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1 Introduction
Let H be a Hilbert space, A : H → H an operator and B : H → 2H a multivalued operator.
The inclusion problem is to find p∗ ∈ H such that

0 ∈ (A + B)
(
p∗). (1)

If A = 0, then the problem (1) becomes the inclusion problem introduced by Rockafel-
lar [1]. Several nonlinear problems such as optimization problems, variational inequality
problems, DEs [2–6] and economics can be formulated to find a singularity of the prob-
lem (1). The problem (1) is highly considered by many authors who performed dedicated
work to theoretical results as well as iterative procedures; see, for instance [7–10] and the
references therein.

In 1979, Lions and Mercier [11] showed that the problem (1) is equivalent to find fixed
points of the mapping JB

λ (I – λA), that is, p∗ = JB
λ (p∗ – λA(p∗)) ⇔ 0 ∈ (A + B)(p∗), where

JB
λ = (I + λB)–1. Owing to the fixed point formulation, Lions and Mercier [11] presented

the following proximal point method: let p0 ∈ H be an initial point and

pn+1 = JB
λ

(
pn – λA(pn)

)
, ∀n ∈N, (2)

where λ > 0. The proximal point method (2) has been extensively studied with many au-
thors; see, e.g. [8, 12–17]. In particular, Chen and Rockafellar [14] studied convergence
rates of the method (2). Afterwards, Tseng [15] proposed the modification for approximat-
ing singularities of the inclusion problem (1), also known as Tseng’s splitting algorithm.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-021-02676-x
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-021-02676-x&domain=pdf
https://orcid.org/0000-0002-0207-6098
https://orcid.org/0000-0002-7423-8519
https://orcid.org/0000-0002-5463-4581
mailto:k.konrawut@gmail.com
mailto:poom.kumam@mail.kmutt.ac.th


Chaipunya et al. Journal of Inequalities and Applications        (2021) 2021:147 Page 2 of 22

In 2012, Takahashi et al. [16] introduced an iterative scheme to solve the problem (1) by
combining Mann-type and Halpern-type algorithms with the proximal point method. Re-
cently, Lorenz and Pock [13] have defined an iterative algorithm related to the inertial
extrapolation technique.

Over the past year, many significant techniques, concepts of nonlinear and analytical
optimization that fit in Euclidean spaces have been extended to Riemannian manifolds.
From the Riemannian geometry point of view, some non-convex constrained optimiza-
tion problems can be viewed as convex unconstrained optimization problems by the in-
troduction of a suitable Riemannian metric (see, e.g. [18–26] and the references therein).

In recent years, several researchers have extended the relevance of inclusion theory from
linear spaces to the Riemannian context. For instance, Ferreira et al. [27] considered in-
clusion problem (1) in the setting of Hadamard manifolds. Later on, Ansari et al. [28]
introduced Korpelevich’s algorithm to solve the inclusion problem (1) and discussed its
convergence. Moreover, they [28] obtained the relationship between the set of singulari-
ties of inclusion problems and fixed points of the resolvent of maximal monotone vector
fields in Hadamard manifolds. In 2019, Al-Homidan et al. [29] presented Halpern-type
and Mann-type iterative methods for approximating singularities of the inclusion prob-
lem (1) in the framework of Hadamard manifolds. Very recent, Ansari and Babu [30] pre-
sented the proximal point method for finding singularities of the inclusion problem (1) on
Hadamard manifolds. The authors [30] also devoted their results to convex minimization
problems and variational inequality problems.

Inspired by the work mentioned above, the purpose of this paper is to introduce a
new class of inverse-strongly-monotone operators, and then develop a new class of it-
erative algorithms to solve the problem of finding singularities defined by the sum of an
inverse-strongly-monotone vector field and a multivalued maximal monotone vector field
in Hadamard manifolds.

The paper is organized as follows: In the next section, we give some fundamental con-
cepts of geometry and nonlinear analysis in Riemannian manifolds. In Sect. 3, we con-
struct the inclusion problem (1) in the setting of Hadamard manifolds and exhibit the
concept of monotonicity for single-valued as well as for multivalued vector fields. Some
fundamental realized results identified with the monotone vector fields are additionally
mentioned. In Sect. 4, we present the Mann-type splitting method and establish con-
vergence theorems of any sequence generated by the proposed algorithm converges to
a solution of the proposed problem in Hadamard manifolds. In Sect. 5, an application
of this results to solve the convex minimization problems and variational inequality in
Hadamard manifolds were presented. In Sect. 6, we provide a numerical example to sup-
port the Mann-type splitting method.

