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Abstract
In this article, we introduce some special several variables mappings which are
quadratic in each variable and show that such mappings can be defined as a single
equation that is the generalized multi-quadratic functional equation. We also apply a
fixed point theorem to establish the Hyers–Ulam stability for the generalized
multi-quadratic functional equations. Furthermore, we present an example and a few
corollaries corresponding to some known stability results.

MSC: Primary 39B82; secondary 39B52; 47H10

Keywords: Banach space; (Generalized) Hyers–Ulam stability; Generalized
multi-quadratic mapping; Fixed point method

1 Introduction
The study of stability problems for functional equations is related to a question of Ulam
[39] concerning the stability of group homomorphisms. The famous Ulam stability prob-
lem was partially solved by Hyers [23] for the linear functional equation in Banach spaces.
Hyers’ theorem was generalized by Aoki [1] for additive mappings and by Th. M. Ras-
sias [34] for linear mappings by considering an unbounded Cauchy difference. A gen-
eralization of the Rassias theorem was obtained by Găvruţa [22] by replacing the un-
bounded Cauchy difference with a general control function in the spirit of Rassias ap-
proach. Next, some related stability on mappings associated with additive and linear func-
tional equations with miscellaneous applications were studied by the authors; see for ex-
ample [21, 25, 26], and [33]. The generalized Hyers–Ulam stability of different functional
equations in various normed spaces has been studied by a number of authors; see for in-
stance [4, 5, 7, 9, 11, 17, 24, 30–32] and the references therein.

It is well known that the quadratic functional equation

Q(x + y) + Q(x – y) = 2Q(x) + 2Q(y) (1.1)

(which is useful in some characterizations of inner product spaces) plays a remarkable role
in mathematics; for some investigation of the quadratic functional equations, we refer to
[18, 29], and [38]. A lot of information about solutions, stability, and some applications of
various quadratic functional equations are available in books [19, 27], and [35].
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Throughout this paper, N, Z, and Q are the set of all positive integers, integers, and
rationals, respectively, N0 := N ∪ {0},R+ := [0,∞). Moreover, for the set X, we denote

n–times
︷ ︸︸ ︷

X × X × · · · × X by Xn. Let V be a commutative group, W be a linear space, and n ∈ Z

with n ≥ 2. Recall from [15] that a mapping f : V n −→ W is called multi-additive if it is
additive (satisfies Cauchy’s functional equation A(x + y) – A(x) + A(y)) in each variable.
Some basic facts on such mappings can be found in [28] and many other sources, where
their application to the representation of polynomial functions is also presented. In ad-
dition, f is said to be multi-quadratic if it is quadratic in each variable [16]. In [15] and
[16], Ciepliński studied the generalized Hyers–Ulam stability of multi-additive and multi-
quadratic mappings in Banach spaces, respectively. After that, Zhao et al. [40] proved that
the mapping f : V n −→ W is multi-quadratic if and only if the equation

∑

t∈{–1,1}n

f (x1 + tx2) = 2n
∑

j1,j2,...,jn∈{1,2}
f (x1j1 , x2j2 , . . . , xnjn ) (1.2)

holds, where xj = (x1j, x2j, . . . , xnj) ∈ V n with j ∈ {1, 2}. Various versions of multi-quadratic
mappings and their stability, which have been recently studied, can be found in [8, 10],
and [36].

In this paper, we define the generalized multi-quadratic mappings and present a charac-
terization of such mappings. In other words, we reduce the system of n equations defining
the generalized multi-quadratic mappings to obtain a single functional equation and also
prove the generalized Hyers–Ulam stability of this equation. In the proofs of our main
results (Theorem 3.2), we apply the fixed point method, which was used for the investi-
gation of the Hyers–Ulam stability of functional equations for the first time by Brzdȩk in
[12]; for more applications of this approach on the stability of several variables mappings
in Banach spaces, we refer to [2, 3, 6, 20], and [37].

2 Generalization of multi-quadratic mappings
A general form of (1.1), which is called (a, b)-quadratic functional equation, is as follows:

Q(ax + by) + Q(ax – by) = 2a2
Q(x) + 2b2

Q(y), (2.1)

where a, b are the fixed nonzero integers. It is easy to see that the function Q(x) = x2 sat-
isfies (2.1).

