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Abstract
In this paper, we focus on a 2× 2 operator matrix Tεk as follows:

Tεk =
(

A C
εkD B

)
,

where εk is a positive sequence such that limk→∞ εk = 0. We first explore how Tεk has
several local spectral properties such as the single-valued extension property, the
property (β), and decomposable. We next study the relationship between some
spectra of Tεk and spectra of its diagonal entries, and find some hypotheses by which
Tεk satisfies Weyl’s theorem and a-Weyl’s theorem. Finally, we give some conditions
that such an operator matrix Tεk has a nontrivial hyperinvariant subspace.

MSC: 47A10; 47A11; 47A15; 47A53

Keywords: 2× 2 operator matrices; Hyperinvariant subspace; The single-valued
extension property; The property (β); Decomposable; Weyl’s theorem

1 Introduction
Let L(H) denote the algebra of bounded linear operators on a separable Hilbert space
H. Let {T}′, the commutant of T , be the collection of all bounded linear operators such
that commute with T . A subspace G ⊂ H is invariant for T ∈ L(H) if an inclusion TG ⊂
G holds, and is hyperinvariant for T if the inclusion SG ⊂ G holds for all S ∈ {T}′. The
hyperinvariant subspace problem is asking whether every operator on a separable complex
Hilbert space has a nontrivial hyperinvariant subspace. It has been known that this is one
of unresolved problems in operator theory and it has attracted a lot of interest by many
authors.

For the study of this problem, in 2011, H. J. Kim [8] proved that, if T =
( T1 T2

0 T3

) ∈
L(H ⊕ H) where T1, T2, and T3 are arbitrary operators in L(H) such that T1 is either
a compact operator with T1 �= 0 or a normal operator with T1 �= λI , then at least one of
T and T̂ , has a nontrivial hyperinvariant subspace where T̂ =

( T3 T4
0 T1

)
for an arbitrary op-

erator T4 ∈ L(H). In 2018, I. B. Jung, E. Ko, and C. Pearcy [7] showed if T1 and T3 are
operators in L(H) such that either T1 or T3 has a nontrivial hyperinvariant subspace, then
T and T̂ have a nontrivial hyperinvariant subspace where T2 and T4 are any operators in
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L(H). As mentioned in the above results, in the case of a 2 × 2 upper triangular operator
matrix, there are some known results, but in the case of a full 2 × 2 operator matrix, it is
very difficult to solve the invariant subspace problem. So, we focus on the matrix Tεk as a
variation of the 2 × 2 upper triangular operator matrix and we study some conditions so
that a 2 × 2 operator matrix Tεk has a nontrivial hyperinvariant subspace.

We now provide a simple outline of the paper. We first study the local spectral theory
of operator matrices (cf. [3] and [9]). In particular, we consider the case when the (2, 1)-
entry of a 2 × 2 operator matrix approaches zero. In addition, we give the relationship
between some spectra of 2 × 2 operator matrices and spectra of their diagonal entries,
and find some hypotheses by which such operator matrices Tεk entail Weyl’s theorem and
a-Weyl’s theorem.

2 Preliminaries
We briefly review some notions of local spectral properties, which are used in this paper.
We refer to [10] for more detailed information.

The operator T ∈L(H) has the single-valued extension property if f (λ) ≡ 0 is the unique
solution to (T – λ)f (λ) ≡ 0 on D for every open subset D of C and any H-valued analytic
function f on D. The local resolvent set ρT (x) of T ∈L(H) at x ∈H is the union of all open
subset D of C such that there is an analytic function f : D → H such that (T – λ)f (λ) ≡ x
on D. The set σT (x) = C \ ρT (x) is the local spectrum of T at x. The local spectral subspace
of an operator T ∈L(H) is given by HT (F) = {x ∈H : σT (x) ⊂ F} for any F ⊂ C. We say that
T ∈ L(H) has Bishop’s property (β) if every sequence {fn} of H-valued analytic functions
on D for every open subset D of C such that (T – λ)fn(λ) converges uniformly to 0 in
norm on compact subsets of D, it follows that fn(λ) converges uniformly to 0 in norm on
compact subsets of G. Notice that, if T has Bishop’s property (β), then it has the single-
valued extension property. The operator T ∈L(H) is decomposable if for every open cover
{U , V } of C there are T-invariant subspaces M and N such that

H = M + N , σ (T |M) ⊂ U and σ (T |N ) ⊂ V .