2 Preliminaries
Let M be a connected finite-dimensional Riemannian manifold, ∇ a Levi-Civita connec-
tion, and χ a smooth curve on M. F is the unique vector field such that ∇χ ′F = 0 for all
t ∈ [a, b], where 0 is the zero section of the tangent bundle TM. Then the parallel transport
Pχ ,χ (b),χ (a) : Tχ (a)M → Tχ (b)M on the tangent bundle TM along χ : [a, b] →R is defined by

Pχ ,χ (b),χ (a)(ν) = F
(
χ (b)

)
, ∀a, b ∈R and ν ∈ Tχ (a)M.
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If χ is a minimizing geodesic joining p to q, then we write Pq,p instead of Pχ ,q,p. Note that,
for every a, b, b1, b2 ∈R, we have

Pχ (b2),χ (b1) ◦ Pχ (b1),χ (a) = Pχ (b2),χ (a) and P–1
χ (b),χ (a) = Pχ (a),χ (b).

Also, Pχ (b),χ (a) is an isometry from Tχ (a)M to Tχ (b)M, that is, the parallel transport pre-
serves the inner product,

〈
Pχ (b),χ (a)(υ), Pχ (b),χ (a)(ν)

〉
χ (b) = 〈υ,ν〉χ (a), (3)

for all υ,ν ∈ Tχ (a)M.
A Riemannian manifold is complete if for any p ∈ M all geodesic emanating from p are

defined for all t ∈R.
Let M be a complete Riemannian manifold and p ∈ M. The exponential map expp :

TpM → M is defined as expp ν = χν(1, p), then, for any value of t, we have expp tν = χν(t, p).
Note that the mapping expp is differentiable on TpM for every p ∈ M. The exponential map
has inverse exp–1

p : M → TpM. Moreover, for any p, q ∈ M, we have d(p, q) = ‖ exp–1
p q‖,

where d(·, ·) is a Riemannian distance.
A complete simply connected Riemannian manifold of nonpositive sectional curvature

is said to be an Hadamard manifold. Throughout, M always denotes a finite-dimensional
Hadamard manifold. The following proposition is outstanding and will be helpful.

Proposition 1 ([31]) Let p ∈ M. The expp : TpM → M is a diffeomorphism, and for any
two points p, q ∈ M there exists a unique normalized geodesic joining p to q, which is can
be expressed by the formula

χ (t) = expp t exp–1
p q, ∀t ∈ [0, 1].

A geodesic triangle 
(p1, p2, p3) of a Riemannian manifold M is a set consisting of three
points p1, p2 and p3, and three minimizing geodesics joining these points.

Proposition 2 ([31]) Let 
(p1, p2, p3) be a geodesic triangle. Then

d2(p1, p2) + d2(p2, p3) – 2
〈
exp–1

p2 p1, exp–1
p2 p3

〉 ≤ d2(p3, p1) (4)

and

d2(p1, p2) ≤ 〈
exp–1

p1 p3, exp–1
p1 p2

〉
+

〈
exp–1

p2 p3, exp–1
p2 p1

〉
. (5)

Moreover, if θ is the angle at p1, then we have

〈
exp–1

p1 p2, exp–1
p1 p3

〉
= d(p2, p1)d(p1, p3) cos θ .

The following relation between geodesic triangles in Riemannian manifolds and trian-
gles in R

2 can be found in [32].
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Lemma 1 ([32]) Let 
(p1, p2, p3) be a geodesic triangle in a Hadamard manifold M. Then
there exists a triangle 
(p1, p2, p3) for 
(p1, p2, p3) such that d(pi, pi+1) = ‖pi – pi+1‖, with
the indices taken modulo 3; it is unique up to an isometry of R2.

The triangle 
(p1, p2, p3) in Lemma 1 is said to be a comparison triangle for 
(p1, p2, p3).
The points p1, p2, p3 are called comparison points to the points p1, p2, p3, respectively.

Lemma 2 Let 
(p1, p2, p3) be a geodesic triangle in M and 
(p1, p2, p3) be its comparison
triangle.

