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Abstract
In this paper, we prove that a three-step iteration process is stable for contractive-like
mappings. It is also proved analytically and numerically that the considered process
converges faster than some remarkable iterative processes for contractive-like
mappings. Furthermore, some convergence results are proved for the mappings
satisfying Suzuki’s condition (C) in uniformly convex Banach spaces. A couple of
nontrivial numerical examples are presented to support the main results and the
visualization is showed by Matlab. Finally, by utilizing our main result the solution of a
nonlinear fractional differential equation is approximated.

MSC: 47H09; 47H10; 54H25

Keywords: Suzuki’s condition (C); Contractive-like mapping; Iteration processes;
Fixed point; Fractional differential equation; Uniformly convex Banach space

1 Introduction
Throughout this paper, Z+ denotes the set of all nonnegative integers. We assume that U
is a nonempty subset of a Banach space W and F(F ) = {t ∈ U : F : U → U and F t = t}. A
mapping F : U → U is called non-expansive if ‖Fx –Fy‖ ≤ ‖x – y‖, ∀x, y ∈ U . It is said to
be a quasi-non-expansive if F(F ) �= ∅ and ‖Fx – t‖ ≤ ‖x – t‖, ∀x ∈ U and ∀t ∈ F(F ).

Hardy and Rogers [10] introduced generalized non-expansive mapping which is defined
as follows:

A self-map F on U is called generalized non-expansive if for all x, y ∈ U there exist real
numbers a, b, c ≥ 0 with a + 2b + 2c ≤ 1 such that

‖Fx – Fy‖ ≤ a‖x – y‖ + b
[‖x – Fx‖ + ‖y – Fy‖] + c

[‖x – Fy‖ + ‖y – Fx‖]. (1.1)

It can be easily verified that if F(F ) �= ∅, then F is a quasi-non-expansive mapping but the
converse is not true in general.

In 2008, Suzuki [22] defined a condition on the mappings, called condition (C); such
mappings are also known as generalized non-expansive mappings.
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A mapping F : U → U is said to satisfy condition (C) if,

1
2
‖x – Fx‖ ≤ ‖x – y‖ 
⇒ ‖Fx – Fy‖ ≤ ‖x – y‖, ∀x, y ∈ U .

Suzuki [22] proved existence and convergence theorems for such mappings. He also ex-
hibited that every non-expansive mapping satisfies condition (C), but the reverse is not
true in general. Moreover, if F(F ) �= ∅ and satisfies condition (C) then it is a quasi-non-
expansive mapping. Recently, a number of researchers studied the fixed points of Suzuki
generalized non-expansive mappings; e.g. see [3, 5, 8, 23, 24].

The generalized non-expansive mappings coined by Hardy and Rogers, and Suzuki are
generalizations of non-expansive mappings. So, most recently, Ali et al. [2] compared the
classes of mappings due to Suzuki, and Hardy and Rogers and showed that the two classes
of mappings do not imply each other. They also presented two examples to verify their
claim.

In 2003, Imoru and Olantiwo [11] defined the class of contractive-like mappings which
is wider than the classes of contractions, Zamfirescu mappings, weak contractions, etc.
They also proved that the Picard and Mann iteration processes are stable with respect to
contractive-like mappings. The definition of contractive-like mapping runs as follows.

Definition 1.1 ([11]) Let ϕ : [0,∞) → [0,∞) be a strictly increasing and continuous func-
tion with ϕ(0) = 0 and a constant δ ∈ [0, 1). A self-map F on U is said to be contractive-like
if, for all x, y ∈ U , we have

‖Fx – Fy‖ ≤ δ‖x – y‖ + ϕ
(‖x – Fx‖).

During approximation of fixed points, the better speed of convergence of iteration pro-
cess saves time. Berinde [7] gave the following definitions to compare the rate of conver-
gence of iteration processes.

Definition 1.2 Let (W ,‖ · ‖) be a normed space and F : W → W a mapping. Suppose
that the two fixed point iteration processes {τn} and {σn} converge to the same point t.
Furthermore, assume that the error estimates

‖τn – t‖ ≤ αn,

‖σn – t‖ ≤ βn,

are available (and these estimates are the best ones available), where {αn} and {βn} are two
sequences of nonnegative real numbers that converge to 0. Now, in order to compare the
two fixed point sequences {τn} and {σn} in W , it suffices to compare the two sequences of
real numbers {αn} and {βn} converging to 0. For this, one can use the following concept of
rate of convergence of two sequences given by Berinde [7].

Definition 1.3 Let {αn} and {βn} be two sequences of nonnegative real numbers that con-
verge to x and y, respectively. Assume that

� = lim
n→∞

|αn – x|
|βn – y| .
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(i) If � = 0, then {αn} converges to x faster than {βn} to y.
(ii) If 0 < � < ∞, then {αn} and {βn} have the same rate of convergence.

We say that the given fixed point iteration process is stable if and only if the approximate
sequence {tn} still converges to the fixed point of F . To approximate fixed points of the
mappings, we consider an approximate sequence {tn} instead of the theoretical sequence
{τn}, because of rounding errors and numerical approximation of functions. In view of
this fact, Ostrowski [18] was first to coin the concept of stability for a fixed point iteration
process and proved that Picard iteration process is stable for contraction mapping. The
definition of stability due to Ostrowski runs as follows.

Definition 1.4 ([18]) Consider an approximate sequence {tn} in a subset U of a Banach
space W . Then an iteration procedure τn+1 = f (F , τn) is said to be F -stable or stable with
respect to F for some function f , converging to a fixed point t, if for εn = ‖tn+1 – f (F , tn)‖,
n ∈ Z

+, we have limn→∞ εn = 0 ⇔ limn→∞ tn = t.