In general, it is known that T is decomposable if and only if T and its adjoint T∗ possess
property (β) [1, 10].

Now, we introduce some Weyl type theorems related to definitions of various spectra
(see [12] for more details). For these, we first take a look at some notions needed in this
paper. If T ∈L(H), we shall write ker(T) (or N(T)) and ran(T) (or R(T)) for the null space
and the range of T , respectively. We know that the family {ker(Tk)} forms an ascending
sequence of subspaces for T ∈ L(H) and k ∈ N. So we call the ascent of T for the small-
est nonnegative integer k for which ker(Tk) = ker(Tk+1) holds. We also see that the family
{ran(Tk)} forms a descending sequence for k ∈N, and then the smallest nonnegative inte-
ger k for which ran(Tk) = ran(Tk+1) is said the descent of T . An operator T ∈L(H) is called
upper semi-Fredholm (resp., lower semi-Fredholm) if it has both finite dimensional kernel
and closed range (resp., it has both finite dimensional co-kernel and closed range). Either
upper or lower semi-Fredholm operator T ∈ L(H) is called semi-Fredholm, and its index
is given by ind(T) := dim ker(T) – dim ker(T∗). When both dim ker(T) and dim ker(T∗) are
finite, then T is called Fredholm. If T ∈L(H) is a Fredholm operator satisfying ind(T) = 0,
then it is called Weyl, and if T is a Fredholm operator with finite descent and ascent, then
it is called Browder.
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If T ∈L(H), we shall write σp(T), σs(T), σa(T), σ (T), σe(T), σle(T), and σre(T) the point
spectrum, the surjective spectrum, the approximate point spectrum, the spectrum, the es-
sential spectrum, the left essential spectrum, and the right essential spectrum the left essen-
tial spectrum of T , respectively. The Weyl spectrum σw(T) := {μ ∈ C : T – μI is not Weyl}
and the Browder spectrum σb(T) := {μ ∈ C : T – μI is not Browder}, where I is an iden-
tity operator on H. We write K(H) for the set of all compact operators on H and re-
view another spectra as follows: the Weyl essential approximate point spectrum σea(T) :=
{μ ∈C : T + C – μI is not bounded below for all C ∈K(H)} and the Browder essential ap-
proximate point spectrum σab(T) := {μ ∈ C : T + C – μI is not bounded below for all C ∈
K(H) and TC = CT}. Evidently, we get the inclusions

σe(T) ⊆ σw(T) ⊆ σb(T) and σea(T) ⊆ σab(T).

Let iso K be the collection of all isolated points of a complex subset K . We write π00(T) :=
{λ ∈ isoσ (T) : 0 < dim ker(T – λ) < ∞}. And we denote p00(T) := σ (T) \ σb(T) which is
the collection of Riesz points of T . We say that Weyl’s theorem is obeyed for T provided
σ (T)\σw(T) = π00(T), and that Browder’s theorem is obeyed for T provided σ (T)\σw(T) =
p00(T), equivalently, if σw(T) = σb(T). We say that a-Weyl’s theorem is obeyed for T pro-
vided σa(T) \ σea(T) = πa

00(T) and that a-Browder’s theorem is obeyed for T provided
σa(T) \ σea(T) = pa

00(T), where πa
00(T) := {λ ∈ isoσa(T) : 0 < dim ker(T – λ) < ∞} and

pa
00(T) := σa(T) \ σab(T). Then it is well known that

a-Weyl’s theorem �⇒ a-Browder’s theorem
⇓ ⇓

Weyl’s theorem �⇒ Browder’s theorem

3 Main results
In this section, we study 2 × 2 operator matrices. In particular, we consider the case when
their (2, 1)-entry approaches zero. We begin our program with the following theorem.

Theorem 3.1 Let Tεk =
( A C

εk D B
)

where A, B, C, D ∈ L(H) and {εk} is a positive sequence
such that limk→∞ εk = 0. Then the following statements hold.

(i) If both A and B have the single-valued extension property, then Tεk has the
single-valued extension property.

(ii) If Tεk has the single-valued extension property, BC = CB, and C is nilpotent of order
m, then B has the single-valued extension property.

Proof (i) Suppose that A and B have the single-valued extension property. Let G be an
open set in C and let f : G →H⊕H be an analytic function with f = f1 ⊕ f2 such that

(Tεk – λ)

(
f1(λ)
f2(λ)

)
= 0. (1)

Then
(

A – λ C
εkD B – λ

)(
f1(λ)
f2(λ)

)
=

(
0
0

)
.