(i) Let θ1, θ2, θ3 (respectively, θ1, θ2, θ3) be the angles of 
(p1, p2, p3) (respectively,

(p1, p2, p3)) at the vertices p1, p2, p3 (respectively, p1, p2, p3). Then

θ1 ≤ θ1, θ2 ≤ θ2 and θ3 ≤ θ3.

(ii) Let q be a point on the geodesic joining p1 to p2 and q its comparison point in the
interval [p1, p2]. If d(p1, q) = ‖p1 – q‖ and d(p2, q) = ‖p2 – q‖, then
d(p3, q) ≤ ‖p3 – q‖.

Definition 1 A subset � in a Hadamard manifold M is called geodesic convex if for all p
and q in �, and for any geodesic χ : [a, b] → M, a, b ∈ R such that p = χ (a) and q = χ (b),
one has χ ((1 – t)a + tb) ∈ � for all t ∈ [0, 1].

Definition 2 A function φ : M → R is called geodesic convex if for any geodesic χ in M,
the composition function φ ◦ χ : [a, b] →R is convex, that is,

(φ ◦ χ )
(
ta + (1 – t)b

) ≤ t(φ ◦ χ )(a) + (1 – t)(φ ◦ χ )(b), a, b ∈R, and ∀t ∈ [0, 1].

Proposition 3 ([31]) Let d : M ×M →R be the distance function. Then d(·, ·) is a geodesic
convex function with respect to the product Riemannian metric, that is, for any pair of
geodesics χ1 : [0, 1] → M and χ2 : [0, 1] → M the following inequality holds:

d
(
χ1(t),χ2(t)

) ≤ (1 – t)d
(
χ1(0),χ2(0)

)
+ td

(
χ1(1),χ2(1)

)
, ∀t ∈ [0, 1].

Particularly, for all q ∈ M, the function d(·, q) : M →R is a geodesic convex function.

We now present the results of parallel transport which will be helpful in the sequel.

Remark 1 ([24]) If p, q ∈ M and ν ∈ TpM, then

〈
ν, – exp–1

p q
〉

=
〈
ν, Pp,q exp–1

q p
〉

=
〈
Pq,pν, exp–1

q p
〉
. (6)

Remark 2 ([33]) Let p, q, r ∈ M and ν ∈ TpM, and using (5) and Remark 1,

〈
ν, exp–1

p q
〉 ≤ 〈

ν, exp–1
p r

〉
+

〈
ν, Pp,r exp–1

r q
〉
. (7)

Let us end the preliminary section with the following results, which are important in
establishing our convergence theorem.
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Definition 3 ([19]) Let � be a nonempty subset of M and {pn} be a sequence in M. Then
{pn} is said to be Fejér monotone with respect to � if for all q ∈ � and n ∈ N,

d(pn+1, q) ≤ d(pn, q).

Lemma 3 ([19]) Let � be a nonempty subset of M and {pn} ⊂ M be a sequence in M such
that {pn} is a Fejér monotone with respect to �. Then the following hold:

(i) for every q ∈ �, {d(pn, q)} converges;
(ii) {pn} is bounded;

(iii) assume that any cluster point of {pn} belongs to �, then {pn} converges to a point
in �.

3 Problem formulations
Given � is a nonempty subset of a Hadamard manifold M. Let 	(�) denote the set of all
single-valued vector fields A : � → TM such that A(p) ∈ TpM, for each p ∈ �. X(�) denote
the set of all multivalued vector fields B : � → 2TM such that B(p) ⊆ TpM for all p ∈ �, and
denote D(B) the domain of B defined by D(B) = {p ∈ � : B(p) �= ∅}.

Let a vector field A ∈ 	(�) and a vector field B ∈ X(�). In this paper, we consider the
following inclusion problem: find p∗ ∈ � such that

0 ∈ (A + B)
(
p∗). (8)

We denote by (A + B)–1(0) the set of singularities of the problem (8).
In this article we work mainly with specific classes of vector fields which are defined in

the following.

