorem 2.4 shows that the optimal solutions of problem (̃Pμ) provide good approxima-
tion to those of problem (P) when μ ↘ 0. However, problem (̃Pμ) is generally a nonconvex
problem. Therefore, finding an optimal solution to the problem may be difficult. We of-
ten only find KKT points of problem (̃Pμ). In the rest of this subsection, we analyze the
convergence of the KKT points of problem (̃Pμ) to those of problem (P) as μ ↘ 0.

Let � and �μ denote the sets of KKT pairs of problem (P) and (̃Pμ), respectively, as
follows:

� =

{
(x,λ) ∈ � × �+ : 0 ∈ ∇h(x) + λ∂p(x) + NX(x)

λ
[
p(x) – α

]
= 0

}

,



Ren et al. Journal of Inequalities and Applications         (2022) 2022:38 Page 8 of 14

�μ =

{
(x,λ) ∈ �μ × �+ : 0 ∈ ∇h(x) + λ∇x̃p(x,μ) + NX(x)

λ
[
p̃(x,μ) – α

]
= 0

}

,

where ∂p(x) represents the sub-differential of function p at x and NX(x) denotes the normal
cone to X at x.

Theorem 2.5 Suppose that Assumptions 1 to 5 are satisfied. Then lim supμ↘0 �μ ⊂ �.

Proof For any (x,λ) ∈ lim supμ↘0 �μ, there exist μk ↘ 0 and (xk ,λk) ∈ �μk such that
(xk ,λk) → (x,λ). The inclusion (xk ,λk) ∈ �μk means

⎧
⎨

⎩
0 ∈ ∇h(xk) + λk∇x̃p(xk ,μk) + NX(xk),

λk [̃p(xk ,μk) – α] = 0,

which are proved from the following four parts.
Part I, by Assumption 1, we have h(x) is continuously differentiable. Then ∇h(x) is con-

tinuously differentiable. So ∇h(xk) → ∇h(x) as xk → x holds.
Part II, by Theorem 2.2, we know that limμ↘0 p̃(x,μ) = p(x). Then p̃(xk ,μk) → p(x) as

xk → x, μk ↘ 0.
Part III, by Assumption 4, we obtain by calculation that, for μ > 0,

∇x̃p(x,μ) = ∇xE
[
ψ

(
c(x, ξ ),μ

)]
= E

[∇xψ
(
c(x, ξ ),μ

)]

and

lim
μ↘0

∇xψ
(
c(x, ξ ),μ

)
= lim

μ↘0

μ–1e–μ–1c(x,ξ )

(1 + e–μ–1c(x,ξ ))2
∇xc(x, ξ ) =

⎧
⎨

⎩
0 c(x, ξ ) 
= 0,

+∞ c(x, ξ ) = 0.

Thus, it follows from Assumption 3 that

lim
μ↘0

∇x̃p(x,μ) = 0,

Consequently, limμ↘0 ∇x̃p(x,μ) ∈ ∂p(x). Since ∇x̃p(x,μ) is continuous,

lim
xk→x, μk↘0

∇x̃p
(
xk ,μk

) ∈ ∂p(x).

Part IV, by Theorem 2.3, we can obtain limμ↘0 �μ = �, since xk ∈ �μk and xk → x.
Therefore x ∈ �. By [20, Proposition 6.6], we have

lim sup
xk→x

NX
(
xk) = NX(x),

where x, xk ∈ X. In conclusion, (x,λ) ∈ �, so lim supμ↘0 �μ ⊂ � holds. This concludes the
proof. �

Theorem 2.4 and 2.5 ensure that problem (̃Pμ) can approximate problem (P) very well.
Therefore, we can solve problem (̃Pμ) instead of problem (P) provided that the smoothing
parameter μ is sufficiently close to 0.



Ren et al. Journal of Inequalities and Applications         (2022) 2022:38 Page 9 of 14

We see that problem (̃Pμ) is also a smooth approximation of the original PCOP. Similarly,
as problem (̃Pμ) may be nonconvex, its optimal solutions may not be guaranteed by the
optimization procedures such as the SCA algorithm that will be introduced in Sect. 2.2.
We observe that problem (̃Pμ) directly approaches the original PCOP as μ ↘ 0. However,
the probability function Pr{c(x, ξ ) > 0} in the PCOP is in general nonsmooth, nonconvex,
and also may not be locally Lipschitz continuous. Consequently, none of its gradient, sub-
differential in convex context, and Clarke’s generalized gradient [21] are available, which
makes the conventional KKT conditions for smooth optimization, the subdifferential con-
ditions for nonsmooth convex optimization, and the generalized gradient conditions for
locally Lipschitz continuous optimization not applicable to the PCOP. In this paper, we
try to give a depiction of the possible optimality conditions for the PCOP and show the
convergence of the stationary points for problem (̃Pμ) in the proposed new context. In the
rest of the paper we shall focus on the computational and implementation issues of the
proposed smoothing approach.

