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Abstract
In this paper, we first give the definition of Teodorescu operator related to theN
matrix operator and discuss a series of properties of this operator, such as uniform
boundedness, Hölder continuity and so on. Then we propose the Riemann boundary
value problem related to theN matrix operator. Finally, using the intimate
relationship of the corresponding Cauchy-type integral between theN matrix
operator and the time-harmonic Maxwell equations, we investigate the Riemann
boundary value problem related to the time-harmonic Maxwell equations and obtain
the integral representation of the solution.
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1 Introduction
The boundary value problem for partial differential equations is a very meaningful re-
search subject which has important applications in physics, chemistry, financial math-
ematics and many other fields. Teodorescu operator is a generalized solution of the in-
homogeneous Dirac equation and it has been widely used in solving the boundary value
problem of partial differential equations. Therefore many experts and scholars studied
the properties of the Teodorescu operator and corresponding boundary value problem,
for example, Vekua N [1] first discussed some properties of the Teodorescu operator on
the plane and its application in the shell theory and gas dynamics. Hile GN [2] and Gilbert
RP et al. [3] studied some properties of the Teodorescu operator in n-dimensional Eu-
clidean space and higher-dimensional complex spaces. Du JY, Yang PW, Qiao YY, Taira K
and Wang LP et al. studied some properties and boundary value problems associated with
the Teodorescu operator in quaternion analysis and Clifford analysis (see [4–16]).

Quaternion analysis is an important branch of modern analysis, which studies the func-
tions defined in the domain of n-dimensional Euclidean space with values in quaternion
spaces. It is an important tool for the solution of boundary value problems of high-
dimensional partial differential equations, including Maxwell equations. The Maxwell
equations are a set of partial differential equations describing the relationship between
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the electric field, the magnetic field and the charge density, which is the basic equation
of the electromagnetism in physics. The properties of the singular integral operator and
boundary value problems related to the Maxwell equations have been studied by many
scholars, for example, Mcintosh A and Mitrea M [17] discussed the problems related to
the Maxwell equations in Lipschitz domains. Schneider B and Shapiro M [18, 19] studied
the Cauchy-type integral of time-harmonic electromagnetic fields in the case of a piece-
wise Liapunov surface of integration. Kravchenko VV and Shapiro MV [20–22] discussed
the Cauchy-type integral associated with Maxwell’s equations, and obtained some im-
portant integral formulas. Moreover, Kravchenko VV considered quaternionic reformula-
tions of Maxwell’s equations and discussed the Dirichlet boundary value problem. Russell
DL [23] studied the Dirichlet–Neumann boundary problem associated with the control
theory of Maxwell’s equations. Yang PW et al. [24] investigated an initial-boundary value
problem for Maxwell equations and obtained the general solutions. Colton D and Kress
R [25] discussed the boundary value problem for the time-harmonic Maxwell equations
and the vector Helmholtz equation. Abreu-Blaya R et al. [26] presented a new definition
of Cauchy integral associated with Maxwell equations on 3-dimensional domains with
fractal boundaries.

Time-harmonic Maxwell equations in physics are the fundamental equations of electro-
magnetism and can be rewritten as Helmholtz equations by using the quaternion analysis.

Let
−→
E ,

−→
H : � →C

3 be a pair of complex-valued vector fields,

⎧
⎨

⎩

rot
−→
H = σ

−→
E , rot

−→
E = iωμ

−→
H ,

div
−→
H = 0, div

−→
E = 0.

(1.1)

The system is called the time-harmonic Maxwell equations. (
−→
E ,

−→
H ) is called a time-

harmonic electromagnetic field. It is easy to prove that they satisfy the homogeneous
Helmholtz equation

⎧
⎨

⎩

�
−→
E + λ

−→
E = 0,

�
−→
H + λ

−→
H = 0,

(1.2)

where λ = iωμσ ∈ C. In this paper, we will study the Riemann boundary value problem
related to the time-harmonic Maxwell equations in quaternion analysis. For the above
purpose, we introduce the N matrix operator which establishes the relationship between
the Helmholtz equation and the time-harmonic Maxwell equations. In [15], we discuss
some properties of Teodorescu operator and the Riemann boundary value problem related
to the Helmholtz equation. By using the N matrix operator and the conclusions in [15], we
give the integral representation of the solution for the Riemann boundary value problem
related to the time-harmonic Maxwell equations.

The structure of this paper is as follows: In Sect. 2, we review some basic knowledge of
quaternion analysis and introduce some necessary notions for the understanding of this
article. In Sect. 3, we first discuss some properties of the singular integral operator TN ,α

related to the N matrix operator, such as uniform boundedness, Hölder continuity and so
on. Secondly, we give the integral representation of the solution for the Riemann boundary
value problem related to the N matrix. In Sect. 4, we first introduce the time-harmonic
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Maxwell equations. Then, using the corresponding Cauchy-type integral relationship be-
tween the N matrix operator and the time-harmonic Maxwell equations, we investigate
the Riemann boundary value problem related to the time-harmonic Maxwell equations
and obtain the integral representation of the solution.

2 Preliminaries
Let {i1, i2, i3} be an orthogonal basis of the Euclidean space R3, and H(C) be the set of
complex quaternions with basis {i0, i1, i2, i3}. Then an arbitrary quaternion a can be written
as a =

∑3
k=0 akik , ak ∈ C, where i0 is the unit, i1, i2, i3 are the quaternionic imaginary units

with the properties

i2
0 = –i2

k = i0, i0ik = iki0 = ik , k = 1, 2, 3,

i1i2 = –i2i1 = i3, i2i3 = –i3i2 = i1, i3i1 = –i1i3 = i2.

The norm for an element a ∈ H(C) is taken to be |a| =
√
∑3

k=0 |ak|2. The conjugate op-
eration in H(C) is governed by the rules

ī0 = i0, īk = –ik , k = 1, 2, 3.

For any complex quaternions a, b, we have

a · b = (a0 + �a) · (b0 + �b) = a0b0 – 〈�a, �b〉 + a0�b + b0�a + [�a, �b],

where 〈�a, �b〉, [�a, �b] stand for usual scalar product and vector product. In particular, �a · �b =
–〈�a, �b〉 + [�a, �b].

Suppose � ⊂ R3 is a domain with a Liapunov boundary ∂�. Then the function which
is defined in � and valued in H(C) can be expressed as f =

∑3
k=0 fk(x)ik , where fk(x) are

complex-valued functions. Set

C(m)(�,H(C)
)

=

{

f
∣
∣
∣f : � →H(C), f (x) =

3∑

k=0

fk(x)ik , fk(x) ∈ Cm(�,C)

}

.