Definition 4 ([34, 35]) A vector field A ∈ 	(�) is called
(i) monotone if

〈
A(p), exp–1

p q
〉 ≤ 〈

A(q), – exp–1
q p

〉
, ∀p, q ∈ �;

(ii) β-strongly monotone if there is β > 0 such that

〈
A(p), exp–1

p q
〉
+

〈
A(q), exp–1

q p
〉 ≤ –βd2(p, q), ∀p, q ∈ �;

(iii) K -Lipschitz continuous if there is K > 0 such that

∥
∥Pp,qA(q) – A(p)

∥
∥ ≤ Kd(p, q), ∀p, q ∈ �.

Definition 5 ([36]) A vector field B ∈X(�) is called
(i) monotone if for all p, q ∈ D(B)

〈
υ, exp–1

p q
〉 ≤ 〈

ν, – exp–1
q p

〉
, ∀υ ∈ B(p) and ∀ν ∈ B(q);

(ii) maximal monotone if it is monotone and for all p ∈ � and υ ∈ Tp�, the condition

〈
υ, exp–1

p q
〉 ≤ 〈

ν, – exp–1
q p

〉
, ∀q ∈ D(B) and ∀ν ∈ B(q),

implies that υ ∈ B(p).
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The concept of the resolvent for multivalued vector fields and firmly nonexpansive map-
pings on Hadamard manifolds was introduce by Li et al. [24] and reads as follows.

Definition 6 ([37]) Let a vector field B ∈ X(�) and λ ∈ (0,∞). The λ-resolvent of B is
multivalued map JB

λ : � → 2� defined by

JB
λ (p) :=

{
r ∈ � : p ∈ expr λB(r)

}
, ∀p ∈ �.

Definition 7 ([37]) Let T : � ⊆ M → M be a mapping. Then T is said to be firmly nonex-
pansive if for any two points p, q ∈ �, the function � : [0, 1] → [0, +∞] defined by

�(t) := d
(
expp t exp–1

p T(p), expq t exp–1
q T(q)

)
, ∀t ∈ [0, 1],

is nonincreasing.

Let T : � → � be a nonexpansive mapping, i.e., d(T(p), T(q)) ≤ d(p, q) for all p, q ∈ �.
By Definition 7, it is clear that any firmly nonexpansive mapping T is nonexpansive. In
particular, the monotonicity and nonexpansivity are firmly related.

Theorem 1 ([37]) Let a vector field B ∈X(�) is monotone if and only if JB
λ is single-valued

and firmly nonexpansive.

Let � be a nonempty closed geodesic convex subset of M. The projection operator P�(·) :
M → � is defined for any p ∈ M by P�(p) := {r : d(p, r) ≤ d(p, q),∀q ∈ �}. The projection
operator P� is firmly nonexpansive as described in the following proposition [37].

Proposition 4 ([37]) Let � be a nonempty closed geodesic convex subset of M. Then the
following assertions holds:

(i) P� is single-valued and firmly nonexpansive;
(ii) For all p ∈ M, r = P�(p) if and only if 〈exp–1

r p, exp–1
r q〉 ≤ 0, for all q ∈ �.

Recently, Ansari et al. [28] obtained the relationship between a fixed point of TA,B
λ (see

Lemma 5) and a singularity of the inclusion problem (8) as follows.

Proposition 5 ([28]) For each p ∈ �, the following assertions are equivalent:
(i) p ∈ (A + B)–1(0);

(ii) p = TA,B
λ (p), ∀λ ∈ (0,∞).

Moreover, they [28] also provided the following lemma which is useful in establishing
the convergence result of the inclusion problem (8).

Lemma 4 ([29]) Let � be a nonempty closed subset of a Hadamard manifold M and
B ∈ X(�) a maximal monotone. Let {λn} ⊂ (0,∞) with limn→∞ λn = λ > 0 and a sequence
{pn} ⊂ � with limn→∞ pn = p ∈ � such that limn→∞ JB

λn (pn) = q. Then q = JB
λ (p).

Next, let us introduce the concept of an inverse-strongly-monotone vector field in
Hadamard manifolds.
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Definition 8 A vector A ∈ 	(�) is said to be inverse-strongly-monotone if there exists
α > 0 such that

〈
A(p), exp–1

p q
〉
+

〈
A(q), exp–1

q p
〉 ≤ –α

∥∥A(p) – Pp,qA(q)
∥∥2, ∀p, q ∈ �;

In this case α-inverse-strongly-monotone. The reason for us to provide this definition
is that β-strongly monotone and K-Lipschitz continuous vector field must be β

K2 -inverse-
strongly-monotone. (It is seen from the definition.) Moreover, we can see that if A is α-
inverse-strongly-monotone, then it is 1

α
-Lipschitz continuous.