For any l ∈ N0, n ∈ N, t = (t1, . . . , tn) ∈ Q
n and x = (x1, . . . , xn) ∈ V n, we write lx :=

(lx1, . . . , lxn) and tx := (t1x1, . . . , tnxn) for the commutative group (V , +). From now on, let
V and W be vector spaces over Q, n ∈ N and xn

i = (xi1, xi2, . . . , xin) ∈ V n, where i ∈ {1, 2}.
Moreover, we consider the fixed elements an

i = (ai1, ai2, . . . , ain) ∈ Z
n (here and the rest of

the paper) such that aij �= 0, where i ∈ {1, 2} and j ∈ {1, . . . , n}. We shall denote an
i and xn

i by
ai and xi respectively if there is no risk of ambiguity.

Definition 2.1 Let V and W be vector spaces over Q, n ∈N. A several variables mapping
f : V n −→ W is called the generalized n-multi-quadratic or generalized multi-quadratic if,
for each j ∈ {1, . . . , n} and all zi ∈ V , the mapping x �→ f (z1, . . . , zj–1, x, zj+1, . . . , zn) is (a1j, a2j)-
quadratic.
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Put n := {1, . . . , n}, n ∈ N. For a subset T = {j1, . . . , ji} of n with 1 ≤ j1 < · · · < ji ≤ n and
x = (x1, . . . , xn) ∈ V n,

T x := (0, . . . , 0, xj1 , 0, . . . , 0, xji , 0, . . . , 0) ∈ V n

denotes the vector which coincides with x in exactly those components, which are indexed
by the elements of T and whose other components are set equal zero. Note that φx = 0,
nx = x. We use these notations in the proof of upcoming lemma.

We say the mapping f : V n −→ W
(i) satisfies (has) the quadratic condition in the jth variable if

f (z1, . . . , zj–1, a1jzj, zj+1, . . . , zn) = a2
1jf (z1, . . . , zj–1, zj, zj+1, . . . , zn),

for all z1, . . . , zn ∈ V n;
(ii) has zero condition or zero functional equation if f (x) = 0 for any x ∈ V n with at least

one component which is equal to zero.
We shall to show that if a mapping f : V n −→ W satisfies the equation

∑

q∈{–1,1}n

f (a1x1 + qa2x2) = 2n
∑

l1,l2,...,ln∈{1,2}
a2

l11a2
l22 · · ·a2

lnnf (xl11, xl22, . . . , xlnn), (2.2)

then it is generalized multi-quadratic and vice versa (under some mild conditions). In or-
der to do this, we need the upcoming lemma.

Lemma 2.2 If a mapping f : V n −→ W satisfies (2.2) with the quadratic condition in each
variable, then f has zero functional equation.

Proof Putting x1 = x2 =φ x in (2.2), we get

2nf (φx) = 2n
∑

l1,l2,...,ln∈{1,2}
a2

l11a2
l22 · · ·a2

lnnf (φx) = 2n
n

∏

k=1

(

a2
1k + a2

2k
)

f (φx). (2.3)

Since 0 �= aij ∈ Z, relation (2.3) shows that f (φx) = 0. Fix j ∈ {1, . . . , n}. Letting x1k = 0 for all
k ∈ {1, . . . , n}\{j} and x2k = 0 for 1 ≤ k ≤ n in (2.2) and using f (φx) = 0, we obtain

2na2
1jf (0, . . . , 0, x1j, 0, . . . , 0)

= 2nf (0, . . . , 0, a1jx1j, 0, . . . , 0)

= 2na2
1j

∑

l1,l2,...,lj–1,lj+1,...,ln∈{1,2}
a2

l11a2
l22 . . . a2

lj–1j–1a2
lj+1j+1 . . . a2

lnnf (0, . . . , 0, a1jx1j, 0, . . . , 0)

= 2n
n

∏

k=1
k �=j

(

a2
1k + a2

2k
)

f (0, . . . , 0, x1j, 0, . . . , 0).

Hence, f (0, . . . , 0, x1j, 0, . . . , 0) = 0. We now assume that f (k–1x1) = 0 for 1 ≤ k ≤ n – 1. We
show that f (kx1) = 0. Without loss of generality, we assume that kx1 = (x11, . . . , x1k , 0, . . . , 0).
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By our assumption, replacing (x1, x2) with (kx1, 0) in equation (2.2), we have

2na2
11 · · ·a2

1kf (kx1)

= 2nf (a11x11, . . . , a1kx1k , 0, . . . , 0)

= 2na2
11 · · ·a2

1k

∑

lk+1,...,ln∈{1,2}
a2

lk+1k+1 . . . a2
lnnf (kx1)

= 2na2
11 · · ·a2

1k

n
∏

p=k+1

(

a2
1p + a2

2p
)

f (kx1).

