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Abstract

For every linear operator between inner product spaces whose operator norm is less
than or equal to one, we show that the restriction to the Möbius gyrovector space is
Lipschitz continuous with respect to the Poincaré metric. Moreover, the Lipschitz
constant is precisely the operator norm.
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1 Introduction
The notion of Lipschitz continuity of mappings between two metric spaces is well known
and signi“cant in all “elds of mathematics, particularly in geometry and analysis. It is
one of the most fundamental facts in functional analysis that an arbitrary bounded linear
operator T between normed spaces is Lipschitz continuous. Thus, for all vectorsu, v in
the normed space on whichT is de“ned, the following norm inequality holds:

� Tu …Tv� � � T �� u …v� . (1.1)

Moreover, the Lipschitz constant is precisely the operator norm ofT . That is, the identity

sup
u�=v

� Tu …Tv�
� u …v�

= � T �

holds.
Let D = {z � C;|z| < 1} be the open unit disk of the complex number “eldC. The Möbius

addition on D is de“ned by the equation

a � b =
a + b
1 + ab

for any a,b � D, which appears in various branches of mathematics. The Poincaré disk
(D,� ) is one of the earliest examples of gyrogroups. The theory of gyrogroups and gy-
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rovector spaces was initiated in connection with Einstein•s special theory of relativity and
intensively studied by A.A. Ungar. Especially, in [8…10], Ungar established the concept of
real inner product gyrovector spaces, including Möbius gyrovector spaces. Let us brie”y
recall the de“nition of the Möbius gyrovector spaces. No knowledge of general theory of
gyrogroups or gyrovector spaces is required to read this paper except for some basic facts
on Möbius addition, Möbius scalar multiplication, and (gyro) distance function; however,
it is fundamental for our motivation and background. In addition, notations from gyrovec-
tor space theory simplify expressions of our formulae remarkably. For elementary facts on
functional analysis and CBS type inequalities, one can refer to [2, 7]. Let H be a complex
inner product space with a positive de“nite inner product�· , ·� , and letHs be the open
s-ball of H,

Hs =
{
u � H; � u� < s

}

for any “xed s> 0, where� u� = �u,u�
1
2 . Although de“nitions and results are often de-

scribed for real inner product spaces in the literature, they are also valid for complex inner
product spaces as far as we are concerned in this paper, with some trivial modi“cations
such as the change from�u,v� to Re�u,v� .

Definition 1.1 ([11, De“nition 3.40, De“nition 6.83]) The Möbius addition � M and the
Möbius scalar multiplication	 M are given by the equations

u � M v =
(1 + 2

s2
Re�u,v� + 1

s2
� v� 2)u + (1 …1

s2
� u� 2)v

1 + 2
s2

Re�u,v� + 1
s4

� u� 2� v� 2
,

r 	 M u = stanh
(

r tanh…1� u�
s

)
u

� u�
(if u �= 0), r 	 M 0 = 0

for any u,v � Hs and r � R. The addition � M and the scalar multiplication	 M for real
numbers are de“ned by the equations

a � M b =
a + b

1 + 1
s2

ab
, r 	 M a = stanh

(
r tanh…1a

s

)

for any a,b � (…s,s) andr � R.

We simply denote� M , 	 M by � s, 	 s, respectively. The ballHs expands to the whole
spaceH as the parameters 
 � , and each result in linear functional analysis can be
recaptured from the counterpart in gyrolinear analysis.

Theorem 1.2 (cf. [11, after Remark 3.41], [10, p. 1054]) The Möbius addition(resp.Möbius
scalar multiplication) reduces to the ordinary vector addition(resp. scalar multiplication)
as s
 � , that is,

u � s v 
 u + v (s
 � ),

r 	 s u 
 ru (s
 � )

for any u,v � H and r � R.
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Definition 1.3 ([11, (2.1), (6.286), (6.293)]) The inverse element ofu with respect to � s

obviously coincides with …u. We use the notation

u � s v = u � s (…v)

as in vector spaces. Moreover, the Möbius gyrodistance functiond and Poincaré distance

function (or Möbius metric) h are de“ned by the equations

d(u,v) = � v � s u� ,

h(u,v) = tanh…1d(u,v)
s

.

Theorem 1.4 (cf. [11, (6.294)]. See also [4, 19]) The Poincaré distance function h satis“es

the triangle inequality, so that(Hs,h) is a metric space. In addition, if H is a Hilbert space,

then(Hs,h) is complete as a metric space.

