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Abstract
Although wavelet decompositions of functions in Besov spaces have been
extensively investigated, those involved with mild decay bases are relatively
unexplored. In this paper, we study wavelet bases of Besov spaces and the relation
between norms and wavelet coefficients. We establish the lp-stability as a measure of
how effectively the Besov norm of a function is evaluated by its wavelet coefficients
and the Lp-completeness of wavelet bases. We also discuss wavelets with decay
conditions and establish the Jackson inequality.
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1 Introduction
As any Besov space can be continuously imbedded into a Lebesgue space, we are interested
in characterizing the Lp-completeness of certain bases and spaces. The Lp-completeness
of a basis refers to the unconditional summability of the basic decomposition. In view of
Theorem 2.1, we utilize either the Calderón–Zygmund operators (CZOs) or directly the
Calderón–Zygmund decomposition theorem (CZD). Some authors use CZOs, asserting
that unconditional summability can be obtained under smooth assumptions; see, for ex-
ample, [1, Thm. 3.3], [6, 10, 11], [13, Thms. 9.1.5–9.1.6], [23, Ch. 5, Thms. 6.14 and 6.23],
[29, Sect. 7.3, Thm. 1], and [28, Ch. 6]. Other authors (see, e.g., [20, 21, 31]) prefer CZD,
wondering how the smoothness of wavelets characterizes Lebesgue spaces.

The unconditional summability is a key problem in characterizing Lebesgue spaces and
thus Besov spaces. The authors of [2, 3, 18] suggest that the smoothness and regularity are
necessary for the Besov unconditional summability. This evolves more technicality in the
case of Lebesgue spaces. The present author contends that the decay on wavelets suffices
for a positive answer. Our approach involves two parts: characterizing Lebesgue spaces by
wavelet coefficients and the design for middle class (3.1), which depends only on wavelet
coefficients. We will associate the Lp-unconditional summability to a special design for
equivalent Besov norms. We will see that the lp-stability for functions in a Lebesgue space
can provide an alternative framework for Besov-unconditional summability, as well as
Jackson inequality. We remark that the use of wavelet bases is motivated by [21, Rem. 2.2],
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[28, pp. 130, 136], and [30]. However, canonical dual bases without wavelet structures may
not contribute to the unconditional summability.

This paper is divided into four sections. After this introduction, Sect. 2 collects some
preliminary facts, especially about the Lp-boundedness of affine operators. Section 3
presents a number of applications of bounded affine operators, including completeness,
lp-stability of biorthogonal Riesz wavelet bases, middle class K′

τ ,τ , the Jackson inequality,
and characterization of Besov spaces. Discussion and conclusions are given in Sect. 4.

2 Preliminaries
We use the following notation:

A � B if A ≤ cB for some positive constant c, and

A ∼ B if A � B, and B � A.

Let X, Y be two quasi-normed spaces. By writing X ↪→ Y we mean that X is continuously
embedded in Y ; in other words, we can think of X ⊂ Y and ‖ · ‖Y � ‖ · ‖X . A sequence
{fi}i∈Z ∈ Lp(R) is said to be lp-stable if

∥
∥
∥
∥

∑

i∈Z
aifi

∥
∥
∥
∥

p
∼ ‖a‖lp(Z) for some a = {ai}i∈Z ∈ l∞(Z).

Recall that the Lorentz space lp,q(N), 0 < p, q < ∞ [24, p. 955], consists of sequences
a = {ai}i∈N satisfying ‖a‖lp,q(N) < ∞, where

‖a‖lp,q(N) :=

⎧

⎨

⎩

[
∑

i∈N(i
1
p – 1

q a∗
i )q]

1
q , 0 < q < ∞,

supi≥0 i
1
p a∗

i , q = ∞,

where

a∗
1 := ‖a‖l∞(N) and a∗

i := max
|Ji|=i

∑

j∈Ji

|xj| –
n–1
∑

j=1

x∗
j for i > 1.

For p = q, we have lp,q(N) = lp(N) with equivalent norms. The spaces are ordered lexico-
graphically. More precisely, let 0 < p1, p2 < ∞ and 0 < q1, q2 ≤ ∞. Then

lp1,q1 � lp2,q2 if p1 < p2, or if p1 = p2 and q1 < q2.

A sequence {fi}i∈Z is said to be lp,q-Hilbertian [19, p. 59] in a Banach space X if
∑

i∈Z aifi

converges unconditionally in X and ‖∑

i∈Z aifi‖X � ‖a‖lp,q(Z) for any a = {ai}i∈Z ∈ lp,q(Z),
0 < p, q ≤ ∞.