Therefore, f (kx1) = 0. This shows that f (x) = 0 for any x ∈ V n with at least one component
which is equal to zero. �

We note that by using Lemma 2.2 and an easy computation one can check that the map-
ping f : Rn −→ R defined through f (z1, . . . , zn) :=

∏n
j=1 z2

j satisfies (2.2), and so this equation
is said to be generalized multi-quadratic functional equation.

Theorem 2.3 Consider a mapping f : V n −→ W . Then the following conditions are equiv-
alent:

(i) f is generalized multi-quadratic;
(ii) f satisfies equation (2.2) with the quadratic condition in each variable.

Proof (i)⇒(ii) We firstly note that it is not hard to show that f satisfies the quadratic con-
dition in each variable. We now prove that f satisfies equation (2.2) by induction on n. For
n = 1, it is trivial that f satisfies equation (2.1). Assume that (2.2) is valid for some positive
integer n > 1. Then

∑

q∈{–1,1}n+1

f
(

an+1
1 xn+1

1 + qan+1
2 xn+1

2
)

= 2a2
1,n+1

∑

q∈{–1,1}n

f
(

an
1xn

1 + qan
2xn

2, x1,n+1
)

+ 2a2
2,n+1

∑

q∈{–1,1}n

f
(

an
1xn

1 + qan
1xn

2, x2,n+1
)

= 2n+1a2
1,n+1

∑

l1,l2,...,ln∈{1,2}
a2

l11a2
l22 · · ·a2

lnnf (xl11, xl22, . . . , xlnn, x1,n+1)

+ 2n+1a2
2,n+1

∑

l1,l2,...,ln∈{1,2}
a2

l11a2
l22 · · ·a2

lnnf (xl11, xl22, . . . , xlnn, x2,n+1)

= 2n+1
∑

l1,l2,...,ln+1∈{1,2}
a2

l11a2
l22 · · ·a2

ln+1n+1f (xl11, xl22, . . . , xln+1n+1).

This means that (2.2) holds for n + 1.
(ii)⇒(i) Fix j ∈ {1, . . . , n}. Put x2k = 0 for all k ∈ {1, . . . , n}\{j}. Using Lemma 2.2, we get

2n–1a2
11a2

12 · · ·a2
1,j–1a2

1,j+1 · · ·a2
1n

[

f (x11, . . . , x1,j–1, a1jx1j + a2jx2j, x1,j+1, . . . , x1n)

+ f (x11, . . . , x1,j–1, a1jx1j – a2jx2j, x1,j+1, . . . , x1n)
]
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= 2n–1[f (a11x11, . . . , a1,j–1x1,j–1, a1jx1j + a2jx2j, a1,j+1x1,j+1, . . . , a1nx1n)

+ f (a11x11, . . . , a1,j–1x1,j–1, a1jx1j – a2jx2j, a1,j+1x1,j+1, . . . , a1nx1n)
]

= 2na2
11a2

12 · · ·a2
1,j–1a2

1,j+1 · · ·a2
1n

[

a2
1jf (x11, . . . , x1,j–1, x1j, x1,j+1, . . . , x1n)

+ a2
2jf (x11, . . . , x1,j–1, x2j, x1,j+1, . . . , x1n)

]

. (2.4)

It follows from (2.4) that f is (a1j, a2j)-quadratic in the jth variable. Since j is arbitrary, we
obtain the desired result, and this completes the proof. �

It is shown in [29, Proposition 2.1] that a mapping Q satisfies equation (1.1) if and only
if it satisfies

Q(ax + y) + Q(ax – y) = 2a2Q(x) + 2Q(y), (2.5)

for a fixed and nonzero integer a. In this case, it is easy to check that Q is an even mapping.
Similarly, Q satisfies functional equation (1.1) if and only if it satisfies

Q(bx + y) + Q(bx – y) = 2b2Q(x) + 2Q(y), (2.6)

for a fixed and nonzero integer b. It follows from (2.6) that f (bx) = b2f (x) for any nonzero
integer b, and so f satisfies functional equation (1.1) if and only if it satisfies functional
equation (2.1). This discussion, Theorem 3 from [40], and Theorem 2.3 lead us to the
following result.