In recent years, various notions in the Möbius gyrovector spaces have been established

as counterparts to those in Hilbert spaces, such as orthogonal gyrodecomposition with re-

spect to closed gyrovector subspaces, orthogonal gyroexpansion with respect to orthogo-

nal bases, Cauchy…Schwarz type inequalities, and continuous quasi gyrolinear functionals

(cf. [1, 12…18]). The Cauchy…Bunyakovsky…Schwarz (CBS in the sequel) inequality is one

of the most fundamental inequalities in mathematics. Recently, a CBS type inequality re-

lated to the Möbius operations was obtained.

Theorem 1.5 (cf. [16, Theorem 3.6, Theorem 3.7], [17, Theorem 15]) For any u,v � H,

s> max{� u� , � v�} and w� H with � w� � 1, the following inequality holds:

h
(
�u,w� , �v,w�

)
� � w� h(u,v)

or

∣∣�u,w� � s �v,w�
∣∣ � � w� 	 s � u � s v� .

Moreover, for any s> 0 and w� H with � w� � 1, the following identity holds:

sup
� u� ,� v� <s,u�=v

h(�u,w� , �v,w� )
h(u,v)

= � w� .

This result implies that every linear functionalu 

 � u,w� with � w� � 1 is Lipschitz

continuous on the Möbius gyrovector space with respect to the Poincaré metric, and that

the Lipschitz constant is precisely� w� . It is so desirable to extend this result of linear

functionals to linear operators with norm less than or equal to one. LetH, K be inner

product spaces, lets,s� > 0, and letT be a bounded linear operator fromH into K. Suppose

that � T � � s�

s . Then, it is obvious that the restriction ofT mapsHs into Ks� , and one

can expect that they form one of the most fundamental classes of mappings between the

Möbius gyrovector spaces. Although the restriction of bounded linear operators does not

preserve the Möbius addition and the Möbius scalar multiplication in general, they can be
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considered as the most natural counterpart to bounded linear operators between Hilbert

spaces. Maps that preserve gyro addition on gyrovector spaces are known to be special in a

sense (cf. [5, Theorem 1], [3, Theorem 6], [17, Theorem 11]). Assumes= s� for simplicity.

In this article, for every linear operator between inner product spaces whose operator

norm is less than or equal to one, we show that the restriction to the Möbius gyrovector

space is Lipschitz continuous with respect to the Poincaré metric. Moreover, the Lipschitz

constant is precisely the operator norm. In addition, the classical formula (1.1) can be

recaptured from our novel result by lettings
 � .

The main result in this article is Theorem3.3, which is a satisfactory extension of [16,

Theorem 3.6]. Also the core of Theorem3.3 is Theorem 3.2, which is an extension of

[15, Theorem 5] to an operator version. Although the proofs have similarity to the corre-

sponding one in [15] or [16], we present them for the sake of completeness and reader•s

convenience. The technical ingredient in this paper is the use of an inequality derived from

the classical CBS inequality, and the rest of the proofs are just re“nement and conversion

to the operator version of those in [15] and [16].

2 Preliminaries
In this section, we collect some necessary results. The following lemma is an easy

consequence of the de“nition. One can refer to [12, Proposition 2.3], [13, Lemma 12,

Lemma 14(i)].

Lemma 2.1 Let s> 0.The following formulae hold:

(i) � u � s v� 2 = � u� 2+2Re�u,v�+� v� 2

1+ 2
s2

Re�u,v�+ 1
s4

� u� 2� v� 2

(ii) u
s � 1

v
s = u� sv

s

(iii) r 	 1
u
s = r	 su

s

for any u,v � Hs and r � R.

Note that the Möbius operations generally are not commutative, associative, or distribu-

tive. Furthermore, the ordinary scalar multiplication does not distribute the Möbius ad-

dition. However, the restricted Möbius operations to the interval (…s,s) together with the

ordinary addition and multiplication have a familiar nature.

Lemma 2.2 The following identities hold:

a � s b = b � s a,

a � s (b � s c) = (a � s b) � s c,

0 � s a = a � s 0 = a, (…a) � s a = a � s (…a) = 0,

1 	 s a = a,

(r1r2) 	 s a = r1 	 s (r2 	 s a),

(r1 + r2) 	 s a = r1 	 s a � s r2 	 s a,

r 	 s (a � s b) = r 	 s a � s r 	 s b

for any a,b,c � (…s,s), r1,r2,r � R.
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In addition, we need the following lemma.