An et al. Journal of Inequalities and Applications        (2021) 2021:164 Page 4 of 13

Therefore, we get

⎧⎨
⎩

(A – λ)f1(λ) + Cf2(λ) = 0,

εkDf1(λ) + (B – λ)f2(λ) = 0.
(2)

Since ‖(B – λ)f2(λ)‖ ≤ ‖εkDf1(λ) + (B – λ)f2(λ)‖ + εk‖Df1(λ)‖ = εk‖Df1(λ)‖ and limk→∞ εk =
0, (B – λ)f2(λ) = 0. Moreover, since B has the single-valued extension property, f2(λ) = 0.
From (2), we have

(A – λ)f1(λ) = 0.

Since A has the single-valued extension property, f1(λ) = 0. Hence Tεk has the single-
valued extension property.

(ii) Let Tεk have the single-valued extension property and (B – λ)f2(λ) = 0 where f2 is an
analytic function. Then

(Tεk – λ)

(
0

Cm–1f2(λ)

)
=

(
0
0

)
. (3)

Since Tεk has the single-valued extension property, it follows from (3) that Cm–1f2(λ) = 0.
Thus

(Tεk – λ)

(
0

Cm–2f2(λ)

)
=

(
0
0

)
. (4)

Since Tεk has the single-valued extension property, Cm–2f2(λ) = 0. By induction, we have
f2(λ) = 0. Hence B has the single-valued extension property. �

Corollary 3.2 Let Tεk =
( A C

εk D B
)

where A, B, C, D ∈ L(H) and {εk} is a positive sequence
such that limk→∞ εk = 0. If A and B have the single-valued extension property, then the
following inclusions hold.

(i) σB(x2) ⊂ σTεk
(x1 ⊕ x2) for all x1, x2 ∈H and HTεk

(F) ⊂H⊕ HB(F) for any subset F
of C.

(ii) σA(x1) ⊂ σTεk
(x1 ⊕ 0) for all x1 ∈H.

Proof (i) We know that Tεk has the single-valued extension property from Theorem 3.1.
Let λ0 /∈ σTεk

(x1 ⊕ x2) for all x1, x2 ∈ H. Then there exists a neighborhood D of λ0 and an
analytic function f = f1 ⊕ f2 : D →H⊕H such that (Tεk – λ)f (λ) = x1 ⊕ x2 for every λ ∈D.
Then we have

⎧⎨
⎩

(A – λ)f1(λ) + Cf2(λ) = x1,

εkDf1(λ) + (B – λ)f2(λ) = x2.

Letting εk → 0, (B – λ)f2(λ) = x2. Hence λ0 /∈ σB(x2) for all x2 ∈H.
On the other hand, if x1 ⊕ x2 ∈ HTεk

(F), then σTεk
(x1 ⊕ x2) ⊂ F . Since

σB(x2) ⊂ σTεk
(x1 ⊕ x2) ⊂ F ,
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it follows from (i) that x2 ∈ HB(F). Thus x1 ⊕ x2 ∈H⊕ HB(F). Hence

HTεk
(F) ⊂H⊕ HB(F)

for any subset F of C.
(ii) Let λ0 ∈ ρTεk

(x1 ⊕ 0) for all x1 ∈ H. Then there exists a neighborhood G of λ0 and
an analytic function f1 ⊕ f2 : G → H ⊕H such that (Tεk – λ)

( f1(λ)
f2(λ)

)
=

( x1
0
)

for every λ ∈ G .
Thus this implies that

⎧⎨
⎩

(A – λ)f1(λ) + Cf2(λ) = x1,

εkDf1(λ) + (B – λ)f2(λ) = 0.

Letting εk → 0, we get (B – λ)f2(λ) = 0. Since B has the single-valued extension property,
f2(λ) = 0 for every λ ∈ G . Thus (A –λ)f1(λ) = x1, and hence λ0 ∈ ρA(x1). Therefore σA(x1) ⊂
σTεk

(x1 ⊕ 0) for all x1 ∈H. �

Example 3.3 In Corollary 3.2, if both A and B are substituted with the unilateral shift U on
�2(N), then Tεk has the single-valued extension property on �2(N) ⊕ �2(N). Furthermore,
we get the following inclusions:

σU (x1) ⊂ σTεk
(x1 ⊕ 0) and σU (x2) ⊂ σTεk

(x1 ⊕ x2)

for all x1, x2 ∈ �2(N).