Proposition 2.4 A mapping f : V n −→ W satisfies equation (1.2) if and only if it satisfies
generalized multi-quadratic functional equation (2.2) with having the quadratic condition
in each variable.

Corollary 2.5 A mapping f : V n −→ W is generalized multi-quadratic if and only if there
exists a multi-additive mapping M : V 2n −→ W such that

f (z1, z2, . . . , zn) = M(z1, z1, z2, z2, . . . , zn, zn),

for all z1, z2, . . . , zn ∈ V n, and M satisfies the following symmetric condition:

M(x11, x21, . . . , x1j, x2j, . . . , x1n, x2n) = M(x11, x21, . . . , x2j, x1j, . . . , x1n, x2n),

for all xij ∈ V , where i ∈ {1, 2} and j ∈ {1, . . . , n}.

Proof The result follows from [40, Theorem 2] and Proposition 2.4. �

3 Stability of multi-quadratic functional equation results for (2.2)
In this section, we prove the Hyers–Ulam stability of equation (2.2) by a fixed point result
(Theorem 3.1) in Banach spaces. Throughout, for two sets X and Y , the set of all mappings
from X to Y is denoted by Y X . Here, we introduce the following three hypotheses:

(A1) Y is a Banach space, S is a nonempty set, j ∈ N, g1, . . . , gj : S −→ S , and
L1, . . . , Lj : S −→ R+,
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(A2) T : YS −→ YS is an operator satisfying the inequality

∥

∥T λ(x) – T μ(x)
∥

∥ ≤
j

∑

i=1

Li(x)
∥

∥λ
(

gi(x)
)

– μ
(

gi(x)
)∥

∥, λ,μ ∈ YS , x ∈ S ,

(A3) � : RS
+ −→R

S
+ is an operator defined through

�δ(x) :=
j

∑

i=1

Li(x)δ
(

gi(x)
)

δ ∈R
S
+ , x ∈ S .

In the following, we present a result in fixed point theory [13, Theorem 1] which plays
a key tool in obtaining our aim in this section.

Theorem 3.1 Let hypotheses (A1)–(A3) hold and the function θ : S −→ R+ and the map-
ping φ : S −→ Y fulfill the following two conditions:

∥

∥T φ(x) – φ(x)
∥

∥ ≤ θ (x), θ∗(x) :=
∞

∑

l=0

�lθ (x) < ∞ (x ∈ S).

Then there exists a unique fixed point ψ of T such that

∥

∥φ(x) – ψ(x)
∥

∥ ≤ θ∗(x) (x ∈ S).

Moreover, ψ(x) = liml→∞ T lφ(x) for all x ∈ S .

Here and subsequently, for the mapping f : V n −→ W , we consider the difference oper-
ator Df : V n × V n −→ W by

Df (x1, x2) :=
∑

q∈{–1,1}n

f (a1x1 + qa2x2)

– 2n
∑

l1,l2,...,ln∈{1,2}
a2

l11a2
l22 · · ·a2

lnnf (xl11, xl22, . . . , xlnn).

We recall that for any s = (s1, . . . , sn), t = (t1, . . . , tn) ∈ Q
n, put st = (s1t1, . . . , sntn). More-

over, sr = (sr
1, . . . , sr

n) where r ∈Q provided that sr
i �= 0 for all 1 ≤ i ≤ n.

We have the next stability theorem for functional equation (2.2). This result helps us to
show that generalized multi-quadratic mappings can be hyperstable.

Theorem 3.2 Let β ∈ {–1, 1}, V be a linear space, and W be a Banach space. Suppose that
φ : V n × V n −→R+ is a mapping satisfying

lim
l→∞

(

1
Kβ

)l

φ
(

aβlx1, aβlx2
)

= 0, (3.1)

for all x1, x2 ∈ V n and

	(x) =
1

2nK
β+1

2

∞
∑

l=0

(

1
Kβ

)l

φ
(

aβl+ β–1
2 x, 0

)

< ∞, (3.2)
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for all x = x1 ∈ V n, where a = a1 in which aβlxi = (aβl
11xi1, . . . , aβl

1nxin) for i ∈ {1, 2} and

K = a2
11a2

12 · · ·a2
1n. (3.3)

Assume also f : V n −→ W is a mapping satisfying the inequality

∥

∥Df (x1, x2)
∥

∥ ≤ φ(x1, x2), (3.4)

for all x1, x2 ∈ V n and zero condition. Then there exists a solution Q : V n −→ W of (2.2)
such that

∥

∥f (x) – Q(x)
∥

∥ ≤ 	(x), (3.5)

for all x ∈ V n. Moreover, if Q satisfies the quadratic condition in each variable, then it is a
unique generalized multi-quadratic mapping.