Lemma 2.3 ([16, Lemma 1.5]) If …s< bj � aj < s(j = 1,2),then

b1 � s b2 � a1 � s a2.

The equality holds if and only if aj = bj (j = 1,2).

The following theorem is crucial when we extend a particular case of the main theorem
to the full strength with the Möbius scalar multiplication. The proof is essentially already
given in [16, Theorem 3.1].

Theorem 2.4 Let a, b, p, and q be real numbers with0 � a,b,p,q � 1.If t is a real number
with |t| � 1, then the following inequality holds:

(p + q)

√

1 …
(p + q)2

2
abt +

(p + q)4

16
a2b2

·
{√

1 … 2p2abt + p4a2b2
√

1 … 2q2abt + q4a2b2 + pq
(
a2 … 2abt + b2)}

�
{
p
√

1 … 2q2abt + q4a2b2 + q
√

1 … 2p2abt + p4a2b2
}

·
{

1 …
(p + q)2

2
abt +

(p + q)4

16
a2b2 +

(p + q)2

4

(
a2 … 2abt + b2)

}
.

The equality holds if and only if one of the following conditions is satis“ed:
(i) p = q

(ii) a = b = 0.

Proof Put α = a, θ = arccost, β = beiθ and apply [16, Theorem 3.1]. �

3 Lipschitz continuity of linear contractions
Let H, K be complex inner product spaces, letu, v be elements inH, and let T be a
bounded linear operator fromH into K, unless otherwise stated.

Lemma 3.1 If u,v � H and � T � � 1, then the following inequality holds:

∣∣�u,v� …�Tu,Tv�
∣∣ �

√(
� u� 2 …� Tu� 2

)(
� v� 2 …� Tv� 2

)
. (3.1)

Proof Although this assertion is almost trivial, we give a proof for the sake of completeness
and readers• convenience. Considering the completion of inner product spaces if neces-
sary, we can use the positive semide“nite square root ofI …T � T , where I denotes the
identity operator onH. By the CBS inequality, we obtain

∣∣�u,v� …�Tu,Tv�
∣∣

=
∣∣〈(I …T � T

)
u,v

〉∣∣ =
∣∣〈(I …T � T

) 1
2 u,

(
I …T � T

) 1
2 v

〉∣∣

�
∥∥(

I …T � T
) 1

2 u
∥∥∥∥(

I …T � T
) 1

2 v
∥∥ =

√(
� u� 2 …� Tu� 2

)(
� v� 2 …� Tv� 2

)
.

This completes the proof. �
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The following theorem can be considered as a core of the main theorem in the present

article, and it is an extension of [15, Theorem 5] to an operator version. It is necessary to

consider the polar forms of complex numbers�u,v� and �Tu,Tv� . We reduce the proof of

inequality (3.2) related with contractive linear operators between possibly in“nite dimen-

sional inner product spaces to a problem of constrained minimum value of a function of

eight real variablesa, b, c, d, ρ, r, t , x. The tuple (a,b,c,d,ρ,r, t ,x) does not move all over

the entire a priori rectangular, but is constrained by conditions derived from the norms of

u and v, the linearity, and contractivity ofT . We extract constraints (3.3) by the previous

lemma.

Theorem 3.2 If � u� , � v� < 1 and � T � � 1, then the following inequality holds:

� Tu� 2 … 2Re�Tu,Tv� + � Tv� 2

1 … 2Re�Tu,Tv� + � Tu� 2� Tv� 2
�

� u� 2 … 2Re�u,v� + � v� 2

1 … 2Re�u,v� + � u� 2� v� 2
. (3.2)

The equality holds if and only if one of the following conditions is satis“ed:

(i) u = v

(ii) � Tu� = � u� and � Tv� = � v� .

Proof Put

a = � u� , b = � v� , c= � Tu� , and d = � Tv� .

We can take real numbers 0� ρ,r � 1 and 0� t , x < 2π such that

�u,v� = abρeit and �Tu,Tv� = cdreix.

Then it follows from (3.1) that

|abρ cost …cdrcosx| �
∣∣abρeit …cdreix

∣∣ =
∣∣�u,v� …�Tu,Tv�

∣∣

�
√(

� u� 2 …� Tu� 2
)(

� v� 2 …� Tv� 2
)

=
√(

a2 …c2
)(

b2 …d2
)
.