We next investigate some relations among the spectra, the point spectra and the approx-
imate point spectra of A, B and Tεk , respectively.

Theorem 3.4 Let Tεk =
( A C

εk D B
)

where A, B, C, D ∈ L(H) and {εk} is a positive sequence
such that limk→∞ εk = 0.

(i) If both A and B have the single-valued extension property, then

σ (A) ∪ σ (B) = σ (Tεk ) and σp(A) ∪ σp(B) = σp(Tεk ).

(ii) If both A∗ and B∗ have the single-valued extension property, then

σa(A) ∪ σa(B) = σa(Tεk ).

Proof (i) From Theorem 3.1, we know that Tεk has the single-valued extension property.
Since σB(x2) ⊂ σTεk

(x1 ⊕ x2) from Corollary 3.2, we have

σ (B) =
⋃

x2∈H
σB(x2) ⊂

⋃
x1⊕x2∈H⊕H

σTεk
(x1 ⊕ x2) = σ (Tεk ).

Since σA(x1) ⊂ σTεk
(x1 ⊕ 0) for all x1 ∈H, we get

σ (A) =
⋃

x1∈H
σA(x1) ⊂

⋃
x1⊕x2∈H⊕H

σTεk
(x1 ⊕ x2) = σ (Tεk ).
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For the converse, we suppose that γ /∈ σ (A) ∪ σ (B). If limn→∞ ‖(Tεk – γ )
( xn

yn

)‖ = 0, then

⎧⎨
⎩

limn→∞ ‖(A – γ )xn + Cyn‖ = 0,

limn→∞ ‖εkDxn + (B – γ )yn‖ = 0.
(5)

Since B – γ is invertible,

‖yn‖ ≤ ∥∥(B – γ )–1∥∥∥∥(B – γ )yn
∥∥

≤ ∥∥(B – γ )–1∥∥∥∥(B – γ )yn + εkDxn
∥∥ + εk‖D‖∥∥(B – γ )–1∥∥‖xn‖.

Then lim supn→∞ ‖yn‖ ≤ εk‖D‖‖(B – γ )–1‖(lim supn→∞ ‖xn‖). Taking limk→∞ εk = 0, we
have lim supn→∞ ‖yn‖ = 0 and so

lim
n→∞‖yn‖ = 0.

From (5), limn→∞ ‖(A – γ )xn‖ = 0. Since A – γ is invertible, limn→∞‖xn‖ = 0. Therefore,
Tεk – γ is bounded below. If (Tεk – γ )∗

( x
y
)

=
( 0

0

)
, then

⎧⎨
⎩

(A∗ – γ )x + εkD∗y = 0,

C∗x + (B∗ – γ )y = 0.

Since limk→∞ εk = 0, we have (A∗ – γ )x = 0. Since A∗ – γ is invertible, x = 0 and so (B∗ –
γ )y = 0. Since B∗ – γ is invertible, y = 0. Thus ker(Tεk – γ )∗ = {0} and so ran(Tεk – γ )
is dense in H ⊕ H. Hence Tεk – γ is invertible. So γ /∈ σ (Tεk ). Consequently, the first
equation is established. Moreover, if A has the single-valued extension property, then it
is well known that the surjective spectrum σs(A) of A identifies with the spectrum of A
(see [10]), so that σp(A) = σ (A) \ σs(A) = ∅. Similarly, σp(B) = ∅. Hence σp(A) ∪ σp(B) =
∅ ⊂ σp(Tεk ). Since Tεk has the single-valued extension property by Theorem 3.1, we have
σp(Tεk ) = σ (Tεk ) \ σs(Tεk ) = ∅. From these arguments, the second equality trivially holds.

(ii) Suppose that both A∗ and B∗ have the single-valued extension property. Then we can
prove that T∗

εk
also has the single-valued extension property using a similar method from

the proof of Theorem 3.1. It is known that σa(T) = σ (T) provided T∗ has the single-valued
extension property for every T ∈ L(H). This means that the equality σa(A) ∪ σa(B) =
σa(Tεk ) holds by (i). �

It is well known that, if A and B have the property (β), then
( A C

0 B

)
has the property

(β) without any conditions. However, 2 × 2 operator matrices which their all entries are
nonzero, in addition, their (2, 1)-entries are either μI for some nonzero constant μ, or εkI
for a positive sequence {εk} with limk→∞ εk = 0 may not have the property (β) even though
their diagonal entries have the property (β) (see (8)). We now study the property (β) and
decomposability of such a 2 × 2 operator matrix Tεk .