Proof Putting x = x1 and x2 = 0 in (3.4) and using the assumptions, we get

∥

∥2nf (ax) – 2nKf (x)
∥

∥ ≤ φ(x, 0), (3.6)

for all x = x1 ∈ V n, where a = a1 (here and the rest of proof ) and K is defined in (3.3). Set
ξ (x) := 1

2nK
β+1

2
φ(a

β–1
2 x, 0) and T ξ (x) := 1

Kβ ξ (aβx) for all ξ ∈ W V n . Hence, inequality (3.6)

can be rewritten as follows:

∥

∥f (x) – T f (x)
∥

∥ ≤ ξ (x), (3.7)

for all x ∈ V n. Define �η(x) := 1
Kβ η(aβx) for all η ∈ R

V n
+ , x ∈ V n. It is easily seen that �

has the form described in (A3) with S = V n, g1(x) = aβx and L1(x) = 1
Kβ for all x ∈ V n. In

addition, we have

∥

∥T λ(x) – T μ(x)
∥

∥ =
∥

∥

∥

∥

1
Kβ

[

λ
(

aβx
)

– μ
(

aβx
)]

∥

∥

∥

∥
≤ L1(x)

∥

∥λ
(

g1(x)
)

– μ
(

g1(x)
)∥

∥,

for each λ,μ ∈ W V n and x ∈ V n. The above relation shows that the hypothesis (A2) holds.
By induction on l, one can check that, for any l ∈N0,

�lξ (x) :=
(

1
Kβ

)l

ξ
(

aβlx
)

=
1

2nK
β+1

2

(

1
Kβ

)l

φ
(

aβl+ β–1
2 x, 0

)

, (3.8)

for all x ∈ V n. By (3.2) and (3.8), we have all assumptions of Theorem 3.1 and hence there
exists a mapping Q : V n −→ W such that

Q(x) = lim
l→∞

(

T lf
)

(x) =
1

Kβ
Q

(

aβx
) (

x ∈ V n),

and (3.5) holds as well. For l ∈N0, by induction on l, we wish to prove that

∥

∥D
(

T lf
)

(x1, x2)
∥

∥ ≤
(

1
Kβ

)l

φ
(

aβlx1, aβlx2
)

, (3.9)
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for all x1, x2 ∈ V n. Clearly, (3.9) is valid for l = 0 by (3.4). Assume that (3.9) is true for l ∈N0.
Then

∥

∥D
(

T l+1f
)

(x1, x2)
∥

∥

=
∥

∥

∥

∥

∑

q∈{–1,1}n

(

T l+1f
)

(a1x1 + qa2x2)

– 2n
∑

l1,l2,...,ln∈{1,2}
a2

l11a2
l22 · · ·a2

lnn
(

T l+1f
)

(xl11, xl22, . . . , xlnn)
∥

∥

∥

∥

=
1

Kβ

∥

∥

∥

∥

∑

q∈{–1,1}n

(

T lf
)(

aβ (a1x1 + qa2x2)
)

– 2n
∑

l1,l2,...,ln∈{1,2}
a2

l11a2
l22 · · ·a2

lnn
(

T lf
)(

aβ (xl11, xl22, . . . , xlnn)
)

∥

∥

∥

∥

=
1

Kβ

∥

∥D
(

T lf
)(

aβx1, aβx2
)∥

∥

≤
(

1
Kβ

)l+1

φ
(

aβ(l+1)x1, aβ(l+1)x2
)

, (3.10)

for all x1, x2 ∈ V n. Letting l → ∞ in (3.9) and applying (3.1), we arrive at DQ(x1, x2) = 0 for
all x1, x2 ∈ V n. Therefore, the mapping Q is a solution of (2.2). If Q satisfies the quadratic
condition in each variable, then by Theorem 2.3 it is a generalized multi-quadratic map-
ping. Let us assume that Q′ : V n −→ W is another generalized multi-quadratic mapping
satisfying inequality (3.5). Fix x ∈ V n, j ∈N. Using our assumptions, we have

∥

∥Q(x) – Q′(x)
∥

∥

=
∥

∥

∥

∥

1
Kβj Q

(

aβjx
)

–
1

Kβj Q
′(aβjx

)

∥

∥

∥

∥

≤ 1
Kβj

(∥

∥Q
(

aβjx
)

– f
(

aβjx
)∥

∥ +
∥

∥Q′(aβjx
)

– f
(

aβjx
)∥

∥

)

≤ 2
Kβj 	

(

aβjx
)

≤ 2
1

2nK
β+1

2

∞
∑

l=j

(

1
Kβ

)l

φ
(

aβl+ β–1
2 x, 0

)

.