We define the differential operators as follows:

ψD[f ] =
3∑

k=1

ψk · ∂f
∂xk

, ψD[f ] =
3∑

k=1

ψk · ∂f
∂xk

,

Dψ [f ] =
3∑

k=1

∂f
∂xk

· ψk , Dψ [f ] =
3∑

k=1

∂f
∂xk

· ψk ,

where ψ = {ψ1,ψ2,ψ3} = {i1, i2, i3}. For any f ∈ C(1)(�,H(C)), f = f0 + �f ,

ψD[f ] =
3∑

k=1

ik · ∂f
∂xk

=
3∑

k=1

ik · ∂(f0 + �f )
∂xk

=
3∑

k=1

ik · ∂f0

∂xk
–

3∑

k=1

〈

ik ,
∂�f
∂xk

〉

+
3∑

k=1

[

ik ,
∂�f
∂xk

]



Yang et al. Journal of Inequalities and Applications        (2021) 2021:154 Page 4 of 20

= grad f0 – div �f + rot �f .

In particular, ψD[�f ] = – div �f + rot �f .
Let λ ∈C\{0}, and α be its complex square root, α2 = λ. For the above α, let us introduce

the operators

ψDα[f ] = αf + ψD[f ], αDψ [f ] = αf + Dψ [f ],

ψDα[f ] = αf – ψD[f ], αDψ [f ] = αf – Dψ [f ].

These are called the left (right) mutually conjugate (ψ ,α)-hyperholomorphic Cauchy–
Riemann operators. We have the equalities

ψDα
ψDα = ψDα

ψDα = αDψ
αDψ = αDψ

αDψ

= λ + �R3 = �λ,

where �λ is the 3-dimensional Helmholtz operator with a complex parameter λ.
Let α ∈ C\{0} and Imα 	= 0, we introduce the notation: for x ∈ R3\{0},

θα(x) =

⎧
⎨

⎩

– 1
4π |x| e

iα|x|, Imα > 0,

– 1
4π |x| e

–iα|x|, Imα < 0.

In both cases it is a fundamental solution of the Helmholtz equation with λ = α2. Then the
fundamental solution to the operator ψDα , Kψ ,α is given by the formula

Kψ ,α(x) = ψDα[θα](x) =

⎧
⎨

⎩

θα(x)(α + x
|x|2 – iα x

|x| ), Imα > 0,

θα(x)(α + x
|x|2 + iα x

|x| ), Imα < 0.

An analogous representation holds for Kψ ,α(x) = ψDα[θα](x).
If f is a Hölder function, then its α-hyperholomorphic Cauchy-type integral is defined

by

Kψ ,α[f ](x) =
∫

∂�

Kψ ,α(y – x) dσyf (y).

If f (x) ∈ Lp,σ (B,H(C)) means that f (x) ∈ Lp(B,H(C)), f (σ )(x) = |x|–σ f ( x
|x|2 ) ∈ Lp(B,H(C)),

in which B = {x||x| < 1}, σ is a real number, and ‖f ‖p,σ = ‖f ‖Lp(B) + ‖f (σ )‖Lp(B), p ≥ 1.
In [15], we introduce the Teodorescu operator related to the Helmholtz equation as

follows:

(
Tψ ,α[f ]

)
(x)

=
∫

B
Kψ ,α(y – x)f (y) dvy +

∫

B
Kψ ,α

(
y

|y|2 – x
)

f
(

y
|y|2
)

1
|y|6 dvy

=
(
T (1)

ψ ,α[f ]
)
(x) +

(
T (2)

ψ ,α[f ]
)
(x),
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where B = {x||x| < 1}, α = a + ib, b > 0. Analogous representations hold for Kψ ,α[f ](x),
(Tψ ,α[f ])(x).

In [15], we studied the properties of the above integral operators and obtained the in-
tegral representation of the solution for the Riemann boundary value problem related to
the Helmholtz equation. The specific results are as follows.

Lemma 2.1 ([15]) Let B be as stated above. If f ∈ Lp(B,H(C)), 3 < p < +∞, then
(1) |(T (1)

ψ ,α[f ])(x)| ≤ M1(p)‖f ‖Lp(B), x ∈ R3,
(2) |(T (1)

ψ ,α[f ])(x1) – (T (1)
ψ ,α[f ])(x2)| ≤ M2(p)‖f ‖Lp(B)|x1 – x2|β , x1, x2 ∈ �,

(3) ψDα(T (1)
ψ ,α[f ])(x) = f (x), x ∈ B, ψDα(T (1)

ψ ,α[f ])(x) = 0, x ∈ R3\B,
where 0 < β = p–3

p < 1.

Lemma 2.2 ([15]) Let B be as stated above. If f ∈ Lp(B,H(C)), 3 < p < +∞, then
(1) |(T (1)

ψ ,α[f ])(x)| ≤ M3(p)‖f ‖Lp(B), x ∈ R3,
(2) |(T (1)

ψ ,α[f ])(x1) – (T (1)
ψ ,α[f ])(x2)| ≤ M4(p)‖f ‖Lp(B)|x1 – x2|β , x1, x2 ∈ �,

(3) ψDα(T (1)
ψ ,α[f ])(x) = f (x), x ∈ B, ψDα(T (1)

ψ ,α[f ])(x) = 0, x ∈ R3\B,
where 0 < β = p–3

p < 1.

Remark 2.1 Analogous properties hold for T (2)
ψ ,α , Tψ ,α , T (2)

ψ ,α , Tψ ,α . For more information,
we refer the reader to [15].

Lemma 2.3 ([15]) Let B be as stated above. Find a quaternion-valued function u(x) satis-
fying the system ψDα[u] = 0 (x ∈ R3\∂B) and vanishing at infinity with the boundary con-
dition

u+(τ ) = u–(τ )G + f (τ ), τ ∈ ∂B,

where u±(τ ) = limx∈B± ,x→τ u(x), G is a quaternion constant, G–1 exists, and f ∈ Hν
∂B (0 <

ν < 1). Then the solution can be expressed as

u(x) =

⎧
⎨

⎩

∫

∂B Kψ ,α(y – x) dσyf (y), x ∈ B+,
∫

∂B Kψ ,α(y – x) dσyf (y)G–1, x ∈ B–.

3 Some properties and applications of the Teodorescu operator TN ,α related to
the N matrix operator

3.1 The relevant definitions and symbols
We will consider the following matrix operator:

N =

(
σ –ψD

ψD –iωμ

)

,

where α2 = iωμσ . We shall consider it on the set C(1)(�, Mat2×2(H(C))), Mat2×2(H(C))
being the set of 2 × 2 matrices with entries from H(C).