Theorem 3.5 Let Tεk =
( A C

εk D B
)

where A, B, C, D ∈ L(H) and {εk} is a positive sequence
such that limk→∞ εk = 0. If supn ‖fn,1‖K < ∞ whenever

∥∥∥∥∥(Tεk – λ)

(
fn,1(λ)
fn,2(λ)

)∥∥∥∥∥
K

→ 0 as n → ∞, (6)
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then the following statements hold.
(i) If A and B have the property (β), then Tεk has the property (β).

(ii) If A and B are decomposable, then Tεk is decomposable.

Proof (i) Suppose that A and B have the property (β). Let G be an open set in C and let
fn : G →H⊕H be a sequence of analytic functions with fn = fn,1 ⊕ fn,2 such that

lim
n→∞

∥∥∥∥∥(Tεk – λ)

(
fn,1(λ)
fn,2(λ)

)∥∥∥∥∥
K

= 0 (7)

for every compact set K in G, where ‖f ‖K = supλ∈K ‖f (λ)‖ for an H ⊕H-valued function
f (λ). Then

lim
n→∞

∥∥∥∥∥
(

A – λ C
εkD B – λ

)(
fn,1(λ)
fn,2(λ)

)∥∥∥∥∥
K

=

(
0
0

)
.

Therefore, we get

⎧⎨
⎩

limn→∞ ‖(A – λ)fn,1(λ) + Cfn,2(λ)‖K = 0,

limn→∞ ‖εkDfn,1(λ) + (B – λ)fn,2(λ)‖K = 0.
(8)

We observe that

∥∥(B – λ)fn,2(λ)
∥∥

K ≤ ∥∥(B – λ)fn,2(λ) + εkDfn,1(λ) – εkDfn,1(λ)
∥∥

K

≤ ∥∥(B – λ)fn,2(λ) + εkDfn,1(λ)
∥∥

K +
∥∥εkDfn,1(λ)

∥∥
K .

From (8), we get

lim sup
n→∞

∥∥(B – λ)fn,2(λ)
∥∥

K ≤ εk‖D‖ lim sup
n→∞

∥∥fn,1(λ)
∥∥

K .

Since supn ‖fn,1‖K < ∞, letting εk → 0,

lim sup
n→∞

∥∥(B – λ)fn,2(λ)
∥∥

K = 0

and so limn→∞‖(B – λ)fn,2(λ)‖K = 0. Moreover, since B has the property (β),
limn→∞ ‖fn,2(λ)‖K = 0. From (8), we have

lim
n→∞

∥∥(A – λ)fn,1(λ)
∥∥

K = 0.

Since A has the property (β), limn→∞ ‖fn,1(λ)‖K = 0. Thus

lim
n→∞

∥∥fn(λ)
∥∥

K = lim
n→∞

∥∥fn,1(λ) ⊕ fn,2(λ)
∥∥

K = 0.

Hence Tεk has the property (β).
(ii) If A and B are decomposable, then A, A∗, B, and B∗ have the property (β). Since A

and B have the property (β), it follows from (1) that Tεk has the property (β). Note that
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T∗
εk

=
( A∗ εk D∗

C∗ B∗
)

and
( 0 I

I 0

)( B∗ C∗
εk D∗ A∗

)( 0 I
I 0

)
= T∗

εk
. Since A∗ and B∗ also have property (β), it

follows from (i) that
( B∗ C∗

εk D∗ A∗
)

has the property (β). Since
( B∗ C∗

εk D∗ A∗
)

is unitarily equivalent
to T∗

εk
, we see that T∗

εk
has the property (β). Therefore Tεk is decomposable. �

From these arguments for some local spectral properties of the operator matrices Tεk ,
we get more corollaries.

Corollary 3.6 Let Tεk =
( A C

εk D B
)

where A, B, C, D ∈ L(H) and {εk} is a positive sequence
such that limk→∞ εk = 0. If supn ‖fn,1‖K < ∞ whenever (6), then the following statements
are satisfied.

