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1 Introduction
The boundary value problem for partial differential equations is a very meaningful re-
search subject which has important applications in physics, chemistry, financial math-
ematics and many other fields. Teodorescu operator is a generalized solution of the in-
homogeneous Dirac equation and it has been widely used in solving the boundary value
problem of partial differential equations. Therefore many experts and scholars studied
the properties of the Teodorescu operator and corresponding boundary value problem,
for example, Vekua N [1] first discussed some properties of the Teodorescu operator on
the plane and its application in the shell theory and gas dynamics. Hile GN [2] and Gilbert
RP et al. [3] studied some properties of the Teodorescu operator in n-dimensional Eu-
clidean space and higher-dimensional complex spaces. Du JY, Yang PW, Qiao YY, Taira K
and Wang LP et al. studied some properties and boundary value problems associated with
the Teodorescu operator in quaternion analysis and Clifford analysis (see [4—16]).
Quaternion analysis is an important branch of modern analysis, which studies the func-
tions defined in the domain of n-dimensional Euclidean space with values in quaternion
spaces. It is an important tool for the solution of boundary value problems of high-
dimensional partial differential equations, including Maxwell equations. The Maxwell
equations are a set of partial differential equations describing the relationship between
© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other

third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by

L]
@ Sprlnger statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1186/s13660-021-02687-8
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-021-02687-8&domain=pdf
mailto:wlpxjj@163.com
mailto:xuzl@ruc.edu.cn

Yang et al. Journal of Inequalities and Applications (2021) 2021:154 Page 2 of 20

the electric field, the magnetic field and the charge density, which is the basic equation
of the electromagnetism in physics. The properties of the singular integral operator and
boundary value problems related to the Maxwell equations have been studied by many
scholars, for example, Mcintosh A and Mitrea M [17] discussed the problems related to
the Maxwell equations in Lipschitz domains. Schneider B and Shapiro M [18, 19] studied
the Cauchy-type integral of time-harmonic electromagnetic fields in the case of a piece-
wise Liapunov surface of integration. Kravchenko VV and Shapiro MV [20-22] discussed
the Cauchy-type integral associated with Maxwell’s equations, and obtained some im-
portant integral formulas. Moreover, Kravchenko VV considered quaternionic reformula-
tions of Maxwell’s equations and discussed the Dirichlet boundary value problem. Russell
DL [23] studied the Dirichlet—-Neumann boundary problem associated with the control
theory of Maxwell’s equations. Yang PW et al. [24] investigated an initial-boundary value
problem for Maxwell equations and obtained the general solutions. Colton D and Kress
R [25] discussed the boundary value problem for the time-harmonic Maxwell equations
and the vector Helmholtz equation. Abreu-Blaya R et al. [26] presented a new definition
of Cauchy integral associated with Maxwell equations on 3-dimensional domains with
fractal boundaries.

Time-harmonic Maxwell equations in physics are the fundamental equations of electro-
magnetism and can be rewritten as Helmholtz equations by using the quaternion analysis.

- =
Let E, H : Q — C3 be a pair of complex-valued vector fields,

— — — —
rotH =0 E, rot E =iouH,
— — (1.1)
divH =0, div E =0.

- =
The system is called the time-harmonic Maxwell equations. ( E, H) is called a time-
harmonic electromagnetic field. It is easy to prove that they satisfy the homogeneous
Helmbholtz equation

— —
AE +ME =0,
NN (1.2)
AH +AH =0,

where A = iwpo € C. In this paper, we will study the Riemann boundary value problem
related to the time-harmonic Maxwell equations in quaternion analysis. For the above
purpose, we introduce the A/ matrix operator which establishes the relationship between
the Helmholtz equation and the time-harmonic Maxwell equations. In [15], we discuss
some properties of Teodorescu operator and the Riemann boundary value problem related
to the Helmholtz equation. By using the A/ matrix operator and the conclusions in [15], we
give the integral representation of the solution for the Riemann boundary value problem
related to the time-harmonic Maxwell equations.

The structure of this paper is as follows: In Sect. 2, we review some basic knowledge of
quaternion analysis and introduce some necessary notions for the understanding of this
article. In Sect. 3, we first discuss some properties of the singular integral operator Tar
related to the A/ matrix operator, such as uniform boundedness, Hélder continuity and so
on. Secondly, we give the integral representation of the solution for the Riemann boundary
value problem related to the N matrix. In Sect. 4, we first introduce the time-harmonic
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Maxwell equations. Then, using the corresponding Cauchy-type integral relationship be-
tween the A/ matrix operator and the time-harmonic Maxwell equations, we investigate
the Riemann boundary value problem related to the time-harmonic Maxwell equations

and obtain the integral representation of the solution.