Let

A1 =

(
α –σ

–α –σ

)

, B1 =
1
2

(
σ –1 –σ –1

α–1 α–1

)

,
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then

A1 ∗N ∗ B1 =

(
ψDα 0

0 ψDα

)

,

where “∗” stands for matrix multiplication.
Analogously, let

A2 =

(
–α –σ

α –σ

)

, B2 =
1
2

(
–σ –1 σ –1

α–1 α–1

)

,

then

A2 ∗N ∗ B2 =

(
ψDα 0

0 ψDα

)

,

where A1, B1, A2, B2 are invertible.
Thus there exist invertible matrices of A1, B1, A2, B2 such that

N = A–1
1 ∗

(
ψDα 0

0 ψDα

)

∗ B–1
1

and

N = A–1
2 ∗

(
ψDα 0

0 ψDα

)

∗ B–1
2 .

For α ∈C\{0}, let

KN ,α = B1 ∗ A2 ∗N ∗ B2 ∗ A1 ∗
(

θα 0
0 θα

)

be the quaternionic Cauchy–Maxwell kernel, which is the fundamental solution of N op-
erator. The reasons are as follows. By the definition of N operator, we have

KN ,α = B1 ∗ A2 ∗ A2
–1 ∗

(
ψDα 0

0 ψDα

)

∗ B2
–1 ∗ B2 ∗ A1 ∗

(
θα 0
0 θα

)

= B1 ∗
(

ψDα 0
0 ψDα

)

∗ A1 ∗
(

θα 0
0 θα

)

. (3.1)

By �λ[θα] = ψDα
ψDα[θα] = ψDα

ψDα[θα] = 0, we have

N [KN ,α]

= A1
–1 ∗

(
ψDα 0

0 ψDα

)

∗ B1
–1 ∗ B1 ∗

(
ψDα 0

0 ψDα

)

∗ A1 ∗
(

θα 0
0 θα

)

= A1
–1 ∗

(
ψDα 0

0 ψDα

)

∗
(

ψDα 0
0 ψDα

)

∗ A1 ∗
(

θα 0
0 θα

)
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= A1
–1 ∗

(
ψDα 0

0 ψDα

)

∗
(

ψDα 0
0 ψDα

)

∗
(

α –σ

–α –σ

)

∗
(

θα 0
0 θα

)

= A1
–1 ∗

(
αψDα

ψDα[θα] –σψDα
ψDα[θα]

–αψDα
ψDα[θα] –σψDα

ψDα[θα]

)

= 0.

Let

KN ,α[f ](x) =
∫

∂�

KN ,α(y – x) ∗ d̃σy ∗ f (y), x ∈ �±,

be an analog of the Cauchy-type integral in the theory of the integral representations with
the quaternionic Cauchy–Maxwell kernel, where f : ∂� → Mat2×2(H(C)) and

d̃σy =

(
0 –dσy

dσy 0

)

.

We shall call also KN ,α[f ](x) the quaternionic Cauchy–Maxwell-type integral.
The norm of an matrix f =

( f11 f12
f21 f22

) ∈ Mat2×2(H(C)) is taken to be ‖f ‖∞ = max1≤i,j≤2 |fij|.
From equality (3.1), we know there exists a direct connection between KN ,α and the cor-
responding hyperholomorphic Cauchy kernels Kψ ,α , Kψ ,α .

KN ,α(x) =
1
2

(
σ –1 –σ –1

α–1 α–1

)

∗
(

ψDα 0
0 ψDα

)

∗
(

α –σ

–α –σ

)

∗
(

θα 0
0 θα

)

=
1
2

(
σ –1α(Kψ ,α(x) + Kψ ,α(x)) –(Kψ ,α(x) – Kψ ,α(x))

Kψ ,α(x) – Kψ ,α(x) –α–1σ (Kψ ,α(x) + Kψ ,α(x))

)

=
1
2

(
σ –1 σ –1

α–1 –α–1

)

∗
(

αKψ ,α(x) –σKψ ,α(x)
αKψ ,α(x) σKψ ,α(x)

)

, (3.2)

where Kψ ,α(x), Kψ ,α(x) are, respectively, the Cauchy kernel for ψDα , ψDα .

3.2 Some properties of the Teodorescu operator TN ,α related to the N matrix
operator

In this section, we will discuss some properties of the following singular integral operators:

(
TN ,α[f ]

)
(x)

=
∫

B
KN ,α(y – x) ∗ f (y) dvy +

∫

B
KN ,α

(
y

|y|2 – x
)

∗ f
(

y
|y|2
)

∗ 1
|y|6 dvy

=
(
T (1)
N ,α[f ]

)
(x) +

(
T (2)
N ,α[f ]

)
(x),

where B = {x||x| < 1}, α = a + ib, b > 0.

Theorem 3.1 Let �, B, α be as stated above. If f =
( f11 f12

f21 f22

)
with entries belonging to

Lp(B,H(C)), 3 < p < +∞, then
(1) ‖(T (1)

N ,α[f ])(x)‖∞ ≤ Q1(p) · max1≤i,j≤2 ‖fij‖Lp(B), x ∈ R3,
(2) ‖(T (1)

N ,α[f ])(x1) – (T (1)
N ,α[f ])(x2)‖∞ ≤ Q2(p) · max1≤i,j≤2 ‖fij‖Lp(B) · |x1 – x2|β , x1, x2 ∈ �,
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(3) N (T (1)
N ,α[f ])(x) = f (x), x ∈ B, N (T (1)

N ,α[f ])(x) = 0, x ∈ R3\B,
where 0 < β = p–3

p < 1.

Proof (1) From (3.2), we can obtain

(
T (1)
N ,α[f ]

)
(x)

=
∫

B
KN ,α(y – x) ∗ f (y) dvy

=
1
2

∫

B

(
σ –1 σ –1

α–1 –α–1

)

∗
(

αKψ ,α –σKψ ,α

αKψ ,α σKψ ,α

)

∗
(

f11 f12

f21 f22

)

dvy

=
1
2

∫

B

(
σ –1 σ –1

α–1 –α–1

)

∗
(

αKψ ,αf11 – σKψ ,αf21 αKψ ,αf12 – σKψ ,αf22

αKψ ,αf11 + σKψ ,αf21 αKψ ,αf12 + σKψ ,αf22

)

dvy

=
1
2

(
g11 g12

g21 g22

)

, (3.3)

where

g11 = ασ –1
∫

B
[Kψ ,α + Kψ ,α]f11 dvy +

∫

B
[Kψ ,α – Kψ ,α]f21 dvy,

g12 = ασ –1
∫

B
[Kψ ,α + Kψ ,α]f12 dvy +

∫

B
[Kψ ,α – Kψ ,α]f22 dvy,

g21 =
∫

B
[Kψ ,α – Kψ ,α]f11 dvy – α–1σ

∫

B
[Kψ ,α + Kψ ,α]f21 dvy,

g22 =
∫

B
[Kψ ,α – Kψ ,α]f12 dvy – α–1σ

∫

B
[Kψ ,α + Kψ ,α]f22 dvy.