Hence, we can obtain

abρ cost …
√(

a2 …c2
)(

b2 …d2
)

� cdrcosx. (3.3)

In order to prove inequality (3.2), it is necessary and su�cient to show

(
a2 … 2abρ cost + b2)(1 … 2cdrcosx + c2d2)

…
(
1 … 2abρ cost + a2b2)(c2 … 2cdrcosx + d2) � 0.

(3.4)

The left-hand side of (3.4) can be calculated as follows:

a2 … 2a2cdrcosx + a2c2d2

… 2abρ cost + 4abcdρr cost cosx … 2abc2d2ρ cost
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+ b2 … 2b2cdrcosx + b2c2d2

…c2 + 2cdrcosx …d2

+ 2abc2ρ cost … 4abcdρr cost cosx + 2abd2ρ cost

…a2b2c2 + 2a2b2cdrcosx …a2b2d2

= a2 + a2c2d2 + b2 + b2c2d2 …c2 …d2 …a2b2c2 …a2b2d2

… 2abρ cost
(
1 …c2)(1 …d2)

+ 2cdrcosx
(
1 …a2)(1 …b2).

By using (3.3), we can continue to estimate:

� a2 + a2c2d2 + b2 + b2c2d2 …c2 …d2 …a2b2c2 …a2b2d2

… 2abρ cost
(
1 …c2)(1 …d2)

+ 2
{
abρ cost …

√(
a2 …c2

)(
b2 …d2

)}(
1 …a2)(1 …b2)

= a2 + a2c2d2 + b2 + b2c2d2 …c2 …d2 …a2b2c2 …a2b2d2

… 2abρ cost
{(

1 …c2)(1 …d2) …
(
1 …a2)(1 …b2)}

… 2
√(

a2 …c2
)(

b2 …d2
)(

1 …a2)(1 …b2)

� a2 + a2c2d2 + b2 + b2c2d2 …c2 …d2 …a2b2c2 …a2b2d2

… 2ab
{(

1 …c2)(1 …d2) …
(
1 …a2)(1 …b2)}

… 2
√(

a2 …c2
)(

b2 …d2
)(

1 …a2)(1 …b2).

It follows from arithmetic…geometric mean inequality that

� a2 + a2c2d2 + b2 + b2c2d2 …c2 …d2 …a2b2c2 …a2b2d2

… 2ab
{(

1 …c2)(1 …d2) …
(
1 …a2)(1 …b2)}

…
{(

a2 …c2) +
(
b2 …d2)}(1 …a2)(1 …b2)

= (a …b)2{(1 …c2)(1 …d2) …
(
1 …a2)(1 …b2)}

� 0.

Thus the desired inequality (3.4) is shown, and so inequality (3.2) holds.
It is obvious that condition (i) implies the trivial equality in (3.2). Suppose that condition

(ii) is satis“ed. If u = 0, then the equality in (3.2) holds as� Tv� = � v� , so we may assume
u �= 0. We can obtain

� u� 2 = � Tu� 2 =
〈
T � Tu,u

〉
�

∥∥T � Tu
∥∥� u� � � u� 2.

By the equality condition of the CBS inequality, it is easy to seeT � Tu = u. Hence we have

�Tu,Tv� =
〈
T � Tu,v

〉
= �u,v� . (3.5)
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Condition (ii) and formula (3.5) clearly imply the equality in (3.2). Conversely, suppose
that the equality in (3.2) holds. If u = 0 or v = 0, then condition (ii) is satis“ed. Ifu,v �= 0,
then the proof of inequality (3.4) shows that the following conditions (3.6)…(3.7) hold:

(ρ cost … 1)
{(

1 …c2)(1 …d2) …
(
1 …a2)(1 …b2)} = 0, (3.6)

a2 …c2 = b2 …d2. (3.7)

By formula (3.6), we have

(
1 …c2)(1 …d2) …

(
1 …a2)(1 …b2) = 0 or ρ cost = 1.

If (1 …c2)(1 …d2) … (1 …a2)(1 …b2) = 0, thena = c andb = d, so condition (ii) is satis“ed. If
ρ cost = 1, then �u,v� = � u�� v� , and it follows thatv = λu for some positive real number
λ. Therefore, from formula (3.7) we obtain

b2 …d2 = � v� 2 …� Tv� 2 = λ2(� u� 2 …� Tu� 2) = λ2(a2 …c2) = λ2(b2 …d2).