Indeed, let A be α-inverse-strongly-monotone, then by the definition we have

α
∥∥A(p) – Pp,qA(q)

∥∥2 ≤ –
〈
A(p), exp–1

p q
〉
–

〈
A(q), exp–1

q p
〉

=
〈
Pp,qA(q) – A(p), exp–1

p q
〉

≤ ∥∥Pp,qA(q) – A(p)
∥∥∥∥exp–1

p q
∥∥

=
∥∥Pp,qA(q) – A(p)

∥∥d(p, q),

this implies that

∥∥Pp,qA(q) – A(p)
∥∥ ≤ 1

α
d(p, q),

for all p, q ∈ �, where α > 0. Thus, A is 1
α

-Lipschitz continuous.
Conversely, let A be 1

α
-Lipschitz continuous, then by the definition we have

–α
∥∥Pp,qA(q) – A(p)

∥∥2 ≥ –d(p, q)
∥∥Pp,qA(q) – A(p)

∥∥

= –
∥∥exp–1

p q
∥∥∥∥Pp,qA(q) – A(p)

∥∥

≥ –
〈
Pp,qA(q) – A(p), exp–1

p q
〉

=
〈
A(p), exp–1

p q
〉
+

〈
A(q), exp–1

q p
〉
,

for all p, q ∈ �, where α > 0. Thus, A is α-inverse-strongly-monotone.
Now, we provide some examples of inverse-strongly-monotone vector fields.

Example 1 LetR++
n is the product space ofR++, that is,R++

n = {p = (p1, p2, . . . , pn) ∈R
n : pi >

0, i = 1, . . . , n}. Let M = (R++
n , 〈·, ·〉) with metric defined by 〈υ,ν〉 := υT G(p)ν , for p ∈ R

++
n

and υ,ν ∈ TpR
++
n where G(p) is a diagonal metric defined by G(p) = diag(p–2

1 , p–2
2 , . . . , p–2

n ).
Specially, M = (R++

n , 〈·, ·〉) is a Hadamard manifold with sectional curvature zero (see [18]).
Let A : R++

n → TR
++
n be a single-valued vector field defined by

(
A(p)

)
i := aibip2

i e–bipi + 2cipi ln(pi) + dipi, i = 1, 2, . . . , n,

where ai, bi, di ∈R
+ and ci ∈ R

++ satisfy ci > ai. Hence, A is a K-Lipschitz continuous with
K <

∑n
i=1(ai + 2ci)2; for more details see [22]. Thus, we see that A is 1

K -inverse-strongly-
monotone where K <

∑n
i=1(ai + 2ci)2.
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Example 2 Let n = 1 in Example 1 and A : R++ → TR
++ be a single-valued vector field

defined by

A(p) :=
1

32
p ln(p) + ln(p).

Hence, A is a 33
32 -Lipschitz continuous; for further details see [38]. Thus, we see that A is

32
33 -inverse-strongly-monotone.

We have the following lemma.

Lemma 5 Let A ∈ 	(�) be an α-inverse-strongly-monotone vector field, where α > 0, and
B ∈X(�) a maximal monotone vector field. Then the following properties hold:

(i) for each λ ∈ [0, 2α], the mapping Wλ : � → � defined by Wλ(p) = expp –λA(p) is
nonexpansive;

(ii) for each λ > 0, the mapping TA,B
λ : � → � defined by TA,B

λ (p) = JB
λ (Wλ(p)) is well

defined and (A + B)–1(0) = Fix(TA,B
λ ), where Fix(TA,B

λ ) is the set of fixed points of
TA,B

λ ;
(iii) for each λ ∈ (0, 2α], TA,B

λ is nonexpansive.