By Lemma 2.1 and Lemma 2.2, we have

|g11| ≤ Q(1)
1 (p)‖f11‖Lp(B) + Q(2)

1 (p)‖f21‖Lp(B),

|g12| ≤ Q(3)
1 (p)‖f12‖Lp(B) + Q(4)

1 (p)‖f22‖Lp(B),

|g21| ≤ Q(5)
1 (p)‖f11‖Lp(B) + Q(6)

1 (p)‖f21‖Lp(B),

|g22| ≤ Q(7)
1 (p)‖f12‖Lp(B) + Q(8)

1 (p)‖f22‖Lp(B).

Therefore

∥
∥
(
T (1)
N ,α[f ]

)
(x)
∥
∥∞ =

1
2

max
1≤i,j≤2

|gij| ≤ Q1(p) · max
1≤i,j≤2

‖fij‖Lp(B),

where Q1(p) = max1≤i≤8{Q(i)
1 (p)}.

(2) From (3.3), we can obtain

(
T (1)
N ,α[f ]

)
(x1) –

(
T (1)
N ,α[f ]

)
(x2) =

1
2

(
g11(x1) – g11(x2) g12(x1) – g12(x2)
g21(x1) – g21(x2) g22(x1) – g22(x2)

)

.
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For each x1, x2 ∈ �, by Lemma 2.1 and Lemma 2.2, we have

∣
∣g11(x1) – g11(x2)

∣
∣≤ Q(1)

2 (p)‖f11‖Lp(B)|x1 – x2|β + Q(2)
2 (p)‖f21‖Lp(B)|x1 – x2|β ,

∣
∣g12(x1) – g12(x2)

∣
∣≤ Q(3)

2 (p)‖f12‖Lp(B)|x1 – x2|β + Q(4)
2 (p)‖f22‖Lp(B)|x1 – x2|β ,

∣
∣g21(x1) – g21(x2)

∣
∣≤ Q(5)

2 (p)‖f11‖Lp(B)|x1 – x2|β + Q(6)
2 (p)‖f21‖Lp(B)|x1 – x2|β ,

∣
∣g22(x1) – g22(x2)

∣
∣≤ Q(7)

2 (p)‖f12‖Lp(B)|x1 – x2|β + Q(8)
2 (p)‖f22‖Lp(B)|x1 – x2|β .

Therefore

∥
∥
(
T (1)
N ,α[f ]

)
(x1) –

(
T (1)
N ,α[f ]

)
(x2)
∥
∥∞

=
1
2

max
1≤i,j≤2

∣
∣gij(x1) – gij(x2)

∣
∣

≤ Q2(p) · max
1≤i,j≤2

‖fij‖Lp(B)|x1 – x2|β ,

where Q2(p) = max1≤i≤8{Q(i)
2 (p)}.

(3) From (3.3), we can obtain

N
(
T (1)
N ,α[f ]

)
(x) =

(
σ –ψD

ψD –iωμ

)

∗ 1
2

(
g11 g12

g21 g22

)

=
1
2

(
σ g11 – ψD[g21] σ g12 – ψD[g22]

ψD[g11] – iωμg21
ψD[g12] – iωμg22

)

.

Thus

σ g11 – ψD[g21]

= α

∫

B
[Kψ ,α + Kψ ,α]f11 dvy + σ

∫

B
[Kψ ,α – Kψ ,α]f21 dvy

– ψD
{∫

B
[Kψ ,α – Kψ ,α]f11 dvy

}

+ α–1σψD
{∫

B
[Kψ ,α + Kψ ,α]f21 dvy

}

= ψDα

{∫

B
Kψ ,αf11 dvy

}

+ ψDα

{∫

B
Kψ ,αf11 dvy

}

+ σα–1ψDα

{∫

B
Kψ ,αf21 dvy

}

– σα–1ψDα

{∫

B
Kψ ,αf21 dvy

}

,

by Lemma 2.1 and Lemma 2.2, we have

σ g11 – ψD[g21] = 2f11, x ∈ B, σ g11 – ψD[g21] = 0, x ∈ R3\B.

Similarly, we can obtain

σ g12 – ψD[g22] = 2f12, x ∈ B, σ g12 – ψD[g22] = 0, x ∈ R3\B,
ψD[g11] – iωμg21 = 2f21, x ∈ B, ψD[g11] – iωμg21 = 0, x ∈ R3\B,
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ψD[g12] – iωμg22 = 2f22, x ∈ B, ψD[g12] – iωμg22 = 0, x ∈ R3\B.

Therefore N (T (1)
N ,α[f ])(x) = f (x), x ∈ B, N (T (1)

N ,α[f ])(x) = 0, x ∈ R3\B. �

Theorem 3.2 Let �, B, α be as stated above. If f =
( f11 f12

f21 f22

)
with entries belonging to

Lp,3(B,H(C)), 3 < p < +∞, then
(1) ‖(T (2)

N ,α[f ])(x)‖∞ ≤ Q3(p) · max1≤i,j≤2 ‖f (3)
ij ‖Lp(B), x ∈ R3,

(2) ‖(T (2)
N ,α[f ])(x1) – (T (2)

N ,α[f ])(x2)‖∞ ≤ Q4(p) · max1≤i,j≤2 ‖f (3)
ij ‖Lp(B) · |x1 – x2|β ,

x1, x2 ∈ �,
(3) N (T (2)

N ,α[f ])(x) = 0, x ∈ B, N (T (2)
N ,α[f ])(x) = f (x), x ∈ R3\B,

where 0 < β = p–3
p < 1.

Proof This case is similar to Theorem 3.1. �

Thus, from Theorem 3.1 and Theorem 3.2, we obtain the following results.