(i) If A and B have the property (β) and σ (Tεk ) has nonempty interior, then Tεk has a
nontrivial invariant subspace.

(ii) If A and B are hyponormal, then Tεk has the property (β).
(iii) If A and B are compact or normal, then Tεk is decomposable.

Proof (i) If A and B have the property (β), then it follows from Theorem 3.5 that Tεk has the
property (β). Since σ (Tεk ) has nonempty interior, Tεk has a nontrivial invariant subspace
by [5, Theorem 2.1].

(ii) If A and B are hyponormal, then they are subscalar by [14], and so it is known that
they have the property (β). Hence it is obvious that Tεk has the property (β) from Theo-
rem 3.5.

(iii) Since A and B are compact or normal, then they are decomposable (see [10]) and
this implies from Theorem 3.5 that Tεk is also decomposable. �

From [2], if Tεk =
( A C

εk D B
)

on H⊕H and R(C) is closed, then we have the following matrix
representation:

Tεk =

⎛
⎜⎝

A1 0 0
A2 0 C1

εkD B1 B2

⎞
⎟⎠ , (9)

which maps from H ⊕ H = H ⊕ N(C) ⊕ N(C)⊥ into H ⊕ H = R(C)⊥ ⊕ R(C) ⊕ H where
C1 = C|N(C)⊥ , A1 = PR(C)⊥A, A2 = PR(C)A, B1 = B|N(C) and B2 = B|N(C)⊥ . Here, PN(C) (resp.
PN(C)⊥ ) denotes the projection of K onto N(C) (resp. N(C)⊥). We now study the next
theorem in the sense of the representation (9) and mention that a sequence {εk} need not
converge to 0.

Theorem 3.7 Let Tεk =
( A C

εk D B
)

where {εk} is a bounded sequence and R(C) is closed. Sup-
pose that A1 = PR(C)⊥A|H and B1 = B|N(C). If A1 has the property (β) and B1 is decom-
posable, then Tεk is decomposable. Moreover, if 0 is not an eigenvalue of C∗, then Tεk is
decomposable if and only if B1 is decomposable.

Proof Since B1 is decomposable, both B1 and B1
∗ have the property (β). Moreover, A1 has

the property (β), thus Tεk and its adjoint operator have the property (β) from [3, Theo-
rem 3.3]. Therefore Tεk is decomposable. On the other hand, if Tεk is decomposable, then
Tεk and its adjoint operator have the property (β). Thus, by [3, Theorem 3.3], both B1 and
B1

∗ have the property (β). Hence B1 is decomposable. The converse implication holds by
a similar method. �
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Corollary 3.8 Let Tεk =
( A C

εk D B
)

where {εk} is a bounded sequence. If C = εkI and A is self-
adjoint, then Tεk is decomposable.

Proof Since A is self-adjoint, so is A1 = PR(C)⊥A|H. Thus it has the property (β). Since {εk}
is a bounded sequence, B1 = B|N(C) is decomposable, so it follows from Theorem 3.7 that
Tεk is decomposable. �

Example 3.9 Let Tεk =
( A U∗

εk D B
)

on �2(N) ⊕ �2(N) where {εk} is a bounded sequence and U
is the unilateral shift given by Uen = en+1 on �2(N) for n ∈ N. Then B1 = B|N(U) is decom-
posable and this is equivalent to Tεk being decomposable by Theorem 3.7.

Now, we address Weyl type theorems for Tεk . We start with the following lemma.

Lemma 3.10 Let Tεk =
( A C

εk D B
)

where A, B, C, D ∈L(H) and {εk} is a positive sequence such
that limk→∞ εk = 0. Assume that A and B have the single-valued extension property. Then
(a-)Browder’s theorem holds for Tεk .

Proof By Theorem 3.1, we know that Tεk has the single-valued extension property. Then
it is obvious that σw(Tεk ) = σb(Tεk ) and σea(Tεk ) = σab(Tεk ) (see [1]). Hence this means that
(a-)Browder’s theorem holds for Tεk . �

Theorem 3.11 Let Tεk =
( A C

εk D B
)

where A, B, C, D ∈ L(H) and {εk} is a positive sequence
such that limk→∞ εk = 0. Suppose that Weyl’s theorem holds for A and B. Then the following
statements hold.

(i) If A and B have the single-valued extension property, then Weyl’s theorem holds for
Tεk .

(ii) If A∗ and B∗ have the single-valued extension property, then a-Weyl’s theorem holds
for Tεk .