The caseb2 …d2 = 0 leads to condition (ii). The caseb2 …d2 �= 0 yieldsλ = 1 or condition
(i). This completes the proof. �

The following theorem can be regarded as the most natural counterpart to the classical
norm inequality (1.1) for mappings between Möbius gyrovector spaces obtained by the
restriction of contractive linear operators between inner product spaces. Actually, they
are Lipschitz continuous with respect to the Poincaré metric. In the rest of the paper, we
simply denote� 1, 	 1 by � , 	 , respectively.

Theorem 3.3 If s> max{� u� , � v�} and � T � � 1, then the following inequality holds:

h(Tu,Tv) � � T � h(u,v). (3.8)

That is,

� Tu � s Tv� � � T � 	 s � u � s v�

or

√
� Tu� 2 … 2Re�Tu,Tv� + � Tv� 2

1 …2
s2

Re�Tu,Tv� + 1
s4

� Tu� 2� Tv� 2
� � T � 	 s

√
� u� 2 … 2Re�u,v� + � v� 2

1 …2
s2

Re�u,v� + 1
s4

� u� 2� v� 2
.

The equality holds if and only if one of the following conditions is satis“ed:
(i) u = v,

(ii) T = 0,
(iii) � Tu� = � u� and � Tv� = � v� .

Proof At “rst, we show that if s= 1, � u� , � v� < 1, and� T � � 1, then

√
� Tu� 2 … 2Re�Tu,Tv� + � Tv� 2

1 … 2Re�Tu,Tv� + � Tu� 2� Tv� 2
� � T � 	

√
� u� 2 … 2Re�u,v� + � v� 2

1 … 2Re�u,v� + � u� 2� v� 2
. (3.9)
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The proof uses an argument in [6] that shows the operator monotonicity of the functions

tp with 0 � p � 1. LetEdenote the set of all real numbersp in the interval [0, 1] for which if

T :H 
 K is a bounded linear operator with� T � = p, then inequality (3.9) holds. Trivially

0 � E, and the previous theorem implies that 1� E. It is easy to check thatE is a closed

subset of [0, 1]. In order to complete the proof of inequality (3.9), it su�ces to show that

E is convex. Supposep,q � E. For an arbitrary bounded linear operatorT :H 
 K with

� T � = p+q
2 , put T1 = 2p

p+qT , T2 = 2q
p+qT . Then � T1� = p, � T2� = q, so we have

√
� T1u� 2 … 2Re�T1u,T1v� + � T1v� 2

1 … 2Re�T1u,T1v� + � T1u� 2� T1v� 2
� p 	

√
� u� 2 … 2Re�u,v� + � v� 2

1 … 2Re�u,v� + � u� 2� v� 2
,

√
� T2u� 2 … 2Re�T2u,T2v� + � T2v� 2

1 … 2Re�T2u,T2v� + � T2u� 2� T2v� 2
� q 	

√
� u� 2 … 2Re�u,v� + � v� 2

1 … 2Re�u,v� + � u� 2� v� 2
.

We have to show

√
� Tu� 2 … 2Re�Tu,Tv� + � Tv� 2

1 … 2Re�Tu,Tv� + � Tu� 2� Tv� 2
�

p + q
2

	

√
� u� 2 … 2Re�u,v� + � v� 2

1 … 2Re�u,v� + � u� 2� v� 2
. (3.10)

By Lemma2.2and Lemma2.3, we obtain

p + q
2

	

√
� u� 2 … 2Re�u,v� + � v� 2

1 … 2Re�u,v� + � u� 2� v� 2

=
1
2

	
(

p 	

√
� u� 2 … 2Re�u,v� + � v� 2

1 … 2Re�u,v� + � u� 2� v� 2

)

�
1
2

	
(

q 	

√
� u� 2 … 2Re�u,v� + � v� 2

1 … 2Re�u,v� + � u� 2� v� 2

)

�
1
2

	

√
� T1u� 2 … 2Re�T1u,T1v� + � T1v� 2

1 … 2Re�T1u,T1v� + � T1u� 2� T1v� 2

�
1
2

	

√
� T2u� 2 … 2Re�T2u,T2v� + � T2v� 2

1 … 2Re�T2u,T2v� + � T2u� 2� T2v� 2
.