In the last three decades, the study of fixed point iteration processes has taken an em-
inent place in the fixed point theory and applied mathematics. The iteration processes
are used to solve initial and boundary value problems, image recovery problems, image
restoration problems, image processing problems, variational inequality problems, func-
tional equations [19] etc. Thus, several authors introduced and studied remarkable itera-
tion processes to approximate the fixed point of different nonlinear mappings. The follow-
ing iteration processes have been introduced by Mann [15], Ishikawa [12], Agrawal et al.
(S) [1], Gursoy and Karakaya (Picard-S) [9] and Noor [16], respectively. Here the sequence
{τn} with an initial guess τ0 ∈ U for the self-mapping F on U is defined as follows:

{
τn+1 = (1 – θn)τn + θnFτn, n ∈ Z

+, (1.2)
⎧
⎨

⎩
τn+1 = (1 – θn)τn + θnFσn,

σn = (1 – μn)τn + μnFτn, n ∈ Z
+,

(1.3)

⎧
⎨

⎩
τn+1 = (1 – θn)Fτn + θnFσn,

σn = (1 – μn)τn + μnFτn, n ∈ Z
+,

(1.4)

⎧
⎪⎪⎨

⎪⎪⎩

τn+1 = Fσn,

σn = (1 – θn)Fτn + θnFξn,

ξn = (1 – μn)τn + μnFτn, n ∈ Z
+,

(1.5)

⎧
⎪⎪⎨

⎪⎪⎩

τn+1 = (1 – θn)τn + θnFσn,

σn = (1 – μn)τn + μnFξn,

ξn = (1 – γn)τn + γnFτn, n ∈ Z
+,

(1.6)

where the sequences {θn}, {μn} and {γn} are in (0, 1).
Most recently, Ali et al. [2] introduced a new iteration process, called JF iteration process

and approximated the fixed points of Hardy and Rogers generalized non-expansive map-
pings in uniformly convex Banach spaces. In this process, the sequence {τn} is generated
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by an initial guess τ0 ∈ U and defined as follows:

⎧
⎪⎪⎨

⎪⎪⎩

τn+1 = F ((1 – θn)σn + θnFσn),

σn = Fξn,

ξn = F ((1 – μn)τn + μnFτn), n ∈ Z
+,

(1.7)

where {θn} and {μn} are in (0, 1). They claimed numerically that JF iteration process con-
verges to the fixed point of Hardy and Rogers mappings faster than some well-known
iteration processes. They also approximated the solution of a delay differential equation
via JF iteration process.

Motivated by the above, we prove the stability and rate of convergence of the JF itera-
tion process for contractive-like mappings. We also prove some convergence results for
Suzuki generalized non-expansive mappings via the JF iteration process in uniformly con-
vex Banach spaces. In the last section, we estimate the solution of a nonlinear fractional
differential equation via the JF iteration process. A couple of illustrative numerical exam-
ples are presented to validate the results. The results of this paper are remarkable from
the point of view of the results of Ali et al. [2] and extend several relevant results in the
literature.

2 Preliminaries
This section contains some lemmas, propositions and definitions that will be used in the
main results.

Lemma 2.1 ([6]) Let {εn} and {un} be sequences of positive real numbers satisfying un+1 ≤
δun + εn, n ∈ Z

+, where δ ∈ [0, 1). If limn→∞ εn = 0 then limn→∞ un = 0.

Lemma 2.2 ([22]) Let U be a weakly compact convex subset of a uniformly convex Banach
space W and F : U → U be a mapping satisfying Suzuki’s condition (C). Then F has a
fixed point.

Lemma 2.3 ([22]) Let U be a nonempty closed convex subset of a uniformly convex Banach
space W and F : U → U a mapping satisfying Suzuki’s condition (C). If {τn} converges
weakly to t ∈ U and limn→∞ ‖τn – Fτn‖ = 0, then F t = t implies I – F is demiclosed at
zero.

Lemma 2.4 ([20]) Let W be a uniformly convex Banach space and 0 < a ≤ sn ≤ b < 1
for all n ≥ 1. Let {τn} and {σn} be two sequences in W such that lim supn→∞ ‖τn‖ ≤ w,
lim supn→∞ ‖σn‖ ≤ w and limn→∞ ‖snτn + (1 – sn)σn‖ = w holds, for some w ≥ 0. Then
limn→∞ ‖τn – σn‖ = 0.

Proposition 2.5 ([22]) Let U be a nonempty subset of a Banach space W and F : U → U
be a mapping satisfying condition (C). Then

‖x – Fy‖ ≤ 3‖Fx – x‖ + ‖x – y‖, ∀x, y ∈ U .
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Definition 2.6 A Banach space W is said to satisfy Opial’s property [17] if for any se-
quence {τn} ⊂W with {τn} ⇀ x (⇀ denotes weak convergence) it implies that

lim inf
n→∞ ‖τn – x‖ < lim inf

n→∞ ‖τn – y‖

holds, for all y ∈W with y �= x.

Definition 2.7 ([21]) A self-map F on U is said to satisfy condition (I), if there exists a
nondecreasing function ψ : [0,∞) → [0,∞) with ψ(0) = 0 and ψ(z) > 0, ∀z > 0 such that
d(x,Fx) ≥ ψ(d(x, F(F ))), ∀x ∈ U .

Definition 2.8 Let W be a Banach space and let U a nonempty, closed and convex subset
of W , {τn} a bounded sequence in W and for x ∈ U ,

r
(
x, {τn}

)
= lim sup

n→∞
‖τn – x‖.

The asymptotic radius of {τn} relative to U is defined by

r
(
U , {τn}

)
= inf

{
r
(
x, {τn}

)
: x ∈ U

}
.

The asymptotic center of {τn} relative to U is defined by

A
(
U , {τn}

)
=

{
x ∈ U : r

(
x, {τn}

)
= r

(
U , {τn}

)}
.

It is known that if W is a uniformly convex Banach space, then A(U , {τn}) contains only
one point.

3 Rate of convergence and stability results for contractive-like mappings
Throughout this section, we presume that U is a nonempty, closed and convex subset of a
Banach space W and F : U → U a contractive-like mapping. The purpose of this section
is to prove stability and convergence results for contractive-like mappings via JF iteration
process.

Theorem 3.1 Let {τn} be an iteration process defined by (1.7). Then iteration process (1.7)
is F -stable.

Proof Suppose {tn} is an arbitrary sequence in U and tn+1 = f (F , tn) is the sequence gen-
erated by (1.7) and εn = ‖tn+1 – f (F , tn)‖ for all n ∈ Z

+. We have to prove that limn→∞ εn =
0 ⇐⇒ limn→∞ tn = t.