2 Preliminaries

Let {i1,iy,i3} be an orthogonal basis of the Euclidean space R?, and H(C) be the set of
complex quaternions with basis {iy, i1, i2, i3}. Then an arbitrary quaternion & can be written
asa = 213(:0 axix, ax € C, where i is the unit, iy, iy, i3 are the quaternionic imaginary units
with the properties

) 2 . .. .. .
ig = —ix = io, ol = ixlo =iy, k=1,2,3,

i1iy = —iyiy = i3, iniz = —iziy = i1, izi] = —i1i3 = iy.

The norm for an element a € H(C) is taken to be |a| = ,/ Z/i:o |ax|?. The conjugate op-
eration in H(C) is governed by the rules

io=io,  ix=—it, k=1,2,3.

For any complex quaternions 4, b, we have

- - -

a-b:(u0+Zz)-(bo+Z)=a0bo—(Zz,b) +aob + boa + [a, b,

where (@, b), [, b] stand for usual scalar product and vector product. In particular, a - b=
~(@,b) +[a,b).

Suppose  C R? is a domain with a Liapunov boundary Q. Then the function which
is defined in 2 and valued in H(C) can be expressed as f = Zizofk(x)ik, where f(x) are
complex-valued functions. Set

C)(,H(C)) = :fy Q - H(C),f(x) = ka(x)lk, fi®) € CM(Q,0) .

We define the differential operators as follows:

> 9 _ 9
"'D[f]:Zl/,k.a_i;, YDlf1=)_ k'a—a{k’
k=1 k=1

> of N~ o
D‘”V]=Z@-wk, Df1=D g Ve

k=1 k=1

‘I'D[f Zlk of Z‘k'a(ﬁ)+f)

_ ki:ik- ;—ﬁ —Z<ik’;_£>+i[ik’;_i]
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= gradfy — divf + rotf‘.

In particular, Y D[f] = —divf + rotf.
Let A € C\{0}, and & be its complex square root, «? = A. For the above «, let us introduce

the operators

VD, [f] = af + VD[f], «DV[f] = af + DV[f],

"Dolfl=af =¥DIfl,  oD"[f]=af -D*[f].
These are called the left (right) mutually conjugate (¥, «)-hyperholomorphic Cauchy-
Riemann operators. We have the equalities

vp,'D, =¥D,"D, = ,D", D’ =, D’ ,D"

= A+ 0 = A,

where A, is the 3-dimensional Helmholtz operator with a complex parameter A.
Let o € C\{0} and Im« #0, we introduce the notation: for x € R3\{0},

0u(x) —47{1‘%‘ e Ima >0,
X) =
o .
——L el Img <0,
477 |x|

In both cases it is a fundamental solution of the Helmholtz equation with A = 2. Then the

fundamental solution to the operator ¥ Dy, Ky 4 is given by the formula

O () + % —iaZ), Ima >0,

IxI2 x| 77

Kw,a(x) = ‘//501 [ea](x) =

O (x)(a + ﬁ + ia%), Ima <0.

An analogous representation holds for E,/,,a (%) = YDy [6,](x).
If f is a Holder function, then its a-hyperholomorphic Cauchy-type integral is defined
by

Kyalf 1) = /é Ky =) dof0)

If f(x) € L7° (B, H(C)) means that f(x) € L?(B, H(C)), f)(x) = |x|°f(Z5) € L?(B, H(C)),

%2
in which B = {x||x| < 1}, o is a real number, and ||f |, = Ifllzz) + |[f(")||uy(3),p > 1.

In [15], we introduce the Teodorescu operator related to the Helmholtz equation as
follows:

(TyalfN)®

_ i TN\ L
B /B’Cw@ x)f (y)dvy + /B’C"""‘<|y|2 x)/(lw) e "

= (TP ) @) + (Ty, [f) @),
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where B = {x||x| < 1}, @ = a + ib, b > 0. Analogous representations hold for K ,[f](x),
(Ty o (D).

In [15], we studied the properties of the above integral operators and obtained the in-
tegral representation of the solution for the Riemann boundary value problem related to
the Helmholtz equation. The specific results are as follows.

Lemma 2.1 ([15]) Let B be as stated above. If f € L”(B,H(C)), 3 < p < +00, then
1) T D@ < Mi@)If L), « € R,
@) (TE D@ = (T D) < Ma@)f e 21 — %217, 21, %2 € 2,
(3) VDu(TS @) = f(x), x € B, Y Do(TS), [)(x) = 0, x € R°\B,
whereO<ﬁ:"’%3 <1

Lemma 2.2 ([15]) Let B be as stated above. If f € L#(B,H(C)), 3 < p < +00, then
W) (TSLID@] < Ms@IIf lo(s), % € R,
@ 1T D@ = (TyL D) < M@ vyl — %P, 1,25 € 2,
(3) YDu(T', D) = f®), x € B, VDo (T, [f)(#) = 0, x € R\,
whereO<,B:‘”%3 <1
Remark 2.1 Analogous properties hold for T]f, Ty T(‘i)a, Ty« For more information,
we refer the reader to [15].