Theorem 3.3 Let �, B, α be as stated above. If f =
( f11 f12

f21 f22

)
with entries belonging to

Lp,3(B,H(C)), 3 < p < +∞, then
(1) ‖(TN ,α[f ])(x)‖∞ ≤ Q5(p) · max1≤i,j≤2 ‖fij‖p,3, x ∈ R3,
(2) ‖(TN ,α[f ])(x1) – (TN ,α[f ])(x2)‖∞ ≤ Q6(p) · max1≤i,j≤2 ‖fij‖p,3 · |x1 – x2|β , x1, x2 ∈ �,
(3) N (TN ,α[f ])(x) = f (x), x ∈ R3\∂B,

where 0 < β = p–3
p < 1.

3.3 The Riemann boundary value problem related to the N matrix operator
Theorem 3.4 Let B be as stated above. Find u =

( u11 u12
u21 u22

) ∈ Mat2×2(H(C)) satisfying the
following system:

⎧
⎪⎪⎨

⎪⎪⎩

N [u] = 0, x ∈ R3\∂B,

u+(τ ) = u–(τ ) ∗ G + f (τ ), τ ∈ ∂B,

u(x) → 0, as x → ∞,

(3.4)

where u±(τ ) = limx∈B± ,x→τ u(x), G =
(G11 0

0 G22

)
is a quaternion constant matrix and its in-

verse exists, f =
( f11 f12

f21 f22

)
with entries belonging to Hν

∂B (0 < ν < 1). Then the solution can be
expressed as

u(x) =

⎧
⎨

⎩

∫

∂B KN ,α(y – x) ∗ d̃σy ∗ f (y), x ∈ B+,
∫

∂B KN ,α(y – x) ∗ d̃σy ∗ f (y) ∗ G–1, x ∈ B–.

Proof Let B2 be as above and its inverse B–1
2 =

( –σ α

σ α

)
. Then, for g = B–1

2 u =
( g11 g12

g21 g22

)
, since

N [u] = 0, we can obtain

ψDα[g11] = ψDα[g12] = 0, ψDα[g21] = ψDα[g22] = 0.

By (3.4), we have g+ = g– ∗ G + B–1
2 ∗ f , i.e.

g11
+ = g11

–G11 – σ f11 + αf21, g12
+ = g12

–G22 – σ f12 + αf22,
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g21
+ = g21

–G11 + σ f11 + αf21, g22
+ = g22

–G22 + σ f12 + αf22.

By Lemma 2.3, when x ∈ B+,

g =

(
–σKψ ,α[f11] + αKψ ,α[f21] –σKψ ,α[f12] + αKψ ,α[f22]
σKψ ,α[f11] + αKψ ,α[f21] σKψ ,α[f12] + αKψ ,α[f22]

)

.

Then

u = B2 ∗ g

=
1
2

(
–σ –1 σ –1

α–1 α–1

)

∗
(

–σKψ ,α[f11] + αKψ ,α[f21] –σKψ ,α[f12] + αKψ ,α[f22]
σKψ ,α[f11] + αKψ ,α[f21] σKψ ,α[f12] + αKψ ,α[f22]

)

=
∫

∂B
KN ,α(y – x) ∗ d̃σy ∗ f (y).

By Lemma 2.3, when x ∈ B–,

g =

(
–σKψ ,α[f11]G–1

11 + αKψ ,α[f21]G–1
11 –σKψ ,α[f12]G–1

22 + αKψ ,α[f22]G–1
22

σKψ ,α[f11]G–1
11 + αKψ ,α[f21]G–1

11 σKψ ,α[f12]G–1
22 + αKψ ,α[f22]G–1

22

)

=

(
–σKψ ,α[f11] + αKψ ,α[f21] –σKψ ,α[f12] + αKψ ,α[f22]
σKψ ,α[f11] + αKψ ,α[f21] σKψ ,α[f12] + αKψ ,α[f22]

)

∗
(

G–1
11 0
0 G–1

22

)

.

Then

u = B2 ∗ g =
∫

∂B
KN ,α(y – x) ∗ d̃σy ∗ f (y) ∗ G–1. �

Theorem 3.5 Let B be as stated above, and g =
( g11 g12

g21 g22

)
with entries belonging to

Lp,3(R3,H(C)), 3 < p < +∞. Find w =
( w11 w12

w21 w22

) ∈ Mat2×2(H(C)) satisfying the following sys-
tem:

⎧
⎪⎪⎨

⎪⎪⎩

N [w](x) = g(x), x ∈ R3\∂B,

w+(τ ) = w–(τ ) ∗ G + f (τ ), τ ∈ ∂B,

w(x) → 0, as x → ∞,

(3.5)

where w±(τ ) = limx∈B± ,x→τ w(x), G =
(G11 0

0 G22

)
is quaternion constant matrix and its inverse

exists, f =
( f11 f12

f21 f22

)
with entries belonging to Hν

∂B (0 < ν < 1). Then the solution has the form

w(x) = �(x) +
(
TN ,α[g]

)
(x),

in which N [�](x) = 0 and

�(x) =

⎧
⎨

⎩

∫

∂B KN ,α(y – x) ∗ d̃σy ∗ f̃ (y), x ∈ B+,
∫

∂B KN ,α(y – x) ∗ d̃σy ∗ f̃ (y) ∗ G–1, x ∈ B–,

where f̃ = f + (TN ,α[g]) ∗ (G – E).
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Proof By Theorem 3.3, we know

N [w] = N
[
�(x) +

(
TN ,α[g]

)
(x)
]

= g(x).

The boundary condition (3.5) becomes

(
� + TN ,α[g]

)+(τ ) =
(
� + TN ,α[g]

)–(τ ) ∗ G + f (τ ), τ ∈ ∂B. (3.6)

Again from Theorem 3.3, we know that (TN ,α[g])(x) has continuity in � ⊂ R3. Thus
(TN ,α[g])+ = (TN ,α[g])– = TN ,α[g]. Thus we can obtain

�+(τ ) = �–(τ ) ∗ G +
(
TN ,α[g]

)
(τ ) ∗ (G – E) + f (τ ), τ ∈ ∂B. (3.7)

Suppose f̃ = f + (TN ,α[g]) ∗ (G – E), then (3.7) has the following form:

�+(τ ) = �–(τ ) ∗ G + f̃ (τ ), τ ∈ ∂B. (3.8)

Again from Theorem 3.4, the solutions which satisfy the system N [�] = 0 and boundary
condition (3.8) can be represented in the form