For f : R → C, h ∈ R, and r ∈ N, the differences of rth order and the rth modulus of
smoothness of f ∈ Lp(R), 0 < p ≤ ∞ [16, p. 44], are given inductively by

r�

h

f (·) :=
1�

h

r–1�

h

f (·) =
r

∑

i=0

(
r
i

)

(–1)r–if (· + ih),
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wr(f , t)p := sup
0<h≤t

∥
∥
∥
∥
∥

r�

h

f

∥
∥
∥
∥
∥

p

,

where
�1

h f (·) := f (· + h) – f (·).
Given α > 0, r := �α� + 1, and 0 < p, τ ≤ ∞, the Besov space Bα

τ (Lp(R)) [16, p. 54] is the
set of functions f ∈ Lp(R) such that

|f |Bα
τ (Lp(R)) :=

⎧

⎨

⎩

[
∫ ∞

0 (t–αwr(f , t)p)τ dt
t ] 1

τ , 0 < τ < ∞,

supt>0 t–αwr(f , t)p, τ = ∞,

is finite. The norm for Bα
τ (Lp(R)) is ‖f ‖Bα

τ (Lp(R)) := |f |Bα
τ (Lp(R)) + ‖f ‖p.

In this paper, we study Bα := Bα
τ (Lτ (R)) with Schauder basis, where 1

τ
= α + 1

p , 1 < p < ∞.

Theorem 2.1 ([22, Theorem 2.8]) Let {xn} be a sequence in a Banach space. The following
statements are equivalent:

(1)
∑

xn converges unconditionally.
(2)

∑
εnxn converges for every choice of signs εn = ±1.

(3)
∑

λnxn converges for every bounded sequence of scalars {λn}.

A sequence {ψi : i ∈ Z} (not necessarily linearly independent) is a frame for L2(R) if there
exist two constants 0 < A ≤ B < ∞ such that

A‖f ‖2
2 ≤

∑

i∈Z

∣
∣〈f ,ψi〉

∣
∣
2 ≤ B‖f ‖2

2 for all f ∈ L2(R).

Here A and B are called frame bounds. If A = B, then we call this a tight frame. A Riesz
basis is a frame that consists of linear independent basic vectors. A sequence {ψi : i ∈ Z}
is a Riesz basis for L2(R) if for any {ci} ∈ l∞,

A
∑

i∈Z
|ci|2 ≤

∥
∥
∥
∥

∑

i∈Z
ciψi

∥
∥
∥
∥

2

2
≤ B

∑

i∈Z
|ci|2

for some positive constants A, B. The frame operator S of {ψi : i ∈ Z} is defined by

Sf :=
∑

i∈Z
〈f ,ψi〉ψi, (2.1)

and each f ∈ L2(R) has the decomposition

f =
∑

i∈Z

〈

f , S′ψi
〉

ψi =
∑

i∈Z
〈f ,ψi〉S′ψi,

which converges unconditionally in L2(R) [8, p. 90–91]. The sequence {S′ψi : i ∈ Z} is
called the canonical dual of {ψi : i ∈ Z}.

The preframe operator T : l2(N) → L2(R) is a bounded linear operator defined by

T{ci}i∈Z :=
∑

i∈Z
ciψi.
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Note that S = TT∗. Both S and S′ are of type (2, 2), bounded, invertible, self-adjoint, and
positive on L2(R). The sequence {S′ψi : i ∈ Z} is also a frame for L2(R), and its frame op-
erator is S′. The canonical dual frame {S′ψi : i ∈ Z} of a tight frame is simply { 1

Aψi : i ∈ Z}.
More details can be found in [8, 21].

The affine wavelet frame system {ψj,k} = {ψj,k : j, k ∈ Z} for L2(R) generated by ψ is de-
fined by

ψj,k(x) = 2j/2ψ
(

2jx + k
)

.

The sequence {ψ (p)
j,k } = {ψ (p)

j,k : j, k ∈ Z} is the primal wavelet frame of {ψj,k}, where

ψ
(p)
j,k = 2j/pψ

(

2jx + k
)

.

In general,

S′DjTkψ = DjS′Tkψ ,

DjS′Tkψ �= DjTkS′ψ ,

where Dj(·)(x) := 2j/2(·)(2jx) and Tk(·)(x) := (·)(x + k) (see, e.g., [8, p. 276]). In this case, we
say that the canonical dual frame {S′ψj,k} of {ψj,k} does not have wavelet structure.

Two sequences {ψj,k} and {ψ̃j,k} form a pair of dual wavelet frames/biframes ([8, p. 277],
[9, 14]) if both are frames for L2(R) and

f =
∑

j,k∈Z
〈f , ψ̃j,k〉ψj,k for all f ∈ L2(R).

They form a pair of biorthogonal (Riesz) wavelet bases if they are also Riesz bases for L2(R).
Obviously, orthogonal wavelet bases for L2(R) are also biorthogonal Riesz wavelet bases.

A wavelet has zero mean [10, p. 433] and is in L2. In addition, compactly supported or ex-
ponential decay orthogonal wavelets cannot belong to C∞(R) ∩ L2(R) ([17], [23, Sect. 4.6,
6]). More precisely, if such a wavelet exists, then it must be the zero function on R.