Proof Conclusion (ii) follows from Proposition 5 and the maximal monotonicity of B.
In order to prove (i), let 
(p, Wλ(p), Wλ(q)) ⊆ M be a geodesic triangle with vertices p,

Wλ(p) and Wλ(q), and 
(p, Wλ(p), Wλ(q)) ⊆ R
2 is the corresponding comparison trian-

gle. Then we have d(p, Wλ(p)) = ‖p – Wλ(p)‖, d(Wλ(p), Wλ(q)) = ‖Wλ(p) – Wλ(q)‖, and
d(Wλ(q), p) = ‖Wλ(q) – p‖. Again, letting 
(p, q, Wλ(q)) ⊆ M be a geodesic triangle with
vertices p, q and Wλ(q), and 
(p, q, Wλ(q)) ⊆ R

2 be the corresponding comparison trian-
gle, one obtains

d(p, q) = ‖p – q‖, d
(
q, Wλ(q)

)
=

∥∥q – Wλ(q)
∥∥ and d

(
Wλ(q), p

)
=

∥∥Wλ(q) – p
∥∥.

Now,

d2(Wλ(p), Wλ(q)
)

=
∥∥Wλ(p) – Wλ(q)

∥∥2

=
∥∥(

Wλ(p) – p
)

+ (p – q) –
(
Wλ(q) – q

)∥∥2

= ‖p – q‖2 +
∥
∥(

Wλ(p) – p
)

–
(
Wλ(q) – q

)∥∥2

+ 2
〈(

Wλ(p) – p
)

–
(
Wλ(q) – q

)
, p – q

〉

= d2(p, q) +
∥∥(

Wλ(p) – p
)

–
(
Wλ(q) – q

)∥∥2

+ 2
〈
Wλ(p) – p, p – q

〉
+ 2

〈
Wλ(q) – q, q – p

〉

+ 2‖p – q‖2 – 2‖p – q‖2 + 2‖q – p‖2 – 2‖q – p‖2

= d2(p, q) +
∥∥(

Wλ(p) – p
)

–
(
Wλ(q) – q

)∥∥2

+ 2
〈
Wλ(p) – p, p – q

〉
+ 2〈p – q, p – q〉 – 2d2(p, q)

+ 2
〈
Wλ(q) – q, q – p

〉
+ 2〈q – p, q – p〉 – 2d2(q, p)

= d2(p, q) +
∥∥(

Wλ(p) – p
)

–
(
Wλ(q) – q

)∥∥2
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+ 2
〈
Wλ(p) – q, p – q

〉
– 2d2(p, q)

+ 2
〈
Wλ(q) – p, q – p

〉
– 2d2(q, p). (9)

Let θ , θ be the angles at the vertices q, q. By (i) of Lemma 2, we get θ ≤ θ . Besides, by
Proposition 2, we have

〈
Wλ(p) – q, p – q

〉
=

∥
∥Wλ(p) – q

∥
∥‖p – q‖ cos θ

= d
(
Wλ(p), q

)
d(q, p) cos θ

≤ d
(
Wλ(p), q

)
d(q, p) cos θ

=
〈
exp–1

q Wλ(p), exp–1
q p

〉
. (10)

Repeating the argument above gives

〈
Wλ(q) – p, q – p

〉 ≤ 〈
exp–1

p Wλ(q), exp–1
p q

〉
. (11)

Moreover, we have

∥
∥(

Wλ(p) – p
)

–
(
Wλ(q) – q

)∥∥2

=
∥
∥Wλ(p) – p

∥
∥2 – 2

〈
Wλ(p) – p, Wλ(q) – q

〉
+

∥
∥Wλ(q) – q

∥
∥2

= d2(Wλ(p), p
)

– 2
〈
Wλ(p) – p, Wλ(q) – q

〉
+ d2(Wλ(q), q

)

=
∥∥exp–1

p Wλ(p)
∥∥2 – 2

〈
Wλ(p) – p, Wλ(q) – q

〉
+

∥∥exp–1
q Wλ(q)

∥∥2

=
∥
∥–λA(p)

∥
∥2 – 2

〈
Wλ(p) – p, Wλ(q) – q

〉
+

∥
∥–λA(q)

∥
∥2

= λ2∥∥A(p)
∥
∥2 – 2

〈
Wλ(p) – p, Wλ(q) – q

〉
+ λ2∥∥A(q)

∥
∥2. (12)

Consider

–2
〈
Wλ(p) – p, Wλ(q) – q

〉
= –2

〈
Wλ(p) – q + q – p, Wλ(q) – q

〉

= 2
〈
q – Wλ(p), Wλ(q) – q

〉
+ 2

〈
p – q, Wλ(q) – q

〉

= 2
〈
q – Wλ(p), Wλ(q) – q

〉
+ 2

∥
∥q – Wλ(p)