Consequently, letting j → ∞ and applying the fact that series (3.2) is convergent for all
x ∈ V n, we obtain Q(x) = Q′(x) for all x ∈ V n. This finishes the proof. �

Remark 3.3 We note that being the approximately generalized multi-quadratic of mapping
f : V n −→ W and having zero condition in Theorem 3.2 do not imply that f is generalized
multi-quadratic. Indeed, there are plenty of examples for f with the mentioned properties
but not generalized multi-quadratic. Here, we indicate a concrete example for n = 2. Let
(A,‖ · ‖) be a Banach algebra. Fix the unital vector a0 in A. Define the mapping h : A ×
A−→A by h(x, y) = ‖x‖‖y‖a0 for any x, y ∈A. Consider the function ϕ : A2 ×A2 −→R+
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defined through

φ
(

(x1, x2)
)

= 16c4(‖x11‖ + ‖x21‖
)(‖x12‖ + ‖x22‖

)

,

for all x1 = (x11, x12), x2 = (x21, x22) ∈ A2, where c =max{|a11|, |a12|, |a21|, |a22|} for which
a1 = (a11, a12), a2 = (a21, a22) ∈ Z

2, and aij �= 0. A computation shows that

∥

∥Dh
(

(x11, x12), (x21, x22)
)∥

∥ ≤ φ
(

(x11, x12), (x21, x22)
)

.

Hence, h is an approximately generalized multi-quadratic mapping that satisfies the zero
functional equation but not a generalized multi-quadratic mapping.

Let A be a nonempty set, (X, d) be a metric space, ψ ∈ R
An
+ , and F1,F2 be operators

mapping a nonempty set D ⊂ XA into XAn . We say that the operator equation

F1ϕ(a1, . . . , an) = F2ϕ(a1, . . . , an) (3.11)

is ψ-hyperstable provided every ϕ0 ∈ D satisfying inequality

d
(

F1ϕ0(a1, . . . , an),F2ϕ0(a1, . . . , an)
) ≤ ψ(a1, . . . , an), a1, . . . , an ∈ A,

fulfils (3.11); this definition is introduced in [14]. In other words, a functional equation F
is hyperstable if any mapping f satisfying the equation F approximately is a true solution
of F . Under some conditions and by using Theorem 3.2, functional equation (2.2) can be
hyperstable as follows.

Corollary 3.4 Let δ > 0, a1j �= 1, and a2j = 1 for all j. Suppose that pij ∈ R for i ∈ {1, 2},
j ∈ {1, . . . , n} such that p1j �= 2. For a normed space V and a Banach space W , if f : V n −→ W
is a mapping satisfying the inequality

∥

∥Df (x1, x2)
∥

∥ ≤
2

∏

i=1

n
∏

j=1

‖xij‖pijδ,

for all x1, x2 ∈ V n, then it satisfies (2.2). In particular, if f satisfies the quadratic condition
in each variable, then it is a generalized multi-quadratic mapping.

Proof The result follows from Theorem 3.2 by putting φ(x1, x2) =
∏2

i=1
∏n

j=1 ‖xij‖pijδ for all
x1, x2 ∈ V n. �

In the next corollaries which are the direct consequences of Theorem 3.2, we show that
functional equation (2.2) is stable.

Corollary 3.5 Let δ > 0. Let also V be a normed space and W be a Banach space. Suppose
that f : V n −→ W is a mapping satisfying the inequality

∥

∥Df (x1, x2)
∥

∥ ≤ δ,
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for all x1, x2 ∈ V n and zero condition. If there exists j ∈ {1, . . . , n} such that a1j �= 1, then
there exists a solution Q : V n −→ W of (2.2) such that

∥

∥f (x) – Q(x)
∥

∥ ≤ δ

2n(K – 1)
,

for all x ∈ V n, where K is defined in (3.3). In addition, if Q satisfies the quadratic condition
in each variable, then it is a unique generalized multi-quadratic mapping.