We say that ψ ∈Mτ if

∫ ∞

0

[

log2(1 + x)
]

�τ (x) dx < ∞, (2.2)

where �(x) := sup0≤x≤|y| |ψ |(y), and τ > 0. Let Lψ be a constant such that ψ ∈ Mτ for all
τ ∈ (Lψ ,∞) and ψ /∈Mτ for all τ ∈ [0, Lψ ]. We have

0 <
∑

r∈N
�τ (r) �

∑

r∈N
�log2 r��τ (r) ∼

∫ ∞

1

[

log2(1 + x)
]

�τ (x) dx (2.3)

≤
∫ ∞

0

[

log2(1 + x)
]

�τ (x) dx.

The infinite integrals either both converge or both diverge. If ψ is compactly supported,
then ψ belongs to Mτ for all τ ∈ (0,∞).
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DenoteFψ ,Mτ := {ψj,k : j, k ∈ Z, τ > 0}, which is a frame for L2(R) with ψ ∈Mτ . LetF be
a sequence in Lp(R) and consider the set of all possible m-term expansions with elements
from F ,

ϒm,F :=
{
∑

i∈


cifi : fi ∈F , ci ∈C, card
 ≤ m
}

. (2.4)

We denote the error of the best m-term approximation to f ∈ Lp(R) by

σm(f ,F ) := inf
fm∈ϒm,F

‖f – fm‖p. (2.5)

Let Fψ := {ψj,k : j, k ∈ Z} be a frame for L2(R). For p ∈ (1,∞) and τ , q ∈ (0, p), we define

Kτ ,q
(

Lp(R),Fψ

)

:=
{

f ∈ Lp(R) : ∃{cj,k} ∈ lτ ,q, f =
∑

j,k∈Z
cj,kψ

(p)
j,k

}

, (2.6)

where |f |Kτ ,q(Lp(R),Fψ ) is the smallest norm ‖{cj,k}‖lτ ,q such that
∑

j,k∈Z cj,kψ
(p)
j,k is convergent

unconditionally in Lp(R) and {ψ (p)
j,k } is lp,1-Hilbertian. See Theorem 3.2, [2, Rem. 4.3] and

[19, Prop. 3] for more detail.

Lemma 2.2 Let ψ ,ρ ∈M1 be wavelets. Let λm, λ′
m, and  be the operators given by

λm : (bk)k∈Z �→
(

∑

k∈Z
bk

∫

R

2j′ρ
(

2jx + k
)

ψ̄
(

2j′x + k′)dx
)

k′∈Z
, (2.7)

λ′
m : (bk)k∈Z �→

(
∑

k∈Z
bk

∫

R

2jρ
(

2jx + k
)

ψ̄
(

2j′x + k′)dx
)

k′∈Z
, (2.8)

for j, j′ ∈ Z, m = j – j′, and

 : (cj,k)j,k∈Z �→
(

∑

j,k∈Z
cj,k

〈

ρ
(p)
j,k ,ψ (p′)

j′ ,k′
〉
)

j′ ,k′∈Z
(2.9)

for p ∈ [1,∞), 1
p + 1

p′ = 1. Then λm and λ′
m are bounded on lτ (Z) for any 1 ≤ τ ≤ ∞, and 

is bounded on lτ (Z×Z) for any 1 ≤ τ ≤ ∞. In particular, if ψ , ρ are compactly supported,
then  is bounded on lτ (Z×Z) for all τ ∈ (0,∞].

Proof The boundedness of λm and λ′
m follows from the Riesz–Thorin interpolation the-

orem [16, p. 32]. Let �(·) := sup0≤·≤|y| |ρ|(y). For {bk}k∈Z ∈ l1(Z) and 2jx + k = u + k′, we
have

∥
∥λm(bk)

∥
∥

l1(Z)

=
∑

k′∈Z

∣
∣
∣
∣

∑

k∈Z
bk

∫

R

2j′ρ
(

2jx + k
)

ψ̄
(

2j′x + k′)dx
∣
∣
∣
∣

≤
∑

k′∈Z

∑

k∈Z
|bk|

(∫ 0

–∞
+

∫ ∞

0

)

2–m|ρ|(u + k′)|ψ̄ |(2–m(

u + k′ – k
)

+ k′)du
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≤
∑

k∈Z
|bk|

(∫ 0

–∞
+

∫ ∞

0

)

2–m
[
∑

k′∈Z
|ρ|(u + k′)

]

|ψ̄ |(2–m(

u + k′ – k
)

+ k′)du

� ‖ψ‖
∑

k∈Z
|bk|.