Suppose limn→∞ εn = 0, then by iteration process (1.7), we have

‖tn+1 – t‖ ≤ ∥
∥tn+1 – f (F , tn)

∥
∥ +

∥
∥f (F , tn) – t

∥
∥

≤ εn +
∥∥f (F , tn) – t

∥∥

≤ εn + δ2(1 – (1 – δ)θn
)(

1 – (1 – δ)μn
)‖tn – t‖. (3.1)
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Since 0 < (1 – (1 – δ)θn) ≤ 1 and 0 < (1 – (1 – δ)μn) ≤ 1 and using (3.1), we get

‖tn+1 – t‖ ≤ εn + δ2‖tn – t‖.

Define un = ‖tn – t‖, then

un+1 ≤ δ2un + εn.

Since limn→∞ εn = 0, so by Lemma 2.1, we have limn→∞ un = 0 i.e., limn→∞ tn = t.
Conversely, suppose limn→∞ tn = t, we have

εn =
∥
∥tn+1 – f (F , tn)

∥
∥

≤ ‖tn+1 – t‖ +
∥∥f (F , tn) – t

∥∥

≤ ‖tn+1 – t‖ + δ2(1 – (1 – δ)θn
)(

1 – (1 – δ)μn
)‖tn – t‖

≤ ‖tn+1 – t‖ + δ2‖tn – t‖.

This implies that limn→∞ εn = 0. Hence iteration process (1.7) is F - stable. �

Theorem 3.2 Let F(F ) �= ∅ and {τn} be a sequence defined by (1.7), then {τn} converges
faster than the iteration processes (1.2)-(1.6).

Proof From (1.5), for any t ∈ F(F ), we have

‖ξn – t‖ =
∥
∥(1 – μn)τn + μnFτn – t

∥
∥

≤ (1 – μn)‖τn – t‖ + μnδ‖τn – t‖
=

(
1 – (1 – δ)μn

)‖τn – t‖. (3.2)

Using (3.2), we get

‖σn – t‖ =
∥
∥(1 – θn)Fτn + θnFξn – t

∥
∥

≤ (1 – θn)δ‖τn – t‖ + θnδ‖ξn – t‖
≤ δ

(
1 – (1 – δ)θnμn

)‖τn – t‖. (3.3)

Using (3.3), we get

‖τn+1 – t‖ = ‖Fσn – t‖ ≤ δ‖σn – t‖ ≤ δ2(1 – (1 – δ)θnμn
)‖τn – t‖. (3.4)

By using the fact 0 < (1 – (1 – δ)θnμn) ≤ 1, we get

‖τn+1 – t‖ ≤ δ2‖τn – t‖.

Inductively, we get

‖τn – t‖ ≤ δ2(n+1)‖τ0 – t‖. (3.5)
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Now from (1.7), we have

‖ξn – t‖ =
∥
∥F

(
(1 – μn)τn + μnFτn

)
– t

∥
∥

≤ δ
∥∥(1 – μn)τn + μnFτn – t

∥∥

≤ δ
[
(1 – μn)‖τn – t‖ + μnδ‖τn – t‖]

≤ δ
(
1 – (1 – δ)μn

)‖τn – t‖. (3.6)

Using (3.6), we get

‖σn – t‖ = ‖Fξn – t‖
≤ δ‖ξn – t‖
≤ δ2(1 – (1 – δ)μn

)‖τn – t‖. (3.7)

Using (3.7), we get

‖τn+1 – t‖ =
∥∥F

(
(1 – θn)σn + θnFσn

)
– t

∥∥

≤ δ
∥
∥(1 – θn)σn + θnFσn – t

∥
∥

≤ δ3(1 – (1 – δ)θn
)(

1 – (1 – δ)μn
)‖τn – t‖.

By using the fact 0 < (1 – (1 – δ)θn) ≤ 1 and 0 < (1 – (1 – δ)μn) ≤ 1, we have

‖τn+1 – t‖ ≤ δ3‖τn – t‖.

Inductively, we get

‖τn+1 – t‖ ≤ δ3(n+1)‖τ0 – t‖. (3.8)

Let αn = δ3(n+1)‖τ0 – t‖ and βn = δ2(n+1)‖τ0 – t‖, then

lim
n→∞

αn

βn
= lim

n→∞
δ3(n+1)‖τ0 – t‖
δ2(n+1)‖τ0 – t‖ = 0.

Hence iteration process (1.7) converges faster than iteration process (1.5). �

Similarly we can show that iteration process (1.7) converges faster than (1.2)–(1.4) and
(1.6) iteration processes.

In support of Theorem 3.2, we construct the following example.

Example 3.3 Let W = R
2 be a Banach space with taxicab norm and U = [0, 6] × [0, 6] a

subset of R2. Let F : U → U be defined by

F (x1, x2) =

⎧
⎨

⎩
( x1

3 , x2
3 ), if (x1, x2) ∈ [0, 3) × [0, 3),

( x1
6 , x2

6 ), if (x1, x2) ∈ [3, 6] × [3, 6].
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Clearly, (0, 0) is the fixed point of F . Now, we show that F is a contractive-like mapping
but not a contraction. For this, we define a function ϕ : R+ → R

+ by ϕ(x) = x
4 . Then, ϕ is

strictly increasing and continuous function. Also, ϕ(0) = 0. We show that

‖Fx – Fy‖ = δ‖x – y‖ + ϕ
(‖x – Fx‖) (3.9)

for all x, y ∈ U and δ ∈ (0, 1). Before going ahead, let us note the following. When x =
(x1, x2) ∈ [0, 3) × [0, 3), then

‖x – Fx‖ =
∥
∥∥∥(x1, x2) –

(
x1

3
,

x2

3

)∥
∥∥∥ =

∥
∥∥∥

(
2x1

3
,

2x2

3

)∥
∥∥∥

and

ϕ
(‖x – Fx‖) = ϕ

(∥
∥∥
∥

(
2x1

3
,

2x2

3

)∥
∥∥
∥

)
=

∥
∥∥
∥

(
x1

6
,

x2

6

)∥
∥∥
∥ =

∣
∣∣
∣
x1

6

∣
∣∣
∣ +

∣
∣∣
∣
x2

6

∣
∣∣
∣. (3.10)