Lemma 2.3 ([15]) Let B be as stated above. Find a quaternion-valued function u(x) satis-
fying the system ¥ Dy[u] = 0 (x € R*\0B) and vanishing at infinity with the boundary con-
dition

u (t)=u (r)G+f(r), t€dB,

where u*(t) = lim,ept , .. u(x), G is a quaternion constant, G exists, and f € Hyp (0 <
v < 1). Then the solution can be expressed as

_ faBKW,a(y—x)defU’), x € B*,

u(x)
[ Ky ay —x)do,f ()G, x€B.

3 Some properties and applications of the Teodorescu operator T/, related to
the A/ matrix operator

3.1 The relevant definitions and symbols

We will consider the following matrix operator:

o -¥D
N: )
(‘/’D —ia)u)
where o? = iwpo. We shall consider it on the set CV (2, Maty . (H(C))), Maty»(H(C))

being the set of 2 x 2 matrices with entries from H/(C).
Let

A = a -0 B—l ol —¢1
1= —a o ) 1= ) O[_l O[_l )
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then

YD 0
A1 *N*B1 = “ ,
0 VYD,

where “x” stands for matrix multiplication.
Analogously, let

then

YD, 0
Az*N*BZ:(o M_)a)’

where A1, B;, Ay, B, are invertible.
Thus there exist invertible matrices of A1, Bi, As, B, such that

YDy O
N=AII*< 0 M))*BII

and

YD 0
_4-1 o -1
N =4, *( o "/l_)a>*32 .

For o € C\{0}, let

6, 0
Knog=Bi% Ay« N xByx Ay x|
0 6,

be the quaternionic Cauchy—Maxwell kernel, which is the fundamental solution of / op-
erator. The reasons are as follows. By the definition of N operator, we have

VD, 0 6, O
Kare =By %Ay x Ay 7! % “ ) xBy 'k Byk A x| ©
N, 1 2 2 (O ‘”Da) 2 2 1 (0 0,

YD, 0 6, O
=B % _ | %A1 % . 3.1
(D)( 61

By A; 0] = VDoV Dy [04] = VDoV Dy [0,] = 0, we have

NIKn o]

¥D, 0 YD, 0 6, O
=A% * % B! % By * — | *Ar =
0 VYD, 0 VYD, 0 6,

Page 6 of 20
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L (YD, 0 YDy O o -0 6, O
=A% * — | =* *
0 VYD, 0 VYD, — 0 6,

-1 awl_)av/Da [601] _U¢l_)awDa [941]
_awDa‘/jDa [901] _U¢DawDa [901]

Let
Ky o [f1(x /ICNa(y x)xdoy xf(y), xe€Q*,

be an analog of the Cauchy-type integral in the theory of the integral representations with
the quaternionic Cauchy—Maxwell kernel, where f : 92 — Mat,,»(H(C)) and

~ 0 —d
doy, = % .
do, 0

We shall call also Kxr o [f](x) the quaternionic Cauchy—Maxwell-type integral.
The norm of an matrix f = (giﬁj) € Maty,»(H(C)) is taken to be ||f|loc = max;<;j<s |fjl.
From equality (3.1), we know there exists a direct connection between K, and the cor-

responding hyperholomorphic Cauchy kernels Ky 4, Ky -

K (x)—l ol —o71 . vYD, 0 . o -0 . 6, O
Noa “2\a! ol 0 YD, -a -0 0 6,

1 U’lg(ﬁu,a x) + Ky (%)) —(E/f,_a ) = Kyo(x))
2 Koo (x) = Ky o (%) —a 7o (Kya®) + Ky ox)

_ l ol o1 . otK,,,va(x) —0E¢,a (x) , (3.2)
2\l -t alyu(x) oy q(x)

where /Cy 4 (x), Ky« (x) are, respectively, the Cauchy kernel for ¥ Dy, ¥ D,.

3.2 Some properties of the Teodorescu operator T/, related to the A matrix
operator

In this section, we will discuss some properties of the following singular integral operators:

(Twlf1) ()

y 1
f’CN“ x)xf(y)dvy + /ICN(,<| 2 x)*f(#)*ly?dvy

= (T2, U @) + (TR, 1) @)
where B={x||x| <1},a =a+ib,b>0.

Theorem 3.1 Let 2, B, a be as stated above. If f = (}f,ﬁ };1:) with entries belonging to
L?(B,H(C)), 3 < p < +00, then

D) N D@ oo < Qup) - maxiijca fill sy, * € R,

@) T D) = (TR D@ oo < Qalp) - maxizijes v - 151 %17, 21,5 € 2,

Page 7 of 20
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(3) NI D) =f(x), x € BN(TL [F)(x) = 0, x € B¥\B,

whereO</3=’%3<1.