Indeed, for given u ≥ 0 such that u = Nu + lu, Nu ∈N∪ {0}, 0 ≤ lu < 1,

∑

k′∈Z
|ρ|(u + k′) =

(
∑

k′∈Z
u+k′≥0

+
∑

k′∈Z
u+k′<0

)

|ρ|(Nu + lu + k′)

=
∑

k′∈Z
u+k′≥0

|ρ|(Nu + lu + k′) +
∑

k′∈Z
u+k′<0

|ρ|(Nu + k′ + 1 + (lu – 1)
)

≤
[

∑

r1∈N
u+k′≥0,r1=Nu+k′

�(r1) +
∑

r2∈N
u+k′<0,r2=–(Nu+k′+1)

�(r2)
]

+ 2�(0)

≤ 2�(0) + 2
∑

r3∈N
�(r3) < ∞.

The finiteness of
∑

k′∈Z |ρ|(u + k′), u < 0, can also be obtained by setting u = N ′
u + l′u, N ′

u ∈
Z

– ∪ {0}, –1 < l′u ≤ 0.
Similarly, let us address {bk}k∈Z ∈ l∞(Z), and let v = 2jx. We obtain

∥
∥λm(bk)

∥
∥

l∞(Z)

= sup
k′∈Z

∣
∣
∣
∣

∑

k∈Z
bk

∫

R

2j′ρ
(

2jx + k
)

ψ̄
(

2j′x + k′)dx
∣
∣
∣
∣

≤ sup
k′∈Z

[
∑

k∈Z
|bk|

(∫ 0

–∞
+

∫ ∞

0

)

2–m|ρ|(v + k)|ψ̄ |(2–mv + k′)dv
]

�
∥
∥{bk}

∥
∥

l∞(Z).

So λm is also bounded on l1(Z) and l∞(Z). By the Riesz–Thorin interpolation theorem, λm

is bounded on lτ (Z) for any 1 < τ < ∞. Similarly, λ′
m is bounded on lτ (Z) for any 1 ≤ τ ≤ ∞

by using the method described above.
For the statement on , τ ≥ 1, we need to show that

∑

j′ ,k′∈Z

∣
∣
∣
∣

∑

j,k∈Z
j≤j′

cj,k
〈

ρ
(p)
j,k ,ψ (p′)

j′ ,k′
〉

+
∑

j,k∈Z
j>j′

cj,k
〈

ρ
(p)
j,k ,ψ (p′)

j′ ,k′
〉
∣
∣
∣
∣

τ

(2.10)

�
∥
∥{cj,k}

∥
∥

τ

lτ (Z×Z).

The idea of proving (2.10) comes from [3, p. 25 Lemma B.2]. However, both the hypotheses
and the strategies are quite different. A proof is included here. For τ ≥ 1, 1

τ
+ 1

τ ′ = 1, the
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Hölder inequality for the summation over j, together with the results for λm and λ′
m, yields

∑

j′ ,k′∈Z

∣
∣
∣
∣

∑

j,k∈Z
j≤j′

cj,k
〈

ρ
(p)
j,k ,ψ (p′)

j′ ,k′
〉
∣
∣
∣
∣

τ

=
∑

j′ ,k′∈Z

∣
∣
∣
∣

∑

j∈Z
j≤j′

2
m
p ( 1

τ + 1
τ ′ ) ∑

k∈Z
cj,k

∫

R

2j′ρ
(

2jx + k
)

ψ̄
(

2j′x + k′)dx
∣
∣
∣
∣

τ

≤
∑

j′ ,k′∈Z

{(
∑

j∈Z
j≤j′

2
m
p

) 1
τ ′ [∑

j∈Z
j≤j′

2
m
p

∣
∣
∣
∣

∑

k∈Z
cj,k

∫

R

2j′ρ
(

2jx + k
)

ψ̄
(

2j′x + k′)dx
∣
∣
∣
∣

τ] 1
τ
}τ

�
∑

j′ ,k′∈Z

∑

j∈Z
j≤j′

2
m
p

∣
∣
∣
∣

∑

k∈Z
cj,k

∫

R

2j′ρ
(

2jx + k
)

ψ̄
(

2j′x + k′)dx
∣
∣
∣
∣

τ

�
∑

j′∈Z

∑

m∈Z
m≤0

2
m
p

∑

k∈Z
|cm+j′ ,k|τ �

∥
∥{cj,k}

∥
∥

τ

lτ (Z×Z).