�(x) =

⎧
⎨

⎩

∫

∂B KN ,α(y – x) ∗ d̃σy ∗ f̃ (y), x ∈ B+,
∫

∂B KN ,α(y – x) ∗ d̃σy ∗ f̃ (y) ∗ G–1, x ∈ B–. �

4 The Riemann boundary value problem related to the time-harmonic Maxwell
equations

4.1 The relevant definitions and operations

Let
−→
E ,

−→
H : � → C

3 be a pair of complex-valued vector fields.
−→
E = E1i1 + E2i2 + E3i3,−→

H = H1i1 + H2i2 + H3i3, i.e. E0 = 0, H0 = 0. The following system:

rot
−→
H = σ

−→
E , rot

−→
E = iωμ

−→
H , (4.1)

div
−→
H = 0, div

−→
E = 0, (4.2)

is called the time-harmonic Maxwell equations. (
−→
E ,

−→
H ) is called a time-harmonic elec-

tromagnetic field, where σ is a complex electrical conductivity and μ is a magnetic per-
meability. It is known that they satisfy the homogeneous Helmholtz equation

�
−→
E + λ

−→
E = 0,

�
−→
H + λ

−→
H = 0,

where λ = iωμσ ∈ C, α =
√

λ. Set

M =

(
σ – rot

rot –iωμ

)

,
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then Eq. (4.1) becomes

M

⎡

⎣

⎛

⎝

−→
E
−→
H

⎞

⎠

⎤

⎦ = 0.

For k ∈ Z+, set

Ĉ(k) =

{(�f
�g

)

∈ C(k)(�,C3 ×C
3)
∣
∣
∣div �f = div �g = 0

}

.

The operator

M̂ = M|Ĉ(1) ,

i.e. the restriction of M onto Ĉ(1), will be termed the time-harmonic Maxwell operator.
Then (4.1) and (4.2) become

M̂

⎡

⎣

⎛

⎝

−→
E
−→
H

⎞

⎠

⎤

⎦ = 0,

where
−→
E ,

−→
H ∈ Ĉ(1).

Let
( a 0

b 0

) ∈ Mat2×2, which are identified naturally with columns
( a

b
)
. We shall not distin-

guish them in this paper.
Let N : C(1)(�, Mat2×2(H(C))) → C(0)(�, Mat2×2(H(C))). Set Ñ = N|Ĉ(1) , i.e. the restric-

tion of N onto Ĉ(1). Obviously, If
( −→

E−→
H

) ∈ Ĉ(1), then we have

ψD[
−→
E ] = – div

−→
E + rot

−→
E = rot

−→
E , ψD[

−→
H ] = – div

−→
H + rot

−→
H = rot

−→
H .

Therefore

M̂

⎡

⎣

⎛

⎝

−→
E
−→
H

⎞

⎠

⎤

⎦ =

(
σ – rot

rot –iωμ

)⎛

⎝

−→
E
−→
H

⎞

⎠ =

(
σ –ψD

ψD –iωμ

)⎛

⎝

−→
E
−→
H

⎞

⎠ = Ñ

⎡

⎣

⎛

⎝

−→
E
−→
H

⎞

⎠

⎤

⎦ .

That is, if
( −→

E−→
H

) ∈ Ĉ(1), then we have

M̂

⎡

⎣

⎛

⎝

−→
E
−→
H

⎞

⎠

⎤

⎦ = Ñ

⎡

⎣

⎛

⎝

−→
E
−→
H

⎞

⎠

⎤

⎦ .

Let Q, R ∈ Mat2×2(H(C)), and Q0 = Sc(Q) = (Sc(qm,n))1≤m,n≤2,
−→
Q = Vec(Q) =

(�qm,n)1≤m,n≤2, set

〈−→Q ,
−→
R 〉 =

(
〈�q11,�r11〉 + 〈�q12,�r21〉 〈�q11,�r12〉 + 〈�q12,�r22〉
〈�q21,�r11〉 + 〈�q22,�r21〉 〈�q21,�r12〉 + 〈�q22,�r22〉

)

,



Yang et al. Journal of Inequalities and Applications        (2021) 2021:154 Page 14 of 20

[
−→
Q ,

−→
R ] =

(
[�q11,�r11] + [�q12,�r21] [�q11,�r12] + [�q12,�r22]
[�q21,�r11] + [�q22,�r21] [�q21,�r12] + [�q22,�r22]

)

.

The time-harmonic Cauchy–Maxwell kernel is defined by

KM,α(y – x) =
(〈

grad θα(y – x), �ny
〉
, –Uα(y – x)

)
,

where θα(y – x) be as stated, �ny is unit outward normal vector at y ∈ ∂�, and

Uα(y – x) =

(
[grad θα(y – x), �ny] iωμθα(y – x)�ny

σθα(y – x)�ny [grad θα(y – x), �ny]

)

.

For any �g =
( �e

�h
)

: ∂� →C
3 ×C

3, there is introduced the operation

KM,α(y – x) � �g(y) =
〈
grad θα(y – x), �ny

〉�g(y) –
[
Uα(y – x), �g(y)

]
,

where

[
Uα(y – x), �g(y)

]
=

(
[[grad θα(y – x), �ny],�e] + iωμθα(y – x)[�ny, �h]
σθα(y – x)[�ny,�e] + [[grad θα(y – x), �ny], �h]

)

.

For any V =
( �v11 �v12

�v21 �v22

)
, there is introduced the operation

V �
(

�e
�h

)

=

(
〈�v11,�e〉 + 〈�v12, �h〉
〈�v21,�e〉 + 〈�v22, �h〉

)

.

Obviously, we have

〈

Uα(y – x),

(
�e
�h

)〉

= Uα(y – x) �
(

�e
�h

)

.

Set

M =

{(
�e
�h

)

: ∂� → C
3 ×C

3
∣
∣
∣

∫

∂�

Uα(y – x) �
(

�e(y)
�h(y)

)

dsy = 0, x /∈ ∂�

}

.

The integral

KM,α

[(
�e
�h

)]

(x) =
∫

∂�

KM,α(y – x) �

(
�e(y)
�h(y)

)

dsy, x /∈ ∂�,

plays the role of an analogue of the Cauchy–Maxwell-type integral in the theory of time-
harmonic electromagnetic fields.