Proof (1) From (3.2), we can obtain

(T3, 1) @)
= /BICN,Q()/—x) *f(y) dv,

1 ol ol alkyo —0Kygu fii S
:5/(_1 —‘1>*<IC c * dv,
B \¢ (%4 ANy ONya 21 fzz
1 / o1 o1 x OéEl/,’D(fu - O'El//,o(fm O{K,/,,qflg - GK][/,OJD dv
B ! aKpofir + o Kpafr  alyufis + o Kyufsr]

al —a”
_ 1 (gn glz)
2\en o)’
where
gu=ao! /B[K‘M + Ky olfirdvy + /B[KW[ - K‘/,,alfgl dvy,
gn=ao! /B[E,,,a +Kyalfizdvy + /B[ICW ~ Ky olfor dvy,
g1 = /B[KW( -Kyelfirdv, - o lo /B[Ew,a + Ky olfordvy,

g0 = /[K¢,,a - /Cw,alfm dVy —alo /[E,/,,a + Icl/,,alfzz dVy.
B B
By Lemma 2.1 and Lemma 2.2, we have

lgul < QV@IALlIr@ + QPO ot lrm),
g2l < @izl + Q@) 2l
g1l < QP DALl + QOO ol
g2l < V@) fi2llre + QY@ 2w

Therefore

1
[TV M@ =5 max gl < Qip) - max 1fllrs),

where Q;(p) = maX1gt58{Q(1i)(P)}~

(2) From (3.3), we can obtain

(T/(\I/),o,[f])(xl) - (T/(\I/),a 1) (x2) = % (g

11(x1) —gu(xz) glz(ﬁﬁ) —g12(x2)
g21(x1) —gz1(x2) gzz(x1) —gzz(xz)

) |

(3.3)

Page 8 of 20
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For each x1,%; € @, by Lemma 2.1 and Lemma 2.2, we have

lgn (1) — g ()| < QP @)l 161 — 217 + QP (D) Ifor o sy 161 — 2217,
g12(x1) — 22@2)| < QP D) Iz lr 161 — %21 + QS )z oy lx1 — %217,
|81 (1) — g1 ()| < Q@) lfar vy 11 — %21 + QF ) ot oy 1 — %217,

g2z (%1) — gaa(x2)| < QY D fizllwe = %21 + QY ®)Ifaallray ey — %217

Therefore

(T2 U 6e0) = (T3, ) @)

1

=3 lléli?§2|gij(xl) —gii(x2)|

< Q(p) - max_|fillrela —xl”,
1<ij<2

where Q,(p) = max1§i§8{Q(2i)(p)}'

(3) From (3.3), we can obtain

-¥YD 1(gn g
NI M@ = (.7 * =
(Txal) YD —iopn) 2\gu1 g»
_ l ogi1 — Y Dlgn] ogi12 — V' D[gx]
2 \¥Dlgy1] - iwugs1 Y Dlgn] — iwpgsn

Thus

ogin -V Dlgx]

=« /};[KWX +Kyolfindvy+o /B[ICW, - E,,,,alfm dv,
- WD{/};[K%& - Kyolfn dvy} + a_la‘/’D{/B[KW[ + Ky olfa dvy}
=YD, {/z; Kyofin dvy} + VD, {/Bzwﬂl dvy}
+0a VD, {/B o dvy} -oa™'VD, {./BEWJH dvy},
by Lemma 2.1 and Lemma 2.2, we have
ogii—YDlgnl=2f1, x€B,  ogi-YDlgnl=0, xeR\B.
Similarly, we can obtain

ogi2—VDlgn] =2f2, x€B, 0g12—"Dlgn] =0, xeR\B,

VDlgi1] - iwpgo1 =2fn, x€B, VDlgn] - iwpgo1 =0, x€R*\B,
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I/fD[gu] — ing22 = 2f22, x €B, ¢DLg12] — ia)/.ngz =0, xe€ RB\E
Therefore (T, [f1)(x) = (x), x € B, N (T}, [f)(x) = 0, x € R*\B. O

Theorem 3.2 Let 2, B, a be as stated above. If f = (Jff; ;21;) with entries belonging to
LP3(B,H(C)), 3 < p < +00, then
(D) IR D@ oo < Qsp) - maxy<ijea Ify” oy, 5 € R,
@ TR, UDED) — (TR, D)l < Qalp) - maxi<ijes IV ey - 131 - %1,
Xx1,%) € €2,
(3) N(TR, D@ =0, % € BN (TR, D) =f(x), x € R\,

whereO<,3=‘”%3 <1
Proof This case is similar to Theorem 3.1. g
Thus, from Theorem 3.1 and Theorem 3.2, we obtain the following results.