Similar arguments give

∑

j′ ,k′∈Z

∣
∣
∣
∣

∑

j,k∈Z
j>j′

cj,k
〈

ρ
(p)
j,k ,ψ (p′)

j′ ,k′
〉
∣
∣
∣
∣

τ

=
∑

j′ ,k′∈Z

∣
∣
∣
∣

∑

j∈Z
j>j′

2
–m
p′ ( 1

τ + 1
τ ′ ) ∑

k∈Z
cj,k

∫

R

2jρ
(

2jx + k
)

ψ̄
(

2j′x + k′)dx
∣
∣
∣
∣

τ

≤
∑

j′ ,k′∈Z

{(
∑

j∈Z
j>j′

2
–m
p′

) 1
τ ′ [∑

j∈Z
j>j′

2
–m
p′

∣
∣
∣
∣

∑

k∈Z
cj,k

∫

R

2jρ
(

2jx + k
)

ψ̄
(

2j′x + k′)dx
∣
∣
∣
∣

τ] 1
τ
}τ

�
∑

j′ ,k′∈Z

∑

j∈Z
j>j′

2
–m
p′

∣
∣
∣
∣

∑

k∈Z
cj,k

∫

R

2jρ
(

2jx + k
)

ψ̄
(

2j′x + k′)dx
∣
∣
∣
∣

τ

�
∑

j′∈Z

∑

m∈N
2

–m
p′ ∑

k∈Z
|cm+j′ ,k|τ �

∥
∥{cj,k}

∥
∥

τ

lτ (Z×Z).

By the Minkowski inequality, (2.10) holds.
For 0 < τ < 1, we have the following inequality:

∑

j′ ,k′∈Z

∣
∣
∣
∣

∑

j,k∈Z
cj,k

〈

ρ
(p)
j,k ,ψ (p′)

j′ ,k′
〉
∣
∣
∣
∣

τ

≤
∑

j′ ,k′∈Z

∑

j,k∈Z
|cj,k|τ

∣
∣
〈

ρ
(p)
j,k ,ψ (p′)

j′ ,k′
〉∣
∣
τ

=
∑

j′ ,k′∈Z

(
∑

j,k∈Z
j>j′

+
∑

j,k∈Z
j≤j′

)

|cj,k|τ
∣
∣
〈

ρ
(p)
j,k ,ψ (p′)

j′ ,k′
〉∣
∣
τ . (2.11)
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Suppose that w = 2j′x and ψ is compactly supported on E, 0 < |E| < ∞. Then we can esti-
mate the first sum appearing in (2.11) by

∑

j′ ,k′∈Z

∑

j,k∈Z
j>j′

|cj,k|τ
∣
∣
〈

ρ
(p)
j,k ,ψ (p′)

j′ ,k′
〉∣
∣
τ

≤
∑

j′ ,k′∈Z

∑

j,k∈Z
j>j′

|cj,k|τ
{∫

D
2

j
p –j( 1

p + 1
p′ )+ j′

p′ [2j2–j′ |ρ|(2mw + k
)] · |ψ |(w + k′)dw

}τ

≤ ‖ρ‖τ
1

∑

j′∈Z

∑

m∈N
2

–mτ
p′

[
∑

k′∈N
sup
w∈E

|ψ |τ (w + k′)
]

∑

k∈Z
|cm+j′ ,k|τ

�
∥
∥{cj,k}

∥
∥

τ

lτ (Z×Z).

For the second summation in (2.11), by a similar argument we have

∑

j′ ,k′∈Z

∑

j,k∈Z
j≤j′

|cj,k|τ
∣
∣
〈

ρ
(p)
j,k ,ψ (p′)

j′ ,k′
〉∣
∣
τ

≤
∑

j′ ,k′∈Z

∑

j,k∈Z
j≤j′

|cj,k|τ
{∫

R

2
j
p –j′( 1

p + 1
p′ )+ j′

p′ |ρ|(2jx + k
)[

2j′ |ψ |(2j′x + k′)]dx
}τ

�
∑

j′∈Z

∑

m∈Z
m≤0

2
mτ
p

∑

k∈Z
|cm+j′ ,k|τ

�
∥
∥{cj,k}

∥
∥

τ

lτ (Z×Z). �

3 Biorthogonal Riesz wavelet bases in Besov spaces
Theorem 3.1 is established in our earlier work [21, Thm. 3.3]. It serves as a base for
understanding the Lp-unconditional summability. There several consequences of Theo-
rem 3.1. First, the frame and synthesis operators are Lp-bounded. Second, biorthogonal
Riesz wavelet bases are unconditionally summable in Lebesgue spaces.

Theorem 3.1 Let Fψ ,M1 and Fψ̃ ,M1 be a pair of biorthogonal Riesz wavelet bases for
L2(R).

(1) The operator S associated with Fψ ,M1 is Lp-bounded and bijective on Lp(R) for all
1 < p < ∞.

(2) Both Fψ ,M1 and Fψ̃ ,M1 are bases for Lp(R), 1 < p < ∞.

Despite the feasibility of biframes, we paid the price of the linear independence, and we
can deduce from Theorem 3.1 that the generator for the canonical dual bases requires mild
decay to confirm the bijectivity of the frame operator on Lp(R), 1 < p < ∞. Secondly, the
conditions for Theorem 3.1 and Theorem 3.2 have been improved significantly in com-
parison with the results in [2, 3, 6], [27, Thm. 1.1] and [26, Thm. 1.1].