Therefore, in order to show (3.10), it is su�cient to prove

2 	

√
� Tu� 2 … 2Re�Tu,Tv� + � Tv� 2

1 … 2Re�Tu,Tv� + � Tu� 2� Tv� 2
(3.11)

�

√
� T1u� 2 … 2Re�T1u,T1v� + � T1v� 2

1 … 2Re�T1u,T1v� + � T1u� 2� T1v� 2
�

√
� T2u� 2 … 2Re�T2u,T2v� + � T2v� 2

1 … 2Re�T2u,T2v� + � T2u� 2� T2v� 2
.

If � Tu� = 0, then inequality (3.11) reduces to the following inequality:

2 	 � Tv� � � T1v� � � T2v�
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or

2 	 � Tv� �
2p

p + q
� Tv� �

2q
p + q

� Tv� ,

which is equivalent to

2� Tv�
1 + � Tv� 2

�
2p

p+q� Tv� + 2q
p+q� Tv�

1 + 2p
p+q� Tv� · 2q

p+q� Tv�
.

The last inequality actually holds by (p+ q)2 � 4pq. So we may assume� Tu� , � Tv� �= 0. Put

a =
2

p + q
� Tu� , b =

2
p + q

� Tv� , t =
4

(p + q)2

Re�Tu,Tv�
ab

.

Obviously 0 <a,b < 1 and|t| � 1 by the CBS inequality. Furthermore, we have

� Tu� =
p + q

2
a, � Tv� =

p + q
2

b, Re�Tu,Tv� =
(p + q)2

4
abt,

� T1u� = pa, � T1v� = pb, Re�T1u,T1v� = p2abt,

� T2u� = qa, � T2v� = qb, Re�T2u,T2v� = q2abt.

Hence we obtain

2 	

√
� Tu� 2 … 2Re�Tu,Tv� + � Tv� 2

1 … 2Re�Tu,Tv� + � Tu� 2� Tv� 2
=

2
√

� Tu� 2…2Re�Tu,Tv�+� Tv� 2

1…2Re�Tu,Tv�+� Tu� 2� Tv� 2

1 + � Tu� 2…2Re�Tu,Tv�+� Tv� 2

1…2Re�Tu,Tv�+� Tu� 2� Tv� 2

=

(p + q)
√

a2…2abt+b2

1…(p+q)2
2 abt+ (p+q)4

16 a2b2

1 +
(p+q)2

4 (a2…2abt+b2)

1…(p+q)2
2 abt+ (p+q)4

16 a2b2

and

√
� T1u� 2 … 2Re�T1u,T1v� + � T1v� 2

1 … 2Re�T1u,T1v� + � T1u� 2� T1v� 2
�

√
� T2u� 2 … 2Re�T2u,T2v� + � T2v� 2

1 … 2Re�T2u,T2v� + � T2u� 2� T2v� 2

=

√
� T1u� 2…2Re�T1u,T1v�+� T1v� 2

1…2Re�T1u,T1v�+� T1u� 2� T1v� 2 +
√

� T2u� 2…2Re�T2u,T2v�+� T2v� 2

1…2Re�T2u,T2v�+� T2u� 2� T2v� 2

1 +
√

� T1u� 2…2Re�T1u,T1v�+� T1v� 2

1…2Re�T1u,T1v�+� T1u� 2� T1v� 2 ·
√

� T2u� 2…2Re�T2u,T2v�+� T2v� 2

1…2Re�T2u,T2v�+� T2u� 2� T2v� 2

=
p
√

a2…2abt+b2

1…2p2abt+p4a2b2 + q
√

a2…2abt+b2

1…2q2abt+q4a2b2

1 + p
√

a2…2abt+b2

1…2p2abt+p4a2b2 · q
√

a2…2abt+b2

1…2q2abt+q4a2b2

.
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Therefore, dividing both sides by
�

a2 … 2abt + b2, our proof of inequality (3.11) is reduced

to show that

(p + q)
√

1 …(p+q)2

2 abt + (p+q)4

16 a2b2

1 …(p+q)2

2 abt + (p+q)4

16 a2b2 + (p+q)2

4 (a2 … 2abt + b2)

�
p
√

1 … 2q2abt + q4a2b2 + q
√

1 … 2p2abt + p4a2b2
√

1 … 2p2abt + p4a2b2
√

1 … 2q2abt + q4a2b2 + pq(a2 … 2abt + b2)
,

the last inequality actually holds by Theorem2.4. Thus the setE is convex, which leads to

E= [0,1], so inequality (3.9) holds.