4.2 The Riemann boundary value problem related to time-harmonic Maxwell
equations

Lemma 4.1 Set K0
M,α(y – x) = 〈grad θα(y – x), �ny〉

( 1 0
0 1

)
– Uα(y – x). Then

KN ,α(y – x) ∗ d̃σy = K0
M,α(y – x) dsy.
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Proof By the definition of KN ,α(y – x), we have

KN ,α(y – x) ∗ d̃σy

=
1
2

(
σ –1 σ –1

α–1 –α–1

)

∗
(

αKψ ,α(y – x) –σKψ ,α(y – x)
αKψ ,α(y – x σKψ ,α(y – x)

)

∗
(

0 –�ny

�ny 0

)

dsy

=
1
2

(
σ –1 σ –1

α–1 –α–1

)

∗
(

αψDα[θα](y – x) –σψDα[θα](y – x)
αψDα[θα](y – x) σψDα[θα](y – x)

)

∗
(

0 –�ny

�ny 0

)

dsy

=
1
2

(
σ –1 σ –1

α–1 –α–1

)

∗
(

α(αθα + grad θα) –σ (αθα + grad θα)
α(αθα – grad θα) σ (αθα – grad θα)

)

∗
(

0 –�ny

�ny 0

)

dsy

=
1
2

(
σ –1 σ –1

α–1 –α–1

)

∗
(

–σ (αθα + grad θα)�ny –α(αθα + grad θα)�ny

σ (αθα – grad θα)�ny –α(αθα – grad θα)�ny

)

dsy

=
1
2

(
2〈grad θα , �ny〉 – 2[grad θα , �ny] –2σ –1α2θα�ny

–2σθα�ny 2〈grad θα , �ny〉 – 2[grad θα , �ny]

)

dsy

=

(
〈grad θα , �ny〉 – [grad θα , �ny] –σ –1α2θα�ny

–σθα�ny 〈grad θα , �ny〉 – [grad θα , �ny]

)

dsy.

By the definition of K0
M,α , we can obtain

K0
M,α(y – x) dsy

=

{

〈grad θα , �ny〉
(

1 0
0 1

)

– Uα(y – x)

}

dsy

=

(
〈grad θα , �ny〉 – [grad θα , �ny] –iωμθα�ny

–σθα�ny 〈grad θα , �ny〉 – [grad θα , �ny]

)

dsy

=

(
〈grad θα , �ny〉 – [grad θα , �ny] –σ –1α2θα�ny

–σθα�ny 〈grad θα , �ny〉 – [grad θα , �ny]

)

dsy,

where θα = θα(y – x). Therefore KN ,α(y – x) ∗ d̃σy = K0
M,α(y – x) dsy. �

Lemma 4.2 If �f =
( �e

�h
) ∈M. Then we have

KM,α

[(
�e
�h

)]

(x) = KN ,α

[(
�e
�h

)]

(x).

Proof By Lemma 4.1, we have

KN ,α(y – x) ∗ d̃σy ∗ �f (y)

= K0
M,α(y – x) ∗ �f (y) dsy

=

{
〈
grad θα(y – x), �ny

〉
(

1 0
0 1

)

– Uα(y – x)

}

∗ �f (y) dsy

=
{〈

grad θα(y – x), �ny
〉�f (y) –

[
Uα(y – x), �f (y)

]
+
〈
Uα(y – x), �f (y)

〉}
dsy
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=
(〈
Uα(y – x), �f (y)

〉
+ KM,α(y – x) � �f (y)

)
dsy.

Therefore

KN ,α

[(
�e
�h

)]

(x) =
∫

∂�

KN ,α(y – x) ∗ d̃σy ∗ �f (y)

=
∫

∂�

(〈
Uα(y – x), �f (y)

〉
+ KM,α(y – x) � �f (y)

)
dsy

=
∫

∂�

KM,α(y – x) � �f (y) dsy +
∫

∂�

Uα(y – x) �
(

�e(y)
�h(y)

)

dsy

=
∫

∂�

KM,α(y – x) � �f (y) dsy = KM,α

[(
�e
�h

)]

(x). �

Lemma 4.3 If �f (y) =
( �e(y)

�h(y)

) ∈ C(1)(�,C3 ×C
3) and �f (y) ∈M. Then

∫

∂B
KM,α(y – x) � �f (y) dsy ∈ Ĉ(1).

Proof By the definition, we have

∫

∂B
KM,α(y – x) � �f (y) dsy

=
∫

∂B

{

〈grad θα , �ny〉
(

�e
�h

)

–
[
Uα(y – x), �f (y)

]
}

dsy

=

(∫

∂B{〈grad θα , �ny〉�e – [[grad θα , �ny],�e] – iωμθα[�ny, �h]}dsy
∫

∂B{〈grad θα , �ny〉�h – σθα[�ny,�e] – [[grad θα , �ny], �h]}dsy

)

,

where θα = θα(y – x).
(i) Since

grad θα =
(

∂θα

∂x1
,
∂θα

∂x2
,
∂θα

∂x3

)

, �ny = (y1, y2, y3),

�e = (e1, e2, e3), �h = (h1, h2, h3),

we can obtain

〈grad θα , �ny〉�e =
(

∂θα

∂x1
y1 +

∂θα

∂x2
y2 +

∂θα

∂x3
y3

)

(e1, e2, e3).

Therefore

div
{〈grad θα , �ny〉�e

}

=
∂( ∂θα

∂x1
y1 + ∂θα

∂x2
y2 + ∂θα

∂x3
y3)

∂x1
e1 +

∂( ∂θα
∂x1

y1 + ∂θα
∂x2

y2 + ∂θα
∂x3

y3)
∂x2

e2

+
∂( ∂θα

∂x1
y1 + ∂θα

∂x2
y2 + ∂θα

∂x3
y3)

∂x3
e3
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=
∂2θα

∂x2
1

y1e1 +
∂2θα

∂x2
2

y2e2 +
∂2θα

∂x2
3

y3e3 +
∂2θα

∂x1x2
(y1e2 + y2e1)

+
∂2θα

∂x1x3
(y1e3 + y3e1) +

∂2θα

∂x2x3
(y2e3 + y3e2).

(ii) By the definition of the vector product, we have

[grad θα , �ny] =
(

∂θα

∂x2
y3 –

∂θα

∂x3
y2

)

i1 +
(

∂θα

∂x3
y1 –

∂θα

∂x1
y3

)

i2

+
(

∂θα

∂x1
y2 –

∂θα

∂x2
y1

)

i3.

Thus

[
[grad θα , �ny],�e] =

[(
∂θα

∂x3
y1 –

∂θα

∂x1
y3

)

e3 –
(

∂θα

∂x1
y2 –

∂θα

∂x2
y1

)

e2

]

i1

+
[(

∂θα

∂x1
y2 –

∂θα

∂x2
y1

)

e1 –
(

∂θα

∂x2
y3 –

∂θα

∂x3
y2

)

e3

]

i2

+
[(

∂θα

∂x2
y3 –

∂θα

∂x3
y2

)

e2 –
(

∂θα

∂x3
y1 –

∂θα

∂x1
y3

)

e1

]

i3.