Theorem 3.3 Let 2, B, « be as stated above. If f = (E jf,;:) with entries belonging to
LP3(B,H(C)), 3 < p < +00, then
D) MTa e D@l < Qs(p) - maxi<ij<s IIfiillps, ¥ € R,
2) Tl D) = (Tara D@2 lloo < Qo(p) - maxi<ij<a Ifiillps - %1 — %21f, 21,22 € Q,
(3) N(TnalfD®) =f(x), x € R*\3B,

whereO<ﬁ:’%3<l.

3.3 The Riemann boundary value problem related to the A/ matrix operator
Theorem 3.4 Let B be as stated above. Find u = (Z; Zzlj) € Maty o (H(C)) satisfying the

following system:

Nul=0, xeR*\0B,
u(t)=u (1) *G+f(r), T€IB (3.4)
ulx) — 0, asx— 0o,

Gi1 O

) is a quaternion constant matrix and its in-
0 G

where u*(t) = limyeps ., u(x), G = (

verse exists, f = (;; J{;j) with entries belonging to Hy, (0 < v < 1). Then the solution can be
expressed as
ui) = | JonTnay =2 xdoy 2 ) xeB",

fosKnay—x) xdoy x f(9) xG™', x€B.

811 812

Proof Let B be as above and its inverse B;' = (7 7). Then, for g = By'u = (4, 0s

Nu] = 0, we can obtain

), since

YDy [g1] =V Dalg12] =0, ¥ Do g21] =V Dalga2] = 0.
By (3.4), we have g* = g~ * G + By xf, i.e.

+ - + -
g’ =gu Gu - ofi1 + afa, g12" = 212" G — 0 fi2 + atfay,
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gt =g1"Gu +ofu + afor, 22" =@ Gy + afin + afn.

By Lemma 2.3, when x € B,

_ _01(1//,0( [fll] + 051(11/,01 [}021] —O'I(]/,’a [fu] + Ol[(,/,ya [fzz]
O'I(llf,a [fll] + (X](w,a [le] O'I(,/,]a [][12] + 0(1(1/,,& [fzg]

o o

1{-0! o7t . -0 Ky ofir] + aKyo[fo1]  —0Kyolfi2] + 0Ky o[for]
-1 -1 UI(,/,,O[ [fn] + O[[(,//ya [fgl] O'I(llf,a [le] + 0[[(1/,,0[ [fzg]

= / Koy — %) % doy % £(9).
9B
By Lemma 2.3, when x € B,

_ —O‘I(,/,'a [fll]Ghl + OlI(.p,a [le]Ghl —O'I(llj,a [flg]Gizl + OlI(lj,,a [](22] Gizl
oKy olG +aKy o [/1]GE 0Ky o lfi2lGos + @Ky o[f221Gor

_ —oKyolfi1] + Ky o1l  —0Kyulfia] + 0Ky o[fo] . G 0
O’I(w}a [fn] + a1<¢,a [f21] UI(W,& [le] + Oll(w,a [fzg] 0 GEZI

Then

u:Bpkg:/ Koy — %) % doy 5 f(y) % G, 0
0B

Theorem 3.5 Let B be as stated above, and g = (ﬁ; g;) with entries belonging to

LP3(R3,H(C)), 3 < p < +00. Find w = (2 1) € Matoy»(H(C)) satisfying the following sys-

tem: e
Nwl(x) =gx), xeR*\3B,
wH(r)=w (1) * G +f(r), T€dB, (3.5)

w(x) — 0, asx— oo,

where w*(t) = limyept . W(x), G = ( Gél G(2)2) is quaternion constant matrix and its inverse
exists, f = (21 gi) with entries belonging to Hy, (0 < v < 1). Then the solution has the form

w(x) = W(x) + (Taolgl) ),

in which N[¥](x) = 0 and

_ faB’CN,a(y—x)*EUy*];(y), x€B",

V() ~
[isKnay—x)xdoy xf(y) G, x€B,

where f = f + (T [g]) * (G - E).
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Proof By Theorem 3.3, we know
Nl = N[¥ &) + (Thalg]) )] = g).
The boundary condition (3.5) becomes

(¥ + Tivalgl) (1) = (¥ + Twelgl) (1) %G +f(x), ©e€dB. (3.6)

Again from Theorem 3.3, we know that (T [g])(x) has continuity in  C R3. Thus
(TnwlgD)t = (Taalgl)” = Tawlgl Thus we can obtain

V(1) =W (1) x G+ (Tnalgl)(t) * (G-E) +f(z), T€0B. (37)
Supposef =f + (Tnhrqlgl) * (G — E), then (3.7) has the following form:
WHr) =W (1)« G+f(1), Te€dB. (3.8)

Again from Theorem 3.4, the solutions which satisfy the system N'[¥] = 0 and boundary

condition (3.8) can be represented in the form

_ i Koy =) % doy xF ), xeB,

W(x) ~ -
L5 Knay—x)xdoyxf(y) « G, xeB. O

4 The Riemann boundary value problem related to the time-harmonic Maxwell
equations
4.1 The relevant definitions and operations

- — —
Let E,H : Q — C3 be a pair of complex-valued vector fields. E = Ejij + Eyiy + E3is,

—
H = Hyi1 + Hyiy + Hsis, i.e. Eg = 0, Hy = 0. The following system:

— — — —
rot H =0 E, rot E =iouH, (4.1)

— —
div H =0, div E =0, (4.2)

- =
is called the time-harmonic Maxwell equations. ( E , H) is called a time-harmonic elec-
tromagnetic field, where o is a complex electrical conductivity and p is a magnetic per-
meability. It is known that they satisfy the homogeneous Helmholtz equation

A

T
+
>

T m
5”3

A

+
>
1l
L

where A = iopuo € C, a = v/A. Set

o —rot
M i ( ‘ ) ’
rot —iou
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then Eq. (4.1) becomes

M

T
I
=

For k € Z*, set

Ccw = { (Jj) e CW(Q,C3 x C?) ‘ divf = divg = o} )
g

The operator
M= Mew,

i.e. the restriction of M onto CV), will be termed the time-harmonic Maxwell operator.
Then (4.1) and (4.2) become

-—~

M

Tl o)

- =
where E, H € CO,

Let (Z g) € Mat,,, which are identified naturally with columns (Z) ‘We shall not distin-
guish them in this paper.

Let A : CO(, Maty,o(H(C))) — CO(R, Maty ., (H(C))). Set N = N ¢, Le. the restric-
tion of A" onto CV. Obviously, If ( £) € C, then we have
H

— > — — — = — —
YD[E]=-div E +rot E =rot E, VD[H]=-divH +rot H =rot H.

(o -¥YD
“\vD —iwu

Therefore
E t
— o —T0
M % i ( ’ )
H rot —iwun

That s, if (£) € CV, then we have
H

=)

<l ]
=

<l ]

£ £
MIZ]I=N]||2
H H

Let QR € Maty,»(H(C)), and Qo = Sc(Q) = (Sc(qm,n))lsrn,nfb _Q) = Vec(Q) =

(ém,n)lsrn,nsZ; set

= = <le1:;11> + <2112>7’21) (2111,7’12> + (2112,7’22>
(Q,R)=| - . . L. I
(q21,711) + {q22,721)  (qo1,712) + {q22,722)

Page 13 of 20
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=2 =z [2111,711] + [élz,;zl] [7]11,712] + [512,7’22]
[Q’ R] = - - 5 - - - - - .
[6121,7’11] + [422,7"21] [6121,7”12] + [0122,722]

The time-harmonic Cauchy—Maxwell kernel is defined by

Kmay —x) = ((grad Ou (y = %), ﬁy)r Uy (y - x));

where 6, (y — x) be as stated, 7, is unit outward normal vector at y € 92, and

Uy ) = [grad@a(y—xz, 7] iwu@a(y—x)ﬁf '
00, (y — %), [grad 0, (y — %), 11, ]
Forany g = (S) :9Q — C3 x C3, there is introduced the operation

Koma(y = %) % 8(y) = (2rad 0 (y — %), 7, )(9) — [Ua (y — %), 8],
where

[[grad 6, (y — %), 7,1, €] + iopba (y - x)[f«y,m)

[Ualy - 2),80)] = ( 00 (y — )iy, €] + [[grad 0 (y - x), 7], ]

For any V = (3!' 112}, there is introduced the operation
V21 V22

Vo % _ (‘:’uf) + (i’lzzﬁ '
h (Va1,€) + (Vao, h)

Obviously, we have

<u01(y_x)> (;l)> =Ua()’—x)<> ( )
Set

E 20)
M = {(;l> 190 = C3 x (CS‘/BQZ/I(X()/—x)O (12()/)) dsy=0,x ¢ 39}‘

The integral

Kite [(2)} (x) = /m Kata(y — ) % (;lg))) ds, x¢ 0%,

plays the role of an analogue of the Cauchy—Maxwell-type integral in the theory of time-

> ol

harmonic electromagnetic fields.

4.2 The Riemann boundary value problem related to time-harmonic Maxwell
equations
Lemma 4.1 Set ICSVW()/ —x) = (grad 6, (y — x), ﬁy)((l) ?) ~Uy(y — x). Then

Koy —x) # doy = Ky o (y — %) ds,.
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Proof By the definition of s o (y — %), we have

Knra(y — ) % doy

aRyay=%) —oKyaly-2\ (0 -i)
alyaly—x  oKyoly—x) n, 0 4

1ot ot § aV Dy 0]y —%) -0V Dy [0](y —x) L —71, 4
= _ = s
2\a! —a! a?Dylb,](y—%) 0V Dy 0]y — %) i, 0 ’
1! o7! a(ab, +gradd,) —o(ab, + gradb,) . 0 -n J
== s
2\t —o! a(ab, —gradb,) o(ab, —gradé,) i, 0 4
1! o7! . —o (a0, + grady)n, —a(aby + grad6,)i, 4
== o ) ds
2\l —a! o (aby —gradb,)n, —a(ab, —gradby)i, 4
1 (2(grad6,,n,) — 2[grad 6,, 1] 20" a0, 11y
== N X . s
2 —200,1, 2(grad 0y, 1) — 2[grad 6, 1, ] 4
(grad 6,,1,) — [grad Oy, 71y] o ta?0,n,
_ s
—0 0471y (grad6,, 1) — [grad 6y, 71, 4

By the definition of ICOM,Q, we can obtain

IC?VW()/ —-x)ds,

~. {1 0
= {(grad@a,ny) (0 1) —Z/la(y—x)} ds,

_ (grad 6, 71,) — [grad 6,, 71, —iw Oy 1y
—0 0,1y (grad 6, 11,) — [grad 6y, 71, ] 7
_ (grad 6,,11,) — [grad 6y, 71, —ota?0,n, s
—0 0411y (grad 6, 11,) — [grad 6y, 71, ] ”

where 6, = 6, (y — x). Therefore Kprq(y — x) * (303, = IC(/)\,W()/ —x)ds,.

Lemma 4.2 If]’ = (%) € M. Then we have

é
h

e (3

Proof By Lemma 4.1, we have

Ky - %) % doy + ()
= /COMﬂ (y—x) *]’(y) ds,

= i(grad@a(y — %), 1) (

= {{grad 0 (y — %), A, )f ) = [Ua(y = %), F 0)] + (Ue & = 2).F )} ds,

1 0

0 1) —Ua(y—x)} *}(y)dsy

Page 15 of 20
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= (Ualy =20 0)) + K pta 5 = 2) %)) disy.

Therefore

o

> ol

)} (x) = /BQK:N,a(y_x)*EGy *f ()

= /{) . (Ua oy = %), F D) + Katay = %) % f () ds,

- m/cM,a(y—x)*f(y)dsy+/mua(y-x)<> (%;) ds,

= | Kaaly—2)«F o) dsy = Knta [(;)} ).

092
Lemma 4.3 Iff(y) = (;8’;) e CO(Q,C3 x C3) and f(y) € M. Then
f Kamaly —x) *f(y) dsy € cw,
0B

Proof By the definition, we have

/ Ky — %) % f () ds,
0B

=/ :(gradéa,ﬁy)<
3B

- f33{<grad eou ;lyﬁé: [[grad 900 ﬁy]vz] - iwuea [;lyr ]jl]} dsy
f33{<grad ear ﬁy>h - 0’9& [’_/;yv 2] - [[grad ear ﬁy]; h]} dsy

> ol

) - [Ua(y—x),}(y)]} ds;v

where 6, = 0,(y — x).
(i) Since

06y 06, 06,

gradfy = | —, —, —
0x1 0xp 0x3

), ;iy = ()/1»}’2,3’3),

é= (e1,e2,e3), 171 = (h1, hy, h3),

we can obtain

06y 060y 06,

(grad Oy, 11,)e = (8—x1y1 + a—xzj/z + 8x3)’3)(61,€2,63).

Therefore

div{(grad6,,7,)e}

_ 8(3x1y1 + 3x2y2 + 3x33’3)el N 3(3,“)/1 + 3x2y2 + 3x3y3)62
0x1 0X>

Wy y 0y L D
a(axlyl + szyz + Bxgya)
+ e3

8963

Page 16 of 20
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026, 026, 026, 026,
- e+ ey + e +
dx? el 9x3 7262 9x3 3T s

(ylez +J/2€1)

2 2

0
o

+ es +yse1) +
8x1x3(y1 3+ y3€1) 9

o

(Yze?, + y3€2)~
X3

(ii) By the definition of the vector product, we have

(erad 6,71 00, 00, ) 00, 00, )
rad6y,n,)) = —y3——y2 Ji1 + | —y1— —y3 )i
£ Y 0o » 0x3 r2Jh dx3 N 0x1 7 )n

00, 00, .
+ | —yy— — i3.
8x1y2 axzyl 3
Thus
[lerad6,,7i1,8] = | (22, = 2% Yoy = (L, - 2 e, |
g ar Ny, €| = 3x3y1 8x1y3 3 8x1y2 axz}’l 2 [
00, 00, 00, 060, ,
+ —yy - — e1— | —ys— — es |i
8x1y2 axzyl ! 8962y3 3X3y2 317
00, 00, 26, 96, .
+ —y3 — — e—|—y1— — e |is.
8x2y3 Bxg,yz 2 aX3yl 8x1y3 L
Then

div{[[grad6,,7,],¢]}
926 926, 926

= ——(y2e + y3€3) — — (Y181 + ¥3€3) — —=-(Y1€1 + 20
Bx% ()/2 2t Y3 3) 8x§ ()/1 1t)3 3) 3x§ ()/1 1t+t)2 2)
9%6, 9%6, 9%6,
(y1€2 + y2e1) + (y1e3 +yse1) + (7263 + y3€2).

3961962 3961963 8x2x3

(iii) By the definition of vector product, we have

i1 iy i3
(ny,h] = |y1 32 y3| = 2k — hoys)in + (yshy — hsyr)ia + (y1ha — hays)is.
h hy hj

Thus
i, [;lyr Zl] = (iwﬂea ()’21’13 - hz)’?,), IOy ()/31’11 - hsyl), o, ()’11’12 - hlyz))'
Then
e R , 06, 06, 06,
le{lwlwa [y, h]} = lwll«l:a—xl()/zhs = hyy3) + a—xz()/shl = h3y1) + a—xs(yl/’lz - h1y2)]-
Combining (i)—(iii), we have

div{ (grad Oy, 1y)e — [[grad@a, ﬁy],é] — iwpby[1y, l_f;]}

(829,1 920, 920,

00,
+ + + + —i —(hs—h
o2 o e )()qel Y262 + y3e3) lwu[ o (y2h13 — hay3)
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90, 90,
+ 8—()’3h1 —h3y1) + —(ihy — hlyz)]~ (4.3)
X9 0X3

Obviously, we have

320, %0, 3%0,

ax% ’ 3X% i axg =Af, = Aazgot _a29a = —0[290[. (44)

By the definition of vector product, we have

. 90, 90, . 00, 90, .
lgrad Oy, )] = | —y3— —2 i1 + N— 7))

0%y 0x3 0x3 0x1
00, 00, .
+| —y2— —1 is.
8961 y2 sz yl 3

Then

([grad@a,ﬁy],iz>

W 00\, (0 N\, (0 06\,
= -— +|—y-— +—y-—
a5 ax ) T ot T oY) T a2 T )

30, 96, 06,
= —(y2h3 — hoys) + — (yshy — h3y1) + — (yiha — ). (4.5)
9%, 0% 03

Sincef(y) = (;gi) € M, wehave [, Uy, (y—x) o ( ;gz) ds, = 0.In addition, by the definition
of ¢, we have

()
/;B Uy(y—x)© (ii(y)) ds,

/ (([grad@a,ﬁy],é) + iwu@a(ﬁy,;z))
= ds,
0B

-

Gea (’7;3/’ é) + ([gradeon ﬁy]: h>

_ [ illerad 0, 71,) + icopbe (1, ) s,
Jopto0a iy, €) + ([grad 6o, 7], 1)} ds, )

Therefore
/a (o 2+ ([erad 0,0 )7, ] )} s, =0, (4.6)
By (4.3)(4.6), we have
div fa B{ (grad 6, 71,)é — [[grad O, 71,], €] — iwpub, [7y, k] ds,
- fa ) div{(grad 0y, 71,)é — [[grad 0, 71, €] — w04 [7y, h1} ds,
= /a B{—oﬂea (7, 8) — iwp([grad O, 7, ], b)) ds,

- —W/ {004 {71y, &) + ([grad 6y, 71,], )} ds, = 0.
daB

Page 18 of 20
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Similarly, we have
div/ {(grad Ou» ﬁy)ljz — 00y [1y, €] - [[grad 90,,1713,],171]} dsy = 0.
3B

Therefore

/ Katay—x) % f(y) ds, e C1V). 0
9B

Theorem 4.1 Let B be as stated above. Find u(x) = (3211‘) e CO satisfying the following
system:

M[u] =0, xecR*\0B,

ut(t)=u(t)*x G +j?(r), T € 0B,

ulx) > 0, asx— oo,

where u®(t) = limyept . u(x), G = (GO“) is a quaternion constant matrix and its inverse

exists,f = (]{(“) € I with entries belonging to Hy, (0 < v < 1). Then the solution can be
21
expressed as

_ fQBICM,aU’—x) *J?(Y)dsy, x € B,

u(x) g
Jop Koy =) xf(y)ds, * G, x€B.

Proof Since u(x) € C™, we have N() = N(u) = ./\//T(u) = M(u) = 0. By Theorem 3.4, then
the solution can be expressed as

Jos Koy = %) % doy % £ (), x€ B,

u(x) = ~
Jig Knay —x) xdoyxf(y) x G, x€B.

Sincef = ([“) € M, by Lemma 4.2 and Lemma 4.3, the solution can be expressed as

a1
ulx) = fBBICMvOt(y_x) *.’?(.Y)dsy, x € B,
Jop Kmay =) *J?(J’)dsy*G’l, xeB,
and u(x) € CO. -
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