∥
∥2

– 2
∥∥q – Wλ(p)

∥∥2 + 2
〈
p – q, Wλ(q) – q

〉

= 2
〈
q – Wλ(p), Wλ(q) – Wλ(p)

〉
– 2d2(q, Wλ(p)

)

+ 2
〈
p – q, Wλ(q) – q

〉
. (13)

Repeating the argument above yields

〈
q – Wλ(p), Wλ(q) – Wλ(p)

〉 ≤ 〈
exp–1

Wλ(p) q, exp–1
Wλ(p) Wλ(q)

〉
(14)

and

〈
p – q, Wλ(q) – q

〉 ≤ 〈
exp–1

q p, exp–1
q Wλ(q)

〉
. (15)
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Substituting (14) and (15) into (13) gives

–2
〈
Wλ(p) – p, Wλ(q) – q

〉 ≤ 2
〈
exp–1

Wλ(p) q, exp–1
Wλ(p) Wλ(q)

〉
– 2d2(q, Wλ(p)

)

+ 2
〈
exp–1

q p, exp–1
q Wλ(q)

〉
.

Noting Remarks 1 and 2 in the last inequality, we get

–2
〈
Wλ(p) – p, Wλ(q) – q

〉

≤ 2
〈
exp–1

Wλ(p) q, exp–1
Wλ(p) q

〉
+ 2

〈
exp–1

Wλ(p) q, PWλ(p),q exp–1
q Wλ(q)

〉

– 2d2(q, Wλ(p)
)

+ 2
〈
exp–1

q Wλ(p), exp–1
q Wλ(q)

〉

+ 2
〈
Pq,Wλ(p) exp–1

Wλ(p) p, exp–1
q Wλ(q)

〉

= –2
〈
exp–1

q Wλ(p), exp–1
q Wλ(q)

〉
+ 2

〈
exp–1

q Wλ(p), exp–1
q Wλ(q)

〉

– 2
〈
exp–1

p Wλ(p), Pp,q exp–1
q Wλ(q)

〉

= –2
〈
–λA(p), Pp,q – λA(q)

〉

= –2λ2〈A(p), Pp,qA(q)
〉
. (16)

Substituting (16) into (12) yields

∥
∥(

Wλ(p) – p
)

–
(
Wλ(q) – q

)∥∥2 ≤ λ2∥∥A(p)
∥
∥2 – 2λ2〈A(p), Pp,qA(q)

〉
+ λ2∥∥A(q)

∥
∥2

= λ2(∥∥A(p)
∥
∥2 – 2

〈
A(p), Pp,qA(q)

〉
+

∥
∥A(q)

∥
∥2)

= λ2∥∥A(p) – Pp,qA(q)
∥∥2. (17)

Combining (9), (10), (11) and (17), we obtain

d2(Wλ(p), Wλ(q)
) ≤ d2(p, q) + λ2∥∥A(p) – Pp,qA(q)

∥
∥2

+ 2
〈
exp–1

q Wλ(p), exp–1
q p

〉
– 2d2(p, q)

+ 2
〈
exp–1

p Wλ(q), exp–1
p q

〉
– 2d2(q, p). (18)

From Remarks 1 and 2, the last inequality becomes

d2(Wλ(p), Wλ(q)
) ≤ d2(p, q) + λ2∥∥A(p) – Pp,qA(q)

∥
∥2

+ 2
〈
exp–1

q p, exp–1
q p

〉
+ 2

〈
Pq,p exp–1

p Wλ(p), exp–1
q p

〉

– 2d2(p, q) + 2
〈
exp–1

p q, exp–1
p q

〉

+ 2
〈
Pp,q exp–1

q Wλ(q), exp–1
p q

〉
– 2d2(q, p)

= d2(p, q) + λ2∥∥A(p) – Pp,qA(q)
∥
∥2

+ 2
〈
–λA(p), – exp–1

p q
〉
+ 2

〈
–λA(q), – exp–1

q p
〉

= d2(p, q) + λ2∥∥A(p) – Pp,qA(q)
∥
∥2 + 2λ

〈
A(p) exp–1

p q
〉

+ 2λ
〈
A(q), exp–1

q p
〉
.
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So,

d2(Wλ(p), Wλ(q)
) ≤ d2(p, q) + λ2∥∥A(p) – Pp,qA(q)