2.2 Sequential convex approximation method
In this section, we applied sequential convex approximation (SCA) constructed in [16] to
solve the approximation problem (̃Pμ).

Let

H1(x, ξ ,μ) :=
1

1 + e–μ–1c(x,ξ )
+

1
8
μ–2c+(x, ξ )2

and

H2(x, ξ ,μ) :=
1
8
μ–2c+(x, ξ )2,

where c+(x, ξ ) = max{0, c(x, ξ )}. Then, for any μ > 0, both H1(x, ξ ,μ) and H2(x, ξ ,μ) are
convex in x.

In fact, let z = c(x, ξ ), we can obtain that

∂

∂z
H2(z,μ) =

1
4
μ–2z+ ≥ 0.

Thus H2(z,μ) is monotone increasing. It follows from [22, Proposition 2.1.7] that H2(x,
ξ ,μ) is convex in x. Similarly, ψ(x, ξ ,μ) is also convex in x by [22, Proposition 2.1.1],
H1(x, ξ ,μ) is also convex in x. And for any μ > 0, both H1(x, ξ ,μ) and H2(x, ξ ,μ) are con-
tinuously differentiable in x for every ξ ∈ �. Denote

g1(x,μ) = 
1(x,μ) – α, g2(x,μ) = 
2(x,μ),

where 
1(x,μ) = E[H1(x, ξ ,μ)], 
2(x,μ) = E[H2(x, ξ ,μ)].
Problem (̃Pμ) can be reformulated as the following DC program:

min
x∈X

h(x)

s.t. g(x,μ) := g1(x,μ) – g2(x,μ) ≤ 0.
(Pμ)
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Let Z(μ) be the feasible set of problem (Pμ) and

Z(μ)y =
{

x ∈ X : g1(x,μ) –
[
g2(y,μ) + ∇xg2(y,μ)T (x – y)

] ≤ 0
}

for any y ∈ Z(μ). Note that

g2(y,μ) + ∇xg2(y,μ)T (x – y)

is the first order Taylor expansion at any point y ∈ Z(μ) to approximate g2(x,μ). Since
g2(x,μ) is convex in x, we have

g2(x,μ) ≥ g2(y,μ) + ∇xg2(y,μ)T (x – y), x ∈ X,

which implies that

g1(x,μ) – g2(x,μ) ≤ g1(x,μ) –
[
g2(y,μ) + ∇xg2(y,μ)T (x – y)

]
.

Then Z(μ) ⊃ Z(μ)y for any y ∈ Z(μ). Moreover, since

g1(x,μ) –
[
g2(y,μ) + ∇xg2(y,μ)T (x – y)

]

is a smooth convex function of x, we have Z(μ)y is a convex subset of Z(μ).
For any y ∈ Z(μ), define problem as follows:

min h(x)

s.t. x ∈ Z(μ)y.
(CP(μ, y))

Then (CP(μ, y)) is a convex smooth approximation of problem (Pμ). It leads us to using
the following algorithm to solve problem (Pμ).

Algorithm SCA ([16])
step 0 Given an initial point x0 ∈ Z(μ) and set k = 0;
step 1 Stop if xk is satisfies the KKT condition of problem (Pμ);
step 2 Solve CP(μ, xk) to obtain its optimal solution xk+1;
step 3 Set k = k + 1 and return to step 1.

Algorithm SCA is easy to implement, since we only need to solve the convex optimiza-
tion problem CP(μ, xk) in each iteration. It also has some desired properties, which we
summarize in the following theorems without proofs. Note that we say Slater’s condition
holds at y ∈ Z(μ) if intZ(μ)y 
= ∅, where intA denotes the interior of a set A.

Theorem 2.6 For problem (Pμ), let {yk} ⊂ X be a sequence converging to ȳ ∈ Z(μ) at which
Slater’s condition holds. Then limk→+∞ Z(μ)yk = Z(μ)ȳ.

Theorem 2.7 Suppose that the Slater’s condition holds and {xk} is a sequence of solutions
generated by Algorithm SCA for problem (Pμ) starting from x0 ∈ Z(μ). Then,
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(i) {xk} ⊂ Z(μ) and {h(xk)} is a convergent nonincreasing sequence;
(ii) if xk+1 = xk , then xk is a KKT point of problem (Pμ);

(iii) suppose that x̄ is a cluster point of {xk}, then x̄ is a KKT point of problem (Pμ).