Similarly, when x = (x1, x2) ∈ [3, 6] × [3, 6], then

‖x – Fx‖ =
∥∥
∥∥(x1, x2) –

(
x1

6
,

x2

6

)∥∥
∥∥ =

∥∥
∥∥

(
5x1

6
,

5x2

6

)∥∥
∥∥

and

ϕ
(‖x – Fx‖) = ϕ

(∥∥
∥∥

(
5x1

6
,

5x2

6

)∥∥
∥∥

)
=

∥∥
∥∥

(
5x1

24
,

5x2

24

)∥∥
∥∥

=
∣∣
∣∣
5x1

24

∣∣
∣∣ +

∣∣
∣∣
5x2

24

∣∣
∣∣. (3.11)

Now, we have the following cases:
Case (i): Let x, y ∈ [0, 3) × [0, 3), using (3.10) we get

‖Fx – Fy‖ =
∥
∥∥
∥

(
x1

3
,

x2

3

)
–

(
y1

3
,

y2

3

)∥
∥∥
∥

=
∣∣
∣∣
x1

3
–

y1

3

∣∣
∣∣ +

∣∣
∣∣
x2

3
–

y2

3

∣∣
∣∣

=
1
3
|x1 – y1| +

1
3
|x2 – y2|

=
1
3
∥∥(x1, x2) – (y1, y2)

∥∥

≤ 1
3
‖x – y‖ +

∣∣
∣∣
x1

6

∣∣
∣∣ +

∣∣
∣∣
x2

6

∣∣
∣∣

=
1
3
‖x – y‖ + ϕ

(‖x – Fx‖). (3.12)

Case (ii): Let x, y ∈ [3, 6] × [3, 6], using (3.10) we get

‖Fx – Fy‖ =
∥
∥∥
∥

(
x1

6
,

x2

6

)
–

(
y1

6
,

y2

6

)∥
∥∥
∥

=
∣∣
∣∣
x1

6
–

y1

6

∣∣
∣∣ +

∣∣
∣∣
x2

6
–

y2

6

∣∣
∣∣
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=
1
6
|x1 – y1| +

1
6
|x2 – y2|

=
1
6
∥
∥(x1, x2) – (y1, y2)

∥
∥

≤ 1
3
‖x – y‖ +

∣
∣∣∣
5x1

24

∣
∣∣∣ +

∣
∣∣∣
5x2

24

∣
∣∣∣

=
1
3
‖x – y‖ + ϕ

(‖x – Fx‖). (3.13)

Case (iii): Let x ∈ [0, 3) and y ∈ [3, 6], then using (3.10) we get

‖Fx – Fy‖ =
∥∥
∥∥

(
x1

3
,

x2

3

)
–

(
y1

6
,

y2

6

)∥∥
∥∥

=
∥
∥∥
∥

(
x1

3
–

y1

6

)
,
(

x2

3
–

y2

6

)∥
∥∥
∥

=
∥
∥∥
∥

(
x1

6
+

x1

6
–

y1

6

)
,
(

x2

6
+

x2

6
–

y2

6

)∥
∥∥
∥

=
∣∣
∣∣
x1

6
+

x1

6
–

y1

6

∣∣
∣∣ +

∣∣
∣∣
x2

6
+

x2

6
–

y2

6

∣∣
∣∣

≤
∣∣
∣∣
x1

6

∣∣
∣∣ +

∣∣
∣∣
x2

6

∣∣
∣∣ +

∣∣
∣∣
x1

6
–

y1

6

∣∣
∣∣ +

∣∣
∣∣
x2

6
–

y2

6

∣∣
∣∣

=
1
6
(|x1 – y1| + |x2 – y2|

)
+ ϕ

(‖x – Fx‖)

≤ 1
3
∥
∥(x1, x2) – (y1, y2)

∥
∥ + ϕ

(‖x – Fx‖)

=
1
3
‖x – y‖ + ϕ

(‖x – Fx‖). (3.14)

Case (iv): Let x ∈ [3, 6] and y ∈ [0, 3), then using (3.10) we get

‖Fx – Fy‖ =
∥∥
∥∥

(
x1

6
,

x2

6

)
–

(
y1

3
,

y2

3

)∥∥
∥∥

=
∥∥
∥∥

(
x1

6
–

y1

3

)
,
(

x2

6
–

y2

3

)∥∥
∥∥

≤
∥
∥∥
∥

(
x1

3
–

x1

6
–

y1

3

)
,
(

x2

3
–

x2

6
–

y2

3

)∥
∥∥
∥

=
∣
∣∣
∣
x1

3
–

x1

6
–

y1

3

∣
∣∣
∣ +

∣
∣∣
∣
x2

3
–

x2

6
–

y2

3

∣
∣∣
∣

≤
∣∣
∣∣
x1

6

∣∣
∣∣ +

∣∣
∣∣
x2

6

∣∣
∣∣ +

∣∣
∣∣
x1

3
–

y1

3

∣∣
∣∣ +

∣∣
∣∣
x2

3
–

y2

3

∣∣
∣∣

=
1
3
(|x1 – y1| + |x2 – y2|

)
+ ϕ

(‖x – Fx‖)

=
1
3
∥∥(x1, x2) – (y1, y2)

∥∥ + ϕ
(‖x – Fx‖)

=
1
3
‖x – y‖ + ϕ

(‖x – Fx‖).

So, (3.9) is satisfied with δ = 1
3 . Thus, F is a contractive-like mapping.
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Table 1 Computational table of different iteration processes

Iter. Mann Ishikawa S

1 (1.000000, 2.500000) (1.000000, 2.500000) (1.000000, 2.500000)
2 (0.666667, 1.666667) (0.622222, 1.555556) (0.288889, 0.722222)
...

...
...

...
14 (0.005138, 0.012846) (0.002096, 0.005239) (0.000000, 0.000000)
16 (0.002284, 0.005709) (0.000811, 0.002028) (0.000000, 0.000000)
...

...
...

...
33 (0.000002, 0.000006) (0.000000, 0.000001) (0.000000, 0.000000)
34 (0.000002, 0.000004) (0.000000, 0.000000) (0.000000, 0.000000)
...

...
...