Then

div
{[

[grad θα , �ny],�e]}

= –
∂2θα

∂x2
1

(y2e2 + y3e3) –
∂2θα

∂x2
2

(y1e1 + y3e3) –
∂2θα

∂x2
3

(y1e1 + y2e2)

+
∂2θα

∂x1x2
(y1e2 + y2e1) +

∂2θα

∂x1x3
(y1e3 + y3e1) +

∂2θα

∂x2x3
(y2e3 + y3e2).

(iii) By the definition of vector product, we have

[�ny, �h] =

∣
∣
∣
∣
∣
∣
∣

i1 i2 i3

y1 y2 y3

h1 h2 h3

∣
∣
∣
∣
∣
∣
∣

= (y2h3 – h2y3)i1 + (y3h1 – h3y1)i2 + (y1h2 – h1y2)i3.

Thus

iωμθα[�ny, �h] =
(
iωμθα(y2h3 – h2y3), iωμθα(y3h1 – h3y1), iωμθα(y1h2 – h1y2)

)
.

Then

div
{

iωμθα[�ny, �h]
}

= iωμ

[
∂θα

∂x1
(y2h3 – h2y3) +

∂θα

∂x2
(y3h1 – h3y1) +

∂θα

∂x3
(y1h2 – h1y2)

]

.

Combining (i)–(iii), we have

div
{〈grad θα , �ny〉�e –

[
[grad θα , �ny],�e] – iωμθα[�ny, �h]

}

=
(

∂2θα

∂x2
1

+
∂2θα

∂x2
2

+
∂2θα

∂x2
3

)

(y1e1 + y2e2 + y3e3) – iωμ

[
∂θα

∂x1
(y2h3 – h2y3)
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+
∂θα

∂x2
(y3h1 – h3y1) +

∂θα

∂x3
(y1h2 – h1y2)

]

. (4.3)

Obviously, we have

∂2θα

∂x2
1

+
∂2θα

∂x2
2

+
∂2θα

∂x2
3

= �θα = �α2θα – α2θα = –α2θα . (4.4)

By the definition of vector product, we have

[grad θα , �ny] =
(

∂θα

∂x2
y3 –

∂θα

∂x3
y2

)

i1 +
(

∂θα

∂x3
y1 –

∂θα

∂x1
y3

)

i2

+
(

∂θα

∂x1
y2 –

∂θα

∂x2
y1

)

i3.

Then

〈
[grad θα , �ny], �h〉

=
(

∂θα

∂x2
y3 –

∂θα

∂x3
y2

)

h1 +
(

∂θα

∂x3
y1 –

∂θα

∂x1
y3

)

h2 +
(

∂θα

∂x1
y2 –

∂θα

∂x2
y1

)

h3

=
∂θα

∂x1
(y2h3 – h2y3) +

∂θα

∂x2
(y3h1 – h3y1) +

∂θα

∂x3
(y1h2 – h1y2). (4.5)

Since �f (y) =
( �e(y)

�h(y)

) ∈M, we have
∫

∂B Uα(y–x)�( �e(y)
�h(y)

)
dsy = 0. In addition, by the definition

of �, we have

∫

∂B
Uα(y – x) �

(
�e(y)
�h(y)

)

dsy

=
∫

∂B

(
〈[grad θα , �ny],�e〉 + iωμθα〈�ny, �h〉
σθα〈�ny,�e〉 + 〈[grad θα , �ny], �h〉

)

dsy

=

(∫

∂B{〈[grad θα , �ny],�e〉 + iωμθα〈�ny, �h〉}dsy
∫

∂B{σθα〈�ny,�e〉 + 〈[grad θα , �ny], �h〉}dsy

)

.

Therefore
∫

∂B

{
σθα〈�ny,�e〉 +

〈[
grad θα(y – x), �ny

]
, �h〉}dsy = 0. (4.6)

By (4.3)–(4.6), we have

div
∫

∂B

{〈grad θα , �ny〉�e –
[
[grad θα , �ny],�e] – iωμθα[�ny, �h]

}
dsy

=
∫

∂B
div
{〈grad θα , �ny〉�e –

[
[grad θα , �ny],�e] – iωμθα[�ny, �h]

}
dsy

=
∫

∂B

{
–α2θα〈�ny,�e〉 – iωμ

〈
[grad θα , �ny], �h〉}dsy

= –iωμ

∫

∂B

{
σθα〈�ny,�e〉 +

〈
[grad θα , �ny], �h〉}dsy = 0.
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Similarly, we have

div
∫

∂B

{〈grad θα , �ny〉�h – σθα[�ny,�e] –
[
[grad θα , �ny], �h]}dsy = 0.

Therefore
∫

∂B
KM,α(y – x) � �f (y) dsy ∈ Ĉ(1). �

Theorem 4.1 Let B be as stated above. Find u(x) =
( �u11

�u21

) ∈ Ĉ(1) satisfying the following
system:

⎧
⎪⎪⎨

⎪⎪⎩

M[u] = 0, x ∈ R3\∂B,

u+(τ ) = u–(τ ) ∗ G + �f (τ ), τ ∈ ∂B,

u(x) → 0, as x → ∞,

where u±(τ ) = limx∈B± ,x→τ u(x), G =
(G11

0

)
is a quaternion constant matrix and its inverse

exists, �f =
( �f11

�f21

) ∈ M with entries belonging to Hν
∂B (0 < ν < 1). Then the solution can be

expressed as

u(x) =

⎧
⎨

⎩

∫

∂B KM,α(y – x) � �f (y) dsy, x ∈ B+,
∫

∂B KM,α(y – x) � �f (y) dsy ∗ G–1, x ∈ B–.

Proof Since u(x) ∈ Ĉ(1), we have N(u) = Ñ(u) = M̂(u) = M(u) = 0. By Theorem 3.4, then
the solution can be expressed as

u(x) =

⎧
⎨

⎩

∫

∂B KN ,α(y – x) ∗ d̃σy ∗ �f (y), x ∈ B+,
∫

∂B KN ,α(y – x) ∗ d̃σy ∗ �f (y) ∗ G–1, x ∈ B–.

Since �f =
( �f11

�f21

) ∈M, by Lemma 4.2 and Lemma 4.3, the solution can be expressed as

u(x) =

⎧
⎨

⎩

∫

∂B KM,α(y – x) � �f (y) dsy, x ∈ B+,
∫

∂B KM,α(y – x) � �f (y) dsy ∗ G–1, x ∈ B–,

and u(x) ∈ Ĉ(1). �
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