Here we give two examples. Local commutant biorthogonal bases can be found in [5].
The last example refers to those discovered by Lemvig and Bownik [4, p. 219, Example] and
[25] and is a family of band-limited wavelet frames. More information on (bi)orthonormal
bases can be found in [21, Sect. 4].
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Next, we characterize Lebesgue spaces by wavelet coefficients. For f ∈ Lp(R), Theo-
rem 3.2 guarantees {〈f , ψ̃ (p′)

j,k 〉} ∈ lp(Z × Z), which leads characterization of the middle
class Kτ ,τ (Lp(R),F·) depending only on wavelet coefficients. The middle class is designed
to contribute to understanding the relationship between the best m-term approximation
and Besov norms.

Theorem 3.2 Let p ∈ (1,∞), 1
p + 1

p′ = 1. Let Fψ ,M1 and Fψ̃ ,M1 be a pair of biorthogonal
Riesz wavelet bases for L2(R).

(1) Both primal wavelet bases {ψ (p)
j,k } and {ψ̃ (p′)

j,k } are unconditional and lp,1-Hilbertian in
Lp(R) for all 1 < p < ∞. Moreover, for any f =

∑

j,k∈Z cj,kψ
(p)
j,k ∈ Lp(R),

‖f ‖p � ‖cj,k‖lp � ‖cj,k‖lτ for all 1 < p < ∞, τ ∈ (0, p).

(2) For τ ∈ [1, p), Kτ ,τ (Lp(R),Fψ ,M1 ) = K′
τ ,τ (Lp(R),Fψ ,M1 ) with equivalent norms, where

K′
τ ,τ

(

Lp(R),Fψ ,M1
)

(3.1)

:=
{

f ∈ Lp(R) : |f |K′
τ ,τ (Lp(R),F

ψ ,M1 ) :=
∥
∥
{〈

f , ψ̃ (p′)
j,k

〉}∥
∥

lτ < ∞}

.

Moreover, if ψ and ψ̃ are compactly supported, then Kτ ,τ (Lp(R),Fψ ) = K′
τ ,τ (Lp(R),Fψ )

with equivalent norms for all τ ∈ (0, p).

Proof (1) We consider

R(·) :=
∑

j,k∈Z
εj,k〈·, ψ̃j,k〉ψj,k

=
∑

j,k∈Z
εj,k

〈·, ψ̃ (p′)
j,k

〉

ψ
(p)
j,k , εj,k = ±1,

1
p

+
1
p′ = 1, 1 < p < ∞.

Utilizing Theorem 3.1 and the Lp-boundedness of R, we obtain the unconditional summa-
bility for {ψ (p)

j,k } in Lp(R). Note that lp = lp,p with equivalent norms and lτ ⊂ lp,1 ⊂ lp,p,
τ ∈ (0, p). Let f =

∑

j,k∈Z cj,kψ
(p)
j,k ∈ Lp(R), and let t = 2jx for a given j. The Hölder inequality

for the summation over k yields

∫

R

[
∑

k∈Z
|cj,k|2

j
p |ψ | 1

p
(

2jx + k
)|ψ | 1

p′ (2jx + k
)
]p

dx

≤
∫

R

[
∑

k∈Z
|cj,k|p|ψ |(t + k)

][
∑

k∈Z
|ψ |(t + k)

] p
q

dt

� ‖ψ‖1
∑

k∈Z
|cj,k|p.

Thus, by the Minkowski inequality, ‖f ‖p � ‖cj,k‖lp � ‖cj,k‖lp,1 � ‖cj,k‖lτ . Indeed, the finite-
ness of

∑

k∈Z |ψ |(t + k) can be found in Lemma 2.2. Similar arguments can be made for
{ψ̃ (p′)

j,k }.
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(2) Again, applying Theorem 3.1, we see that both Fψ ,M1 and Fψ̃ ,M1 are bases for Lp(R),
1 < p < ∞. By (1) and (2.6) we have

K′
τ ,τ

(

Lp(R),Fψ ,M1
)

↪→Kτ ,τ
(

Lp(R),Fψ ,M1
)

for all τ > 0.

By the admissible hypotheses and the range of τ we have

f =
∑

j′ ,k′∈Z
cj′ ,k′ψ (p)

j′ ,k′ ∈ Lp(R)

with {cj′ ,k′ } ∈ lτ ,τ . It follows that

〈

f , ψ̃ (p′)
j,k

〉

=
∑

j′ ,k′∈Z
cj′ ,k′

〈

ψ
(p)
j′ ,k′ , ψ̃ (p′)

j,k
〉

, j, k ∈ Z.

From Lemma 2.2 we obtain ‖{〈f , ψ̃ (p′)
j,k 〉}‖lτ ,τ � ‖{cj′ ,k′ }‖lτ ,τ . Thus

Kτ ,τ
(

Lp(R),Fψ̃ ,M1
)

↪→K′
τ ,τ

(

Lp(R),Fψ̃ ,M1
)

.