...
39 (0.000000, 0.000001) (0.000000, 0.000000) (0.000000, 0.000000)
40 (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

Table 2 Computational table of different iteration processes

Iter. Picard-S Noor JF

1 (1.000000, 2.500000) (1.000000, 2.500000) (1.000000, 2.500000)
2 (0.096296, 0.240741) (0.617778, 1.544444) (0.069136, 0.172840)
...

...
...

...
7 (0.000001, 0.000002) (0.055590, 0.138974) (0.000000, 0.000000)
8 (0.000000, 0.000000) (0.034342, 0.085855) (0.000000, 0.000000)
...

...
...

...
33 (0.000000, 0.000000) (0.000000, 0.000001) (0.000000, 0.000000)
34 (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)
...

...
...

...
40 (0.000000, 0.000000) (0.000000, 0.000000) (0.000000, 0.000000)

Figure 1 Convergence behavior of the sequences defined by distinct iteration processes

It can be easily seen in Tables 1–2 and Fig. 1 that JF iteration process converges to a fixed
point (0, 0) of the mapping F faster than the leading iteration processes with initial point
(1, 2.5) and control sequences θn = 0.5, μn = 0.4 and γn = 0.3, n ∈ Z

+.

4 Convergence results for Suzuki’s generalized non-expansive mappings
Throughout this section, we presume that U is a nonempty closed and convex subset of
a uniformly convex Banach space W and let F : U → U be a mapping satisfying Suzuki’s
condition (C).
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Lemma 4.1 Let U be a nonempty closed and convex subset of a uniformly convex Banach
space W and F : U → U a mapping satisfying Suzuki’s condition (C). Suppose F(F ) �= ∅
and {τn} is a sequence developed by iteration process (1.7), then limn→∞ ‖τn – t‖ exists for
all t ∈ F(F ).

Proof Let t ∈ F(F ) and x ∈ U . Since F satisfies Suzuki’s condition (C), we have

‖Fx – t‖ ≤ ‖x – t‖, for all x ∈ U and for all t ∈ F(F ).

Now from iteration process (1.7), we get

‖ξn – t‖ =
∥∥F (1 – μn)τn + μnFτn – t

∥∥

≤ ∥∥(1 – μn)τn + μnFτn – t
∥∥

≤ (1 – μn)‖τn – t‖ + μn‖τn – t‖
= ‖τn – t‖ (4.1)

and

‖σn – t‖ = ‖Fξn – t‖
≤ ‖ξn – t‖
≤ ‖τn – t‖. (4.2)

Using (4.1) and (4.2), we have

‖τn+1 – t‖ =
∥∥F

(
(1 – θn)σn + θnFσn

)
– t

∥∥

≤ ∥∥(1 – θn)σn + θnFσn – t
∥∥

≤ (1 – θn)‖σn – t‖ + θn‖σn – t‖
= ‖σn – t‖
≤ ‖τn – t‖. (4.3)

This shows that the sequence {‖τn – t‖} is non-increasing and bounded below for all t ∈
F(F ). Thus limn→∞ ‖τn – t‖ exists. �

Lemma 4.2 Let {τn} be a sequence developed by iteration process (1.7) and sequence {μn}
satisfying condition 0 < a ≤ μn ≤ b < 1 for all n ≥ 1. Then F(F ) �= ∅ if and only if {τn} is
bounded and limn→∞ ‖τn – Fτn‖ = 0.

Proof By Lemma 4.1, it follows that limn→∞ ‖τn – t‖ exists.
Presume that limn→∞ ‖τn – t‖ = c.
By the inequalities (4.1) and (4.2), we get

lim sup
n→∞

‖ξn – t‖ ≤ c (4.4)
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and

lim sup
n→∞

‖σn – t‖ ≤ c, (4.5)

respectively. Since F satisfies Suzuki’s condition (C), we have

‖Fτn – t‖ ≤ ‖τn – t‖, ‖Fσn – t‖ ≤ ‖σn – t‖, ‖Fξn – t‖ ≤ ‖ξn – t‖.

lim sup
n→∞

‖Fτn – t‖ ≤ c, (4.6)

lim sup
n→∞

‖Fσn – t‖ ≤ c, (4.7)

lim sup
n→∞

‖Fξn – t‖ ≤ c. (4.8)

Since

‖τn+1 – t‖ =
∥
∥F

(
(1 – θn)σn + θnFσn

)
– t

∥
∥

≤ ∥
∥(1 – θn)σn + θnFσn – t

∥
∥

≤ (1 – θn)‖σn – t‖ + θn‖σn – t‖
= ‖σn – t‖.

Taking the lim inf on both sides, we get

c = lim inf
n→∞ ‖τn+1 – t‖ ≤ lim inf

n→∞ ‖σn – t‖. (4.9)

Thus, (4.5) and (4.9) give

lim
n→∞‖σn – t‖ = c.

We have

c = lim inf
n→∞ ‖σn – t‖ = lim inf

n→∞ ‖Fξn – t‖
≤ lim inf

n→∞ ‖ξn – t‖. (4.10)

From (4.4) and (4.10), we have

lim
n→∞‖ξn – t‖ = c.

So,

c = lim
n→∞‖ξn – t‖

= lim
n→∞

∥
∥F

(
(1 – μn)τn + μnFτn

)
– t

∥
∥

≤ lim
n→∞

∥∥(1 – μn)τn + μnFτn – t
∥∥
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≤ lim
n→∞

∥∥(1 – μn)(τn – t) + μn(Fτn – t)
∥∥

≤ lim
n→∞

[
(1 – μn)‖τn – t‖ + μn‖τn – t‖]

≤ lim
n→∞‖τn – t‖ = c,

which implies that

lim
n→∞

∥
∥(1 – μn)(τn – t) + μn(Fτn – t)

∥
∥ = c. (4.11)

From (4.11) and Lemma 2.4, we have

lim
n→∞‖τn – Fτn‖ = 0.

On the contrary, assume that {τn} is bounded and limn→∞ ‖τn – Fτn‖ = 0. Suppose t ∈
A(U , {τn}), so by Proposition 2.5, we have

r
(
F t, {τn}

)
= lim sup

n→∞
‖τn – F t‖

≤ lim sup
n→∞

(3‖Fτn – τn)‖ + ‖τn – t‖)

= lim sup
n→∞

‖τn – t‖

= r
(
t, {τn}

)
= r

(
U , {τn}

)
.