Theorem 2.7 shows that we make improvement at each iteration and the sequence of
objective values converges to a certain value, and if the algorithm terminates after a finite
number of iterations, we actually reach a KKT point. It also ensures that all limit points
of the sequence of solutions generated are KKT points. Therefore, it demonstrates that
the algorithm has the desired convergence property. If problem (Pμ) has only a KKT point
that is better than the initial solution or only has a single KKT point, Algorithm SCA
guarantees to converge to a global optimal solution.

3 Results and discussion
In this section we implement Algorithm SCA in MATLAB and use the inherent function
fmincon to solve the convex sub-problem in each iteration. All the programs are run on
a laptop with Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz and 8.00 GB of
RAM.

Example 3.1 Consider the following problem:

min
x≥0

–
10∑

j=1

xj

s.t. Pr

{ 10∑

j=1

ξ 2
ij x

2
j ≤ 100, i = 1, . . . , 10

}

≥ 1 – α,

(1)

where x = (x1, . . . , x10)T ∈ �10, ξi = (ξi1, . . . , ξi10)T ∈ �10 for i = 1, . . . , 10 are random vari-
ables. Assume that the random variables ξij, i = 1, . . . , 10, j = 1, . . . , 10 are independent and
identically distributed (i.i.d.) standard normal random variables.

It is easy to know that the optimal solution x∗ of problem (1) is

x∗
1 = x∗

2 = · · · = x∗
10 =

[
100

F–1
χ2

10
((1 – α) 1

10 )

] 1
2

, (2)

where F–1
χ2

10
is the inverse chi-squared distribution function with 10 degrees of freedom.

By calculating according to Eq. (2), we can obtain that the optimal solution and optimal
value of problem (1) are (2.082, 2.082, . . . , 2.082)T and –20.82 respectively as α = 0.1, and
(1.995, 1.995, . . . , 1.995)T and –19.95 respectively as α = 0.05.

Denote ci(x, ξ ) =
∑10

j=1 ξ 2
ij x2

j – 100, i = 1, . . . , 10, then problem (1) is a JPCOP as defined
in problem (PCOP). For different α, we run the Algorithm SCA a great number of repli-
cations for sample size N = 1000 and N = 10,000 respectively. The algorithm is stopped if
‖xk+1 – xk‖2 ≤ 10–6. Numerical results are rounded to two decimal places.

Table 1 reports typical performances for different scalar μ = 0.1, 0.05, 0.025 as α =
0.1, 0.05 respectively. It is obvious that the performances of the algorithm are very sta-
ble for parameter μ small enough. It always converges to similar objective values. And the
smaller the confidence α the faster the convergence under the same conditions.
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Table 1 Numerical results for different α and μ

α μ Number of iterations Final residue Objective value

N = 1000 N = 10,000 N = 1000 N = 10,000 N = 1000 N = 10,000

0.1 0.1 109 135 1.95e–10 5.14e–09 –20.81 –20.82
0.05 201 259 9.69e–07 8.67e–08 –20.79 –20.81
0.025 416 458 9.99e–08 6.99e–08 –20.72 –20.80

0.05 0.1 46 79 8.87e–06 8.10e–06 –19.95 –19.95
0.05 170 166 8.47e–07 8.22e–07 –19.92 –19.95
0.025 322 436 8.39e–08 6.79e–08 –19.83 –19.94

Figure 2 Performances of SCA algorithm based on the sigmoid function ψ (z,μ) for α = 0.1

Figure 3 Performances of SCA algorithm based on the sigmoid function ψ (z,μ) for α = 0.05

Figure 2 and Fig. 3 illustrate the objective values of all iterations for different parameters
μ as α = 0.1 and α = 0.05 respectively. The algorithm starts with the objective function
dropping rapidly and then gradually slows down.

By comparison, it is found that when the sample size is sufficiently large, the approxi-
mation problem has desirable convergence. Furthermore, numerical results suggest that
the smooth approximation approach based on a sigmoid function for solving optimization
with probabilistic constraints is implementable.

4 Conclusions
We used a sigmoid function to approximate the characteristic function and built the cor-
responding smooth approximation problem. Sequential convex approximation (SCA) al-
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gorithm was introduced to solve the smooth approximation problem. Numerical results
showed that the smooth approximation approach for optimization with probabilistic con-
straints based on the sigmoid function was implementable and guaranteed desired conver-
gence properties under certain conditions. In the future, we will further explore a class of
smooth approximation methods for solving probabilistic constrained optimization prob-
lems and compare different approximation algorithms numerically.
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