Finally, the compactly supported cases can be done similarly and are skipped. �

We next characterize Besov spaces and the (general) Jackson inequality with respect
to the wavelet bases (ρ, ρ̃), which already gain Besov-unconditional summability ([2,
Cor. 4.9], [15, Lemma 4.2], [18, Thm. 3.8]). Fortunately, such wavelets do exist (e.g.,
biorthogonal compactly supported basis [7, Sect. 6.6, Thm. 4], [12]; Daubechies and Meyer
wavelets).

Theorem 3.3 Let Fψ ,M1 and Fψ̃ ,M1 be a pair of biorthogonal Riesz wavelet bases for
L2(R). Then, given 1 < p < ∞, τ ∈ (0, p), and α = 1

τ
– 1

p , we have:
(1) For all m ∈ N, q ∈ (0, p), and f ∈Kτ ,q(Lp(R),Fψ ,M1 ),

σm(f ,Fψ ,M1 ) � m–α|f |Kτ ,q(Lp(R),F
ψ ,M1 ). (3.2)

(2) For all m ∈ N, τ ∈ [1, p), and g ∈ Bα ,

σm(g,Fψ ,M1 ) � m–α|g|Bα . (3.3)

Moreover, if ψ and ψ̃ are compactly supported, then

σm(g,Fψ ) � m–α|g|Bα , τ ∈ (0, p). (3.4)

(3) Let the hypotheses and the admissible range of τ in (2) hold. For all h ∈ Bα , the wavelet
frame expansion

h =
∑

j,k∈Z

〈

h, ψ̃ (p′)
j,k

〉

ψ
(p)
j,k (3.5)
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converges unconditionally in Lp(R), and

|h|Bα ∼ ∥
∥
〈

h, ψ̃ (p′)
j,k

〉∥
∥

lτ (Z×Z), K′
τ ,τ

(

Lp(R),F·
)

= Bα , (3.6)

with equivalent norms.

Proof (1) Let C := {cj,k}, and let f =
∑

j,k∈Z cj,kψ
(p)
j,k ∈Kτ ,q(Lp(R),Fψ ,M1 ) with ‖C‖lτ ,q < ∞.

Let 
 be a finite set with card
 = m, and let C
 := {cj,k : j, k ∈ 
} be the m largest elements
from {|cj,k|}. By Theorem 3.2(1), for α = 1

τ
– 1

p > 0, we have

∥
∥
∥
∥

f –
∑

j,k∈


cj,kψ
(p)
j,k

∥
∥
∥
∥

p
� ‖C
c‖lp � ‖C
c‖lp,p � ‖C
c‖lp,q

=

[ ∞
∑

i=m+1

(

i
1
p – 1

q c∗
i
)q

] 1
q

=

[ ∞
∑

i=m+1

(

i
1
τ –α– 1

q c∗
i
)q

] 1
q

≤ m–α

[ ∞
∑

i=m+1

(

i
1
τ – 1

q c∗
i
)q

] 1
q

≤ m–α‖C‖lτ ,q .

By (2.5) and (2.6) we get (3.2).
(2) Let the reference wavelets (ρ, ρ̃) satisfy the hypotheses with the following properties.

For all g ∈ Bα ⊂ Lp(R), α = 1
τ

– 1
p , 1

p + 1
p′ = 1, 1 < p < ∞, the expansion of g in the reference

wavelet system is given by

g =
∑

j′ ,k′∈Z
cj′ ,k′ρ(p)

j′ ,k′ ∈ Lp(R),

which converges unconditionally with coefficients D′ := {dj′ ,k′ : j′, k′ ∈ Z} satisfying |g|Bα ∼
‖D′‖lτ (Z×Z) for all τ ∈ (0, p). Note that

〈

g, ψ̃ (p′)
j,k

〉

=
∑

j′ ,k′∈Z
dj′ ,k′

〈

ρ
(p)
j′ ,k′ , ψ̃ (p′)

j,k
〉

, j, k ∈ Z. (3.7)

With the admissible hypotheses and the range of τ , applying Lemma 2.2 and (3.7), we
deduce that

∥
∥
{〈

g, ψ̃ (p′)
j,k

〉}∥
∥

lτ (Z×Z) �
∥
∥D′∥∥

lτ (Z×Z) � |g|Bα . (3.8)

Combining (1), (3.8), and Theorem 3.2(2), we see that the Jackson inequality holds:

σm(g, ·) � m–α|g|Kτ ,τ (Lp(R),·) � m–α
∥
∥
{〈

g, ψ̃ (p′)
j,k

〉}∥
∥

lτ (Z×Z) � |g|Bα . (3.9)

(3) With the admissible hypotheses and the range of τ , applying Theorem 3.2(1) and
(3.8), we see that the synthesis operator U and the analysis operator U ′ given by

U : lτ (Z×Z) �→ Lp(R), {cj,k} ∈ lτ (Z×Z) �→
∑

j,k∈Z
cj,kψ

(p)
j,k
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and

U ′ : Bα �→ lτ (Z×Z), h ∈ Bα �→ {〈

h, ψ̃ (p′)
j,k

〉}

are bounded, and thus UU ′ is bounded. Since Bα are dense in both Lp(R) and L2(R), any
function h has a wavelet frame expansion

h =
∑

j,k∈Z

〈

h, ψ̃ (p′)
j,k

〉

ψ
(p)
j,k ∈ Lp(R).