This implies F t ∈ A(U , {τn}). Since W is uniformly convex, A(U , {τn}) is singleton, hence
we have F t = t. �

Theorem 4.3 Assume that W satisfies Opial’s condition, then the sequence {τn} developed
by iteration process (1.7) converge weakly to a point of F(F ).

Proof From Lemma 4.1, we see that limn→∞ ‖τn – t‖ exists. In order to show the weak
convergence of the iteration process (1.7) to a fixed point of F , we will prove that {τn} has
a unique weak subsequential limit in F(F ). For this, let {τnj} and {τnk } be two subsequences
of {τn} which converges weakly to x and y, respectively. From Lemma 4.2, limn→∞ ‖τn –
Fτn‖ = 0 and I –F is demiclosed at zero by Lemma 2.3. Thus (I –F )x = 0, that is, x = Fx.
Similarly y = Fy.

Now we show uniqueness. If x �= y, by Opial’s condition, we have

lim
n→∞‖τn – x‖ = lim

nj→∞‖τnj – x‖

< lim
nj→∞‖τnj – y‖

= lim
n→∞‖τn – y‖

= lim
nk→∞‖τnk – y‖

< lim
nk→∞‖τnk – x‖

= lim
n→∞‖τn – x‖,
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which is a contradiction; hence x = y. Consequently, the {τn} converge weakly to a point
of F(F ). �

Theorem 4.4 Let F , U and W be defined as in Lemma 4.1. Then the sequence {τn} devel-
oped by iteration process (1.7) converges to a point of F(F ) if and only if lim infn→∞ d(τn,
F(F )) = 0, where d(τn, F(F )) = inf{‖τn – t‖ : t ∈ F(F )}.

Proof The first part is trivial. So, we prove the converse part. Presume that lim infn→∞ d(τn,
F(F )) = 0. From Lemma 4.1, limn→∞ ‖τn – t‖ exists, for all t ∈ F(F ) therefore limn→∞ d(τn,
F(F )) = 0 by hypothesis.

Now our assertion is that {τn} is a Cauchy sequence in U . Since limn→∞ d(τn, F(F )) = 0,
and for a given λ > 0, there exists m0 ∈N such that for all n ≥ m0

d
(
τn, F(F )

)
<

λ

2


⇒ inf
{‖τn – t‖ : t ∈ F(F )

}
<

λ

2
.

In particular, inf{‖τm0 – t‖ : t ∈ F(F )} < λ
2 . Therefore there exists t ∈ F(F ) such that

‖τm0 – t‖ <
λ

2
.

Now, for m, n ≥ m0,

‖τn+m – τn‖ ≤ ‖τn+m – t‖ + ‖τn – t‖
≤ ‖τm0 – t‖ + ‖τm0 – t‖
= 2‖τm0 – t‖ < λ.

Thus {τn} is a Cauchy sequence in U . As U is closed, then there exists a point q ∈ U such
that limn→∞ τn = q. Now, limn→∞ d(τn, F(F )) = 0 implies d(q, F(F )) = 0, hence we get q ∈
F(F ). �

Theorem 4.5 Let F : U → U be a mapping satisfying Suzuki’s condition (C), where U is
a nonempty, compact and convex subset of a uniformly convex Banach space W . Then the
sequence {τn} developed by iteration process (1.7) converges strongly to a fixed point of F .

Proof By Lemma 2.2, F(F ) �= ∅, so by Lemma 4.2, we have limn→∞ ‖Fτn – τn‖ = 0. Since
U is compact, there exists a subsequence {τnj} of {τn} such that τnj → t strongly for some
t ∈ U . By Proposition 2.5, we have

‖τnj – F t‖ ≤ 3‖Fτnj – τnj‖ + ‖τnj – t‖, ∀j ≥ 1.

As j → ∞, we get τnj → F t, implies F t = t, i.e. t ∈ F(F ). Also, limn→∞ ‖τn – t‖ exists by
Lemma 4.1. Thus t is the strong limit of the sequence {τn} itself. �

Applying condition (I) we now prove a strong convergence result.
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Theorem 4.6 Let F , U and W be defined as in Lemma 4.1. Assume that the mapping
F also satisfies condition (I). Then the sequence {τn} developed by iteration process (1.7)
converges strongly to a fixed point of F .

Proof We proved in Lemma 4.2 that

lim
n→∞‖τn – Fτn‖ = 0. (4.12)

Applying condition (I) and (4.12), we get

0 ≤ lim
n→∞ψ

(
d
(
τn, F(F )

)) ≤ lim
n→∞‖τn – Fτn‖ = 0


⇒ lim
n→∞ψ

(
d
(
τn, F(F )

))
= 0.

And hence

lim
n→∞ d

(
τn, F(F )

)
= 0.

So by Theorem 4.4, the sequence {τn} converge strongly to a fixed point of F . �

5 An illuminate numerical example
The purpose of this section is to present a numerical example to compare the rate of con-
vergence for a mapping satisfying Suzuki’s condition (C).

Example 5.1 Let F : [0, 2] → [0, 2] be a mapping defined by

F (x) =

⎧
⎨

⎩
2 – x, if x ∈ [0, 1

9 ),
x+16

9 , if x ∈ [ 1
9 , 2].

Here F satisfies Suzuki’s condition (C), but F is not a non-expansive mapping.

Verification For x = 1
10 and y = 1

9 , we obtain

‖x – y‖ =
∥
∥∥∥

1
10

–
1
9

∥
∥∥∥ =

1
90

.

We have

‖Fx – Fy‖ =
∥∥
∥∥2 –

1
10

–
145
81

∥∥
∥∥

=
89

810
>

1
90

= ‖x – y‖.