Proof Setting the constant function φ(x1, x2) = δ for all x1, x2 ∈ V n in the case β = 1 of
Theorem 3.2, we obtain the desired result. �

In the following, we bring a concrete example regarding Corollary 3.5.

Example 3.6 Let δ > 0 and ε = δ

2n(
∏n

k=1(a2
1k +a2

2k )–1) such that aij �= 0,±1, at least for one of
aij s. Consider the mapping f : Rn −→R defined by

f (r1, . . . , rn) =

⎧

⎨

⎩

∏n
j=1 r2

j + ε ∀rj �= 0,

0 otherwise.

By a computation, one can verify that ‖Df (x1, x2)‖ ≤ δ for all x1, x2 ∈ R
n (note that ε is

taken from relation (2.3)), and so it follows from Corollary 3.5 that there exists a solution
Q : V n −→ W of (2.2) such that

∥

∥f (x) – Q(x)
∥

∥ ≤ δ

2n(K – 1)
,

for all x ∈ R
n, where K is defined in (3.3). If now Q satisfies the quadratic condition in

each variable, then it is a unique generalized multi-quadratic mapping.

Corollary 3.7 Suppose that pij ∈ R for i ∈ {1, 2}, j ∈ {1, . . . , n} such that p1j = 2 and a1j �= 1
for all j. Let V be a normed space and W be a Banach space. If f : V n −→ W is a mapping
satisfying zero condition and the inequality

∥

∥Df (x1, x2)
∥

∥ ≤
2

∑

i=1

n
∑

j=1

‖xij‖pij ,

for all x1, x2 ∈ V n, then there exists a solution Q : V n −→ W of (2.2) such that

∥

∥f (x) – Q(x)
∥

∥ ≤ 1
2n

n
∑

j=1

‖x1j‖2

a2
1j(Kj – 1)

,

for all x ∈ V n, where

Kj =
n

∏

k=1
k �=j

a2
1k . (3.12)
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If also Q satisfies the quadratic condition in each variable, then it is a unique generalized
multi-quadratic mapping.

Proof Putting φ(x1, x2) =
∑2

i=1
∑n

j=1 ‖xij‖pij in Theorem 3.2 for the case β = 1, we have

�(x) =
1

2nK
β+1

2

∞
∑

l=0

(

1
Kβ

)l

φ
(

aβl+ β–1
2 x, 0

)

=
1

2nK

∞
∑

l=0

(

1
K

)l n
∑

j=1

|a1j|2l‖x1j‖2

=
1

2nK

n
∑

j=1

∞
∑

l=0

(

1
Kj

)l

‖x1j‖2

=
1

2nK

n
∑

j=1

Kj

Kj – 1
‖x1j‖2

=
1
2n

n
∑

j=1

‖x1j‖2

a2
1j(Kj – 1)

,

where K and Kj are defined in (3.3) and (3.12), respectively. �

Corollary 3.8 Suppose that pij ∈ R for i ∈ {1, 2}, j ∈ {1, . . . , n} such that p1j < 2 and a1j �= 1
for all j. Let V be a normed space and W be a Banach space. If f : V n −→ W is a mapping
satisfying zero condition and the inequality

∥

∥Df (x1, x2)
∥

∥ ≤
2

∑

i=1

n
∑

j=1

‖xij‖pij ,

for all x1, x2 ∈ V n, then there exists a solution Q : V n −→ W of (2.2) such that

∥

∥f (x) – Q(x)
∥

∥ ≤ 1
2n

n
∑

j=1

‖x1j‖p1j

K – |a1j|p1j
,

for all x ∈ V n, where K is defined in (3.3). In particular, ifQ satisfies the quadratic condition
in each variable, then it is a unique generalized multi-quadratic mapping.

Proof Similar to the proof of Corollary 3.7, one can obtain the desired result by letting
φ(x1, x2) =

∑2
i=1

∑n
j=1 ‖xij‖pij in Theorem 3.2 for the case β = 1. �

3.1 Conclusion
In the current work, the author introduced some special several variables mappings as the
generalized multi-quadratic mappings and then characterized such mappings as a single
equation, namely, multi-quadratic functional equation. Using a fixed point theorem, he
studied the Hyers–Ulam stability for the generalized multi-quadratic mappings. More-
over, an example and a few corollaries corresponding to some known stability outcomes
are indicated.
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