The boundedness of UU ′ guarantees that the sum converges unconditionally in Lp(R).
By (3.8) we have both ‖{〈h, ψ̃ (p′)

j,k 〉}‖lτ (Z×Z) � |h|Bα and Bα ↪→K′
τ ,τ (Lp(R),F·). Employing

the reference wavelets (ρ, ρ̃) again, for all h ∈ Bα ⊂ Lp(R), α = 1
τ

– 1
p , 1

p + 1
p′ = 1, 1 < p < ∞,

with the admissible hypotheses and the range of τ , we see that

h =
∑

j′ ,k′∈Z

〈

h, ρ̃(p′)
j′ ,k′

〉

ρ
(p)
j′ ,k′ ∈ Lp(R)

with coefficients satisfying |h|Bα ∼ ‖{〈h, ρ̃(p′)
j′ ,k′ 〉}‖lτ (Z×Z).

For {〈h, ρ̃(p′)
j′ ,k′ 〉} ∈ lτ (Z×Z), by the same argument as in the proof of (2) we can obtain. It

follows that

〈

h, ρ̃(p′)
j′ ,k′

〉

=
∑

j,k∈Z

〈

ψ
(p)
j,k , ρ̃(p′)

j′ ,k′
〉〈

h, ψ̃ (p′)
j,k

〉

, j′, k′ ∈ Z.

Applying Lemma 2.2, we have

|h|Bα �
∥
∥
{〈

h, ρ̃(p′)
j′ ,k′

〉}∥
∥

lτ (Z×Z) �
∥
∥
〈

h, ψ̃ (p′)
j,k

〉∥
∥

lτ (Z×Z).

This leads to K′
τ ,τ (Lp(R) and F·) ↪→ Bα . Consequently, K′

τ ,τ (Lp(R),F·) = Bα , and (3.6) is
proved. �

4 Discussion and conclusions
1. We compare Lemma 2.2 with [3, Prop. 5.2] and [18, Thm. 3.1]. With regard to the exis-
tence of a lower bound for τ , our findings confirm those of Borup et al., although there are
important differences in the approaches. This study makes no assumption on the smooth-
ness or regularity. However, the authors of [3] seem to suggest that the smoothness and
regularity conditions are necessary. It may be due to the unconditional summability in
certain function spaces and technical requirement in [3, Lemma B.3]. Similar situations
happen in [2, 18]. Aforementioned papers reported that τ has a lower bound, which cannot
be improved in general. However, some statements there are not clear. Special attention
is given to the following:

(1) We mention the example in [3, p. 27, Prop. B.4]. The reason is that this proposition
may not be in line with Lemma 2.2. The arguments emerge. The lower bound of τ in
Proposition B.4 is inapplicable to [3, p. 11, Prop. 5.4]. It is not proper to assume that
the wavelet η is in C∞(R) and compactly supported. The wavelet should have zero
mean [10, p. 433] and belong to L2. In addition, compactly supported or exponential
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decay orthogonal wavelets cannot belong to C∞(R) ∩ L2(R) ([17], [23, Sect. 4.6, 6]).
Otherwise, such a wavelet must be the zero function on R.

(2) ψ , ρ satisfying M1 are sufficient for the boundedness of . In contrast, we consider
a stronger condition, the compact supportedness on , 0 < τ < 1.

2. It is worth pointing out that L := 0 for both wavelets is compactly supported. In such
cases, Lemma 2.2 provides not only an easy way to get a lower bound of τ , but also a
“better” lower bound in comparison with the aforementioned papers.

3. The following problems are open to us.
(1) No specific value of L for more general wavelets is given in this paper. Thus the

condition L = 0 for reference wavelets in Theorem 3.3 is critical.
(2) How to relax the condition of being compactly supported, and a possible point lies

on the finiteness for
∑

k′∈N supw∈E |ψ |τ (w + k′) in Lemma 2.2.
4. If both ψ and ψ̃ are compactly supported, then the admissible range for τ in Theo-

rem 3.3 will be extended to (0,∞). One of the best examples is the Haar wavelet, which
has no decay.

Finally, we point out that many authors assume the smoothness/regularity/CZOs, mak-
ing it difficult to apply the results to wavelets with decay only. Few studies so far have
attempted to account for the feasibility of a wavelet with decay, but only to Besov norms
and the Jackson inequality. Our Theorem 3.3 closes this gap.
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