Finally, letu,v � H be arbitrary elements, and lets> max{� u� , � v�} . Applying inequality

(3.9) to u
s , v

s, it is straightforward to deduce inequality (3.8).

For the equality condition, we may assumes= 1. It is immediate to see that the equality

in (3.9) holds provided one of conditions (i), (ii), or (iii) is satis“ed.

Conversely, let12 � p < 1, � u� , � v� < 1, and� T � = p. Suppose that the equality of (3.9)

holds. If we put

p� = 2p … 1, T1 =
2p�

p� + 1
T, T2 =

2
p� + 1

T,

then it is obvious that � T1� = p�, � T2� = 1. By inequality (3.11), inequality (3.9), and

Lemma2.3, we obtain

√
� Tu� 2 … 2Re�Tu,Tv� + � Tv� 2

1 … 2Re�Tu,Tv� + � Tu� 2� Tv� 2

�
1
2

	

√
� T1u� 2 … 2Re�T1u,T1v� + � T1v� 2

1 … 2Re�T1u,T1v� + � T1u� 2� T1v� 2

�
1
2

	

√
� T2u� 2 … 2Re�T2u,T2v� + � T2v� 2

1 … 2Re�T2u,T2v� + � T2u� 2� T2v� 2

�
1
2

	
(

p� 	

√
� u� 2 … 2Re�u,v� + � v� 2

1 … 2Re�u,v� + � u� 2� v� 2

)

�
1
2

	
(

1 	

√
� u� 2 … 2Re�u,v� + � v� 2

1 … 2Re�u,v� + � u� 2� v� 2

)

=
p� + 1

2
	

√
� u� 2 … 2Re�u,v� + � v� 2

1 … 2Re�u,v� + � u� 2� v� 2
,

where the last formula equals the “rst one by the assumption. The equality condition of

Lemma2.3implies

√
� T2u� 2 … 2Re�T2u,T2v� + � T2v� 2

1 … 2Re�T2u,T2v� + � T2u� 2� T2v� 2
=

√
� u� 2 … 2Re�u,v� + � v� 2

1 … 2Re�u,v� + � u� 2� v� 2
,

which yields one of the following conditions:
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(i) u = v,
(ii) � T2u� = � u� and � T2v� = � v�

by the equality condition of Theorem3.2. We have to consider only the case of condition
(ii). The “rst inequality in the previous series of inequalities also has to be an equality.
Namely,

√
� Tu� 2 … 2Re�Tu,Tv� + � Tv� 2

1 … 2Re�Tu,Tv� + � Tu� 2� Tv� 2

=
1
2

	

√
� T1u� 2 … 2Re�T1u,T1v� + � T1v� 2

1 … 2Re�T1u,T1v� + � T1u� 2� T1v� 2

�
1
2

	

√
� T2u� 2 … 2Re�T2u,T2v� + � T2v� 2

1 … 2Re�T2u,T2v� + � T2u� 2� T2v� 2
.

Considering the division by
�

a2 … 2abt + b2 in the proof of (3.11), it yields one of the
following conditions:

(i�) p� = 1,
(ii �) � Tu� = � Tv� = 0,

(iii �) Re�Tu,Tv�
� Tu�� Tv� = 1 and � Tu� = � Tv� .

However, we havep� �= 1, becausep < 1.
Note that, if � Tu� = 0, then we haveT1u = T2u = 0 and

� Tv� =
1
2

	 � T1v� �
1
2

	 � T2v�

=
1
2

	
2p … 1

p
� Tv� �

1
2

	
1
p

� Tv� ,

from which we easily obtain� Tv� = 0. In case (ii�), obviouslyu = v = 0 by� T2u� = � u� and
� T2v� = � v� .

In case (iii�), by the equality condition of the CBS inequality,Tv = λTu for some positive
real numberλ. Hence

� Tu� = � Tv� = λ� Tu� .

We may assumeλ = 1, and it follows that

�u,v� = �T2u,T2v� =
1
p2

�Tu,Tv� =
1
p2

� Tu� 2 = � T2u�� T2v� = � u�� v� .