∥∥2 + 2λ
〈
A(p) exp–1

p q
〉

+ 2λ
〈
A(q), exp–1

q p
〉
. (19)

Since A is an α-inverse-strongly-monotone, we get

〈
A(p), exp–1

p q
〉
+

〈
A(q), + exp–1

q p
〉 ≤ –α

∥
∥A(p) – Pp,qA(q)

∥
∥2. (20)

Substituting (20) into (19), we deduce that

d2(Wλ(p), Wλ(q)
) ≤ d2(p, q) + λ2∥∥A(p) – Pp,qA(q)

∥
∥2 – 2αλ

∥
∥A(p) – Pp,qA(q)

∥
∥2

= d2(p, q) – λ(2α – λ)
∥
∥A(p) – Pp,qA(q)

∥
∥2.

From the fact the λ ∈ [0, 2α]

d
(
Wλ(p), Wλ(q)

) ≤ d(p, q),

hence Wλ(p) is nonexpansive. To prove (iii), notice that B is maximal monotone and so
the resolvent JB

λ is firmly nonexpansive. It follows immediately from (i) that TA,B
λ (x) =

JB
λ (Wλ(x)) is nonexpansive. �

4 Mann-type splitting method
In this section, we present the conditions that guarantee the convergence of the Mann-
type splitting method in Hadamard manifolds and the proof.

Theorem 2 Let � be a nonempty, closed and geodesic convex subset of a Hadamard man-
ifold M. Let A ∈ 	(�) be an α-inverse-strongly-monotone vector field, where α > 0, and
B ∈X(�) a maximal monotone vector field with (A + B)–1(0) �= ∅. Choose p0 ∈ � and define
{qn} and {pn} as follows:

qn = JB
λn

(
exppn

(
–λnA(pn)

))
,

pn+1 = exppn (1 – γn) exp–1
pn qn,

(21)

for all n ∈N, where {γn} is a sequence in (0, 1) and {λn} is a real positive sequence satisfying
the following conditions:

(i) 0 < γ1 ≤ γn ≤ γ2 < 1, ∀n ∈N,
(ii) 0 < λ̂ ≤ λn ≤ 2α < ∞, ∀n ∈N.

Then {pn} is convergent to a solution of the inclusion problem (8).

Proof Let x ∈ (A + B)–1(0). From (ii) of Lemma 5, we have x = TA,B
λn (x) = JB

λ (Wλ(x)). By the
nonexpansiveness of JB

λn and Wλn , gives

d(qn, x) = d
(
JB
λn

(
exppn

(
–λnA(pn)

))
, JB

λn

(
expx

(
–λnA(x)

)))

≤ d
(
exppn

(
–λnA(pn)

)
, expx

(
–λnA(x)

))
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≤ d(pn, x), ∀n ∈N. (22)

Let χ : [0, 1] → M be geodesic joining pn to qn. Thus, (21) can be written as pn+1 = χ (1 –
γn), respectively. By using the geodesic convexity of Riemannian distance, we have

d(pn+1, x) = d
(
χ (1 – γn), x

)

≤ γnd(pn, x) + (1 – γn)d(qn, x)

≤ γnd(pn, x) + (1 – γn)d(pn, x)

= d(pn, x).

Hence, {pn} is Fejér monotone with respect to (A + B)–1(0). By (ii) of Lemma 3, {pn} is
bounded. Hence, there exists a subsequence {pnk } of {pn} which converges to a cluster
point y of {pn}. Next, we show that

lim
n→∞ d(pn, qn) = 0.

Fix n ∈N and for x ∈ (A + B)–1(0). Let 
(pn, qn, x) ⊆ M be a geodesic triangle with vertices
pn, qn and x, and 
(pn, qn, x) ⊆R

2 be the corresponding comparison triangle, one obtains

d(pn, x) = ‖pn – x‖, d(qn, x) = ‖qn – x‖, and d(pn, qn) = ‖pn – qn‖.

Let pn+1 = γnpn + (1 – γn)qn be the comparison point of pn+1. Using (