Hence F is not a non-expansive mapping.
We now show that F satisfies Suzuki’s condition (C).
We have the following cases:

Case I If either x, y ∈ [0, 1
9 ) or x, y ∈ [ 1

9 , 2], then obviously F satisfies Suzuki’s condition
(C).
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Case II Let x ∈ [0, 1
9 ). Then 1

2‖x –Fx‖ = 1
2‖x – (2 – x)‖ = 1

2‖2x – 2‖ = ‖x – 1‖ ∈ ( 8
9 , 1]. For

1
2‖x – Fx‖ ≤ ‖x – y‖, we should have 1 – x ≤ y – x implying y ≥ 1 and y ∈ [1, 2]. Now,

‖Fx – Fy‖ =
∥
∥∥
∥

y + 16
9

– 2 + x
∥
∥∥
∥ =

∥
∥∥
∥

y + 9x – 2
9

∥
∥∥
∥ <

1
9

and

‖x – y‖ = |x – y| >
∣∣
∣∣1 –

1
9

∣∣
∣∣ =

∣∣
∣∣
8
9

∣∣
∣∣ =

8
9

>
1
9

.

Hence, 1
2‖x – Fx‖ ≤ ‖x – y‖ 
⇒ ‖Fx – Fy‖ ≤ ‖x – y‖.

Case III Let x ∈ [ 1
9 , 2]. Then 1

2‖x – Fx‖ = 1
2‖ x+16

9 – x‖ = ‖ 16–8x
18 ‖ ∈ [0, 136

162 ]. For 1
2‖x –

Fx‖ ≤ ‖x – y‖, we should have 16–8x
18 ≤ |x – y|, which indicates two possibilities:

(a) Let x < y, then 16–8x
18 ≤ y – x, i.e. 10x+16

18 ≤ y 
⇒ y ∈ [ 154
162 , 2] ⊂ [ 1

9 , 2]. So

‖Fx – Fy‖ =
∥
∥∥∥

x + 16
9

–
y + 16

9

∥
∥∥∥ =

1
9
‖x – y‖ ≤ ‖x – y‖.

Hence, 1
2‖x – Fx‖ ≤ ‖x – y‖ 
⇒ ‖Fx – Fy‖ ≤ ‖x – y‖.

(b) Let x > y, then 16–8x
18 ≤ x – y, i.e. y ≤ 26x–16

18 
⇒ y ≤ –118
162 and y ≤ 2, so y ∈ [0, 2]. Since

y ∈ [0, 2] and y ≤ 26x–16
18 
⇒ 18y+16

26 ≤ x. Since the case x ∈ [ 16
26 , 2] and y ∈ [ 1

9 , 2] is already
discussed in Case I. Now consider, x ∈ [ 16

26 , 2] and y ∈ [0, 1
9 ). Then

‖Fx – Fy‖ =
∥∥
∥∥

x + 16
9

– 2 + y
∥∥
∥∥ =

∥∥
∥∥

x + 9y – 2
9

∥∥
∥∥ <

1
9

and

‖x – y‖ = |x – y| >
∣∣∣
∣
16
26

–
1
9

∣∣∣
∣ =

∣∣∣
∣
144 – 26

234

∣∣∣
∣ =

118
234

>
1
9

.

Hence, 1
2‖x –Fx‖ ≤ ‖x – y‖ 
⇒ ‖Fx –Fy‖ ≤ ‖x – y‖. Thus F satisfies Suzuki’s condition

(C).
It can be easily seen from Table 3 and Fig. 2 that the JF iteration process converges to a

fixed point t = 2 of the mapping F faster than the leading iteration processes with initial
point τ0 = 0.11 and control sequences θn = 0.75, μn = 0.65 and γn = 0.55, n ∈ Z

+.

6 Application to a nonlinear fractional differential equation
In this section, by using iteration process (1.7) we approximate the solution of a nonlinear
fractional differential equation. Consider the following nonlinear fractional differential
equation:

⎧
⎨

⎩
Dαx(t) + Dβx(t) = f (t, x(t)) (0 ≤ t ≤ 1, 0 < β < α < 1),

x(0) = x(1) = 0,
(6.1)

where f : [0, 1] ×R →R is a continuous function and Dα and Dβ denote the Caputo frac-
tional derivatives of order α and β , respectively.
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Table 3 Numerical comparison of iteration processes

Iter. Mann Ishikawa S Picard-S Noor JF

1 0.110000 0.110000 0.110000 0.110000 0.110000 0.110000
2 1.370000 1.461000 1.881000 1.986778 1.466561 1.999635
3 1.790000 1.846285 1.992507 1.999907 1.849441 2.000000
4 1.930000 1.956163 1.999528 1.999999 1.957506 2.000000
5 1.976667 1.987498 1.999970 2.000000 1.988006 2.000000
6 1.992222 1.996435 1.999998 2.000000 1.996615 2.000000
7 1.997407 1.998983 2.000000 2.000000 1.999045 2.000000
...

...
...

...
...

...
...

13 1.999996 1.999999 2.000000 2.000000 2.000000 2.000000
14 1.999999 2.000000 2.000000 2.000000 2.000000 2.000000
15 2.000000 2.000000 2.000000 2.000000 2.000000 2.000000

Figure 2 Graphical representation of the convergence of iteration processes

Let W = C[0, 1] be a Banach space of continuous function from [0, 1] into R endowed
with the supremum norm. The Green’s function associated to (6.1) is defined by

G(t) = tα–1Eα–β ,α
(
–tα–β

)
,

where Eα–β ,α(–tα–β ) =
∑∞

k=0
(–tα–β )k

�((α–β)k+α) is the Mittag–Leffler function. Many authors stud-
ied the existence of the solution of problem (6.1) [e.g. see [4, 13, 14]]. Now we approximate
the solution of problem (6.1) by utilizing iteration process (1.7) with the following assump-
tion:

(C1) Assume that

∣
∣f (t, a) – f (t, b)

∣
∣ ≤ c|a – b|

for all t ∈ [0, 1], a, b ∈R and c ≤ α.

Theorem 6.1 Let W = C[0, 1] be a Banach space with supremum norm. Let {τn} be a se-
quence defined by JF iteration process (1.7) for the operator F : W →W defined by

F
(
x(t)

)
=

∫ t

0
G(t – w)f

(
w, x(w)

)
dw, (6.2)

∀t ∈ [0, 1], ∀x ∈ W . Assume that the condition (C1) is satisfied. Then the sequence defined
by JF iteration process (1.7) converges to a solution, say x∗ ∈W of the problem (6.1).
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Proof Observe that x∗ ∈W is a solution of (6.1) if and only if x∗ is a solution of the integral
equation

x(t) =
∫ t

0
G(t – w)f

(
w, x(w)

)
dw.