Therefore,v = μu for someμ � 0, and it leads tou = v.
Next, suppose1

4 � p < 1
2 and that the equality of (3.9) holds for � T � = p. Put

p� = 2p …
1
2

, T1 =
2p�

p� + 1
2

T , T2 =
2 · 1

2

p� + 1
2

T .

Then we have� T1� = p�, � T2� = 1
2. A similar argument before shows

√
� T2u� 2 … 2Re�T2u,T2v� + � T2v� 2

1 … 2Re�T2u,T2v� + � T2u� 2� T2v� 2
=

1
2

	

√
� u� 2 … 2Re�u,v� + � v� 2

1 … 2Re�u,v� + � u� 2� v� 2
,
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which yieldsu = v by the equality condition established just before. This argument can

be repeated for half open intervals [1/2n+1, 1/2n), and we can conclude that the equality

condition holds. This completes the proof. �

Remark3.4

(i) If � T � = 1, then inequality (3.9) reduces to inequality (3.2).
(ii) The classical norm inequality (1.1) can be recaptured by an argument of elementary

calculus and letting s
 � in inequality (3.8).
(iii) Let w � H with � w� � 1. If we consider the linear functional defined by

Tu = �u,w� (u � H),

then [16, Theorem 3.6] can be regarded as a particular case of Theorem 3.3 in the
present paper.

(iv) In equality condition (iii) of Theorem 3.3, it is necessary that � T � = 1unless u = v = 0.

The following theorem shows that, for every linear operator between inner product

spaces whose operator norm is less than or equal to one, the Lipschitz constant of the

restriction to the Möbius gyrovector space is precisely the operator norm if we consider

the Poincaré metric.

Theorem 3.5 LetH,K be complex inner product spaces, and let T :H 
 K be a bounded

linear operator with� T � � 1.For any s> 0,the following identity holds:

sup
� u� ,� v� <s,u�=v

h(Tu,Tv)
h(u,v)

= � T � . (3.12)

Proof It is easy to see that we may assumes= 1 without loss of generality. Theorem3.3

implies

sup
� u� ,� v� <1,u�=v

h(Tu,Tv)
h(u,v)

� � T � .

If we put

K = sup
� u� ,� v� <1,u�=v

h(Tu,Tv)
h(u,v)

,

then obviously we have

√
� Tu� 2 … 2Re�Tu,Tv� + � Tv� 2

1 … 2Re�Tu,Tv� + � Tu� 2� Tv� 2
� K 	

√
� u� 2 … 2Re�u,v� + � v� 2

1 … 2Re�u,v� + � u� 2� v� 2
(3.13)

for any u,v � H with � u� , � v� < 1.
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Now, for arbitrary u,v � H and t > max{� u� , � v�} , by applying inequality (3.13) to u
t , v

t ,

it is immediate to see

√
� Tu� 2 … 2Re�Tu,Tv� + � Tv� 2

1 …2
t2

Re�Tu,Tv� + 1
t4

� Tu� 2� Tv� 2

� t tanh
{

K tanh…1
(

1
t

√
� u� 2 … 2Re�u,v� + � v� 2

1 …2
t2

Re�u,v� + 1
t4

� u� 2� v� 2

)}
.

By letting t 
 � , we can obtain

� Tu …Tv� � K� u …v�

for every pairu,v � H, which implies� T � � K. This completes the proof. �

We state the corresponding results in real inner product spaces.

Theorem 3.6 Let H, K be real inner product spaces, and let T : H 
 K be a bounded

real linear operator with � T � � 1. For any u,v � H and s> max{� u� , � v�} , the following

inequality holds:

h(Tu,Tv) � � T � h(u,v).

That is,

� Tu � s Tv� � � T � 	 s � u � s v�

or

√
� Tu� 2 … 2�Tu,Tv� + � Tv� 2

1 …2
s2

�Tu,Tv� + 1
s4

� Tu� 2� Tv� 2
� � T � 	 s

√
� u� 2 … 2�u,v� + � v� 2

1 …2
s2

�u,v� + 1
s4

� u� 2� v� 2
.

The equality holds if and only if one of the following conditions is satis“ed:

(i) u = v,
(ii) T = 0,

(iii) � Tu� = � u� and � Tv� = � v� .

Theorem 3.7 LetH,K be real inner product spaces, and let T :H 
 K be a bounded real

linear operator with� T � � 1.For any s> 0,the following identity holds:

sup
� u� ,� v� <s,u�=v

h(Tu,Tv)
h(u,v)

= � T � .
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