Proof (i) If A and B have the single-valued extension property, then it follows from
Lemma 3.10 that σ (Tεk ) \ σw(Tεk ) = p00(Tεk ) ⊆ π00(Tεk ). To show the reverse, we suppose
that 0 ∈ π00(Tεk ) without loss of generality. It follows from Theorem 3.4 that

0 ∈ [
π00(A) \ σ (B)

] ∪ [
π00(B) \ σ (A)

] ∪ [
π00(A) ∩ π00(B)

]
.

Since Weyl’s theorem holds for both A and B, we have 0 /∈ σw(A) ∪ σw(B). Set T0 :=
( A C

0 B

)
.

Then T0 is Weyl by [11, Lemma 3]. This implies from [13, Theorem 1] that, if Tεk → T0

in norm, then lim supk→∞ σw(Tεk ) ⊂ σw(T0). Hence 0 /∈ lim supk→∞ σw(Tεk ). So there exists
δ1 > 0 such that, for μ ∈ D(0, δ1

2 ), open disc with center 0 and radius δ1
2 , such that Tεk –μI is

Weyl. Since Weyl operators form an open set, there exists δ2 > 0 such that ‖Tεk –μI –T0‖ <
δ2
2 . We choose δ := min{δ1, δ2} > 0. Then

‖Tεk – T0‖ ≤ ‖Tεk – μI – T0‖ + ‖μI‖ <
δ

2
+

δ

2
= δ.

Therefore Tεk is Weyl but is not invertible. Consequently, Weyl’s theorem holds for Tεk .
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(ii) By Lemma 3.10, we have σa(Tεk ) \ σea(Tεk ) = pa
00(Tεk ) ⊆ πa

00(Tεk ). We now suppose
that 0 ∈ πa

00(Tεk ). From Theorem 3.4, we get

0 ∈ [
πa

00(A) \ σa(B)
] ∪ [

πa
00(B) \ σa(A)

] ∪ [
πa

00(A) ∩ πa
00(B)

]
.

It is known that σ (S) = σa(S) and σw(S) = σea(S) provided S∗ ∈L(H) has the single-valued
extension property by [1]. On the other hand, A∗ and B∗ have the single-valued extension
property, and satisfy Weyl’s theorem. This implies that 0 /∈ σw(A)∪σw(B). Then T0 is Weyl.
Hence we get 0 /∈ lim supk→∞ σw(Tεk ), so that 0 ∈ σa(Tεk ) \ σea(Tεk ). Therefore a-Weyl’s
theorem holds for Tεk . �

We say that T ∈L(H) is normal if T∗T = TT∗, hyponormal if T∗T ≥ TT∗, algebraically
hyponormal if there exists a nonconstant polynomial p such that p(T) is hyponormal, re-
spectively. It is known that normal operators imply hyponormal operators, and hyponor-
mal operators imply algebraically hyponormal operators. From these notions, we have the
following corollary.

Corollary 3.12 Let Tεk =
( A C

εk D B
)

where A, B, C, D ∈ L(H) and {εk} is a positive sequence
such that limk→∞ εk = 0.

(i) If A and B are normal, then a-Weyl’s theorem holds for Tεk ,
(ii) If A and B are algebraically hyponormal, then Weyl’s theorem holds for Tεk .

Proof (i) It is obvious that normal operators are decomposable by [10]. So if A and B are
normal, then their adjoint operators have the single-valued extension property. Moreover,
A and B are hyponormal, hence it follows from [4] that they satisfy Weyl’s theorem. Con-
sequently, this means that a-Weyl’s theorem holds for Tεk from Theorem 3.11.

(ii) If A and B are algebraically hyponormal, then so are their translation, and then it fol-
lows from [6, Lemma 1] that A –λI and B –λI have finite ascent for all complex number λ,
so that they have the single-valued extension property. On the other hand, Weyl’s theorem
holds for both A and B from [6, Corollary 4]. Thus this implies from Theorem 3.11 that
Tεk satisfies Weyl’s theorem. �

Finally, we study 2 × 2 operator matrices

Tγ =

(
A C
γ I B

)
,

where γ is any scalar in C. Let {Tγ }′ be the collection of operators commuting with Tγ as
follows:

{Tγ }′ =

{(
Lσ Mσ

Nσ Pσ

)
: σ ∈ �

}
,

and let

{Tγ }′0 =

{(
Lσ Mσ

Nσ Pσ

)
: σ ∈ � and sup

σ∈�

‖Lσ – Pσ ‖ < ∞
}

.
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We recall that a transitive subalgebra of L(H) has the property that it has no nontrivial
invariant subspace.