Now, let x, y ∈W and for all t ∈ [0, 1]. Using (C1), we get

∣∣F
(
x(t)

)
– F

(
y(t)

)∣∣ =
∣
∣∣
∣

∫ t

0
G(t – w)f

(
w, x(w)

)
dw –

∫ t

0
G(t – w)f

(
w, y(w)

)
dw

∣
∣∣
∣

≤
∫ t

0
G(t – w)

∣
∣f

(
w, x(w)

)
– f

(
w, y(w)

)∣∣dw

≤
∫ t

0
G(t – w)c

∣∣x(w) – y(w)
∣∣dw

≤
(

sup
t∈[0,1]

∫ t

0
G(t – w) dw

)
c‖x – y‖

≤ c
α

‖x – y‖.

Note that G(t) = tα–1Eα–β ,α(–tα–β ) ≤ tα–1 1
1+|–tα–β | ≤ tα–1 for all t ∈ [0, 1]. Thus,

supt∈[0,1]
∫ t

0 G(t – w) dw ≤ 1
α

. Hence, for x, y ∈W and for all t ∈ [0, 1], we have

‖Fx – Fy‖ ≤ ‖x – y‖.

Thus F is a Suzuki generalized non-expansive mapping. Hence the JF iteration process
converges to the solution of (6.1). �

Now, we present the following example for the validity of Theorem 6.1.

Example 6.2 Consider the following fractional differential equation:

⎧
⎨

⎩
D0.5x(t) + D0.25x(t) = t3 + 1 (0 ≤ t ≤ 1),

x(0) = x(1) = 0.
(6.3)

The exact solution of problem (6.3) is given by

x(t) =
∫ t

0
G(t – w)f

(
w, x(w)

)
dw.

The operator F : C[0, 1] → C[0, 1] is defined by

Fx(t) =
∫ t

0
G(t – w)f

(
w, x(w)

)
dw. (6.4)

For the initial guess τ0(t) = t(1 – t), t ∈ [0, 1] and control sequences θn = 0.85, μn = 0.65,
n ∈ Z

+, we observe that JF iteration process converges to the exact solution of problem
(6.3) for the operator defined in (6.4) which is shown in Tables 4–5 and Figs. 3–6. Further-
more, we consider a Mittag-Leffler series expansion at k = 3, k = 11, k = 31 and k = 500
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Table 4 Comparison between exact solution and approximate solution by using the JF iteration
process for k = 3 and k = 11

S. No. t k = 3 k = 11

x(t) τ1 τ10 x(t) τ1 τ10

1 0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 0.1 0.07127290 0.07127290 0.07127290 0.09420159 0.09420159 0.09420159
3 0.2 0.06081985 0.06081985 0.06081985 0.12109470 0.12109470 0.12109470
4 0.3 0.03349861 0.03349861 0.03349861 0.13856971 0.13856971 0.13856971
5 0.4 –0.00465639 –0.00465639 –0.00465639 0.15014913 0.15014913 0.15014913
6 0.5 –0.05171526 –0.05171526 –0.05171526 0.15632606 0.15632606 0.15632606
7 0.6 –0.10740643 –0.10740643 –0.10740643 0.15643118 0.15643118 0.15643118
8 0.7 –0.17250057 –0.17250057 –0.17250057 0.14894918 0.14894918 0.14894918
9 0.8 –0.24859763 –0.24859763 –0.24859763 0.13146728 0.13146728 0.13146728
10 0.9 –0.33804423 –0.33804423 –0.33804423 0.10046696 0.10046696 0.10046696
11 1.0 –0.44390251 –0.44390251 –0.44390251 0.05101478 0.05101478 0.05101478

Table 5 Comparison between exact solution and approximate solution by using the JF iteration
process for k = 31 and k = 500

S. No. t k = 31 k = 500

x(t) τ1 τ10 x(t) τ1 τ10

1 0 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000
2 0.1 0.09426838 0.09426838 0.09426838 0.09426838 0.09426838 0.09426838
3 0.2 0.12181107 0.12181107 0.12181107 0.12181107 0.12181107 0.12181107
4 0.3 0.14144144 0.14144144 0.14144144 0.14144144 0.14144144 0.14144144
5 0.4 0.15787367 0.15787367 0.15787367 0.15787369 0.15787369 0.15787369
6 0.5 0.17308385 0.17308385 0.17308385 0.17308398 0.17308398 0.17308398
7 0.6 0.18827138 0.18827138 0.18827138 0.18827202 0.18827202 0.18827202
8 0.7 0.20433052 0.20433052 0.20433052 0.20433294 0.20433294 0.20433294
9 0.8 0.22201428 0.22201428 0.22201428 0.22202200 0.22202200 0.22202200
10 0.9 0.24200310 0.24200310 0.24200310 0.24202490 0.24202490 0.24202490
11 1.0 0.26493588 0.26493588 0.26493588 0.26499176 0.26499176 0.26499176

Figure 3 Graphical representation of exact solution and approximated solution of problem (6.3) by using the
JF iteration process at k = 3

and show that JF iteration process converges to the solution of fractional differential equa-
tion. We also observe that the behavior of JF iteration process will remain identical after
k = 500.
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Figure 4 Graphical representation of exact solution and approximated solution of problem (6.3) by using the
JF iteration process at k = 11

Figure 5 Graphical representation of exact solution and approximated solution of problem (6.3) by using the
JF iteration process at k = 31

Figure 6 Graphical representation of exact solution and approximated solution of problem (6.3) by using the
JF iteration process at k = 500

7 Conclusion
In this paper, convergence and stability of the JF iteration process have been studied for
nonlinear mappings. Furthermore, the proposed iteration process has been successfully
operating for the solution of boundary value problem of fractional differential equation.
We compared the rate of convergence of remarkable iteration processes analytically and
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numerically for nonlinear mappings. High rates of convergence have been achieved. We
also showed that the presented process (1.7) outperforms other iteration processes and
resulted in very high accuracy via numerical examples.
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