Theorem 3.13 Let Tεk =
( A C

εk I B
)

where A, B, C ∈L(H) and {εk} is a positive sequence such
that limk→∞ εk = 0 and there is X ∈ L(H) such that AX = XB. If there exists a nontrivial
hyperinvariant subspace N for B such that N �⊂ ker X, then S ∈ {Tεk }′0 has a nontrivial
invariant subspace.

Proof Assume that there exists a nontrivial hyperinvariant subspace N for B such that
N �⊂ ker X. Let S ∈ {Tεn}′0. Then we put S =

( Lσ Mσ

Nσ Pσ

)
where σ ∈ � and supσ∈� ‖Lσ – Pσ ‖ <

∞. Since S ∈ {Tεn}′0, we get

(
Lσ A + εnMσ Lσ C + Mσ B
Nσ A + εnPσ Nσ C + Pσ B

)
=

(
ALσ + CNσ AMσ + CPσ

εnLσ + BNσ εnMσ + BPσ

)
.

Then we have BNσ – Nσ A = εn(Pσ – Lσ ) and so

‖BNσ – Nσ A‖ = εn‖Pσ – Lσ‖ ≤ εn sup
σ∈�

‖Pσ – Lσ‖.

Since limn→∞ εn = 0, BNσ = Nσ A for σ ∈ �. Hence BNσ X = Nσ AX = Nσ XB for σ ∈ �. So
Nσ XN ⊂N for σ ∈ �. On the other hand, assume, to obtain a contradiction, that {Tεn}′0 is
transitive. Then, for arbitrary z ∈H, it follows from [7, Proposition 2.2] and the hypothesis
that there exist σ0 ∈ � and y ∈N with Xy �= 0 such that, for every ε > 0,

‖Nσ0 Xy – z‖ < ε,

which means that {Nσ Xy : σ ∈ �} = H for some σ0 ∈ �. But this is a contradiction from
Nσ Xy ∈ N for all σ ∈ �. Hence {Tεn}′0 is not transitive. Thus S ∈ {Tεn}′0 has nontrivial
invariant subspace. �

We easily see that there exists a nontrivial hyperinvariant subspace N for B such that
N � ker X as the following example.

Example 3.14 Let N ∈ L(H) be a normal operator with N �= λI for λ ∈ C. Consider an
operator matrix

( N C
εk I N

)
and {εk} is a positive sequence such that limk→∞ εk = 0. Then there

exists a nontrivial hyperinvariant subspace N for N but N � ker I . Hence S ∈ {( N C
εk I N

)}′
0

has a nontrivial invariant subspace by Theorem 3.13.

Corollary 3.15 Let Tδk =
( A δk I

Z B

)
where A, B, Z ∈ L(H) and δk is a positive sequence such

that limn→∞ δk = 0 and there is X ∈ L(H) such that BX = XA. If there exists a nontrivial
hyperinvariant subspace M for A such that M �⊂ ker X, then S ∈ {Tδk }′0 has nontrivial
invariant subspace.

Proof Set Rδk =
( B Z

δk I A
)
. Since

( 0 I
I 0

)
Rδk

( 0 I
I 0

)
= Tδk , Rδk and Tδk are unitarily equivalent.

Since W ∈ {Rδk }′0 has a nontrivial invariant subspace by Theorem 3.13,

(
0 I
I 0

)
W

(
0 I
I 0

)
Tδk =

(
0 I
I 0

)
WRδk

(
0 I
I 0

)
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=

(
0 I
I 0

)
Rδk W

(
0 I
I 0

)

= Tδk

(
0 I
I 0

)
W

(
0 I
I 0

)
.

Thus
( 0 I

I 0

)
W

( 0 I
I 0

) ∈ {Tδk }′. Since W ∈ {Rδk }′0,

(
0 I
I 0

)
W

(
0 I
I 0

)
∈ {Tδk }′0.

Since W ∈ {Rδk }′0 has a nontrivial invariant subspace, we conclude that

S =

(
0 I
I 0

)
W

(
0 I
I 0

)
∈ {Tδk }′0

has a nontrivial invariant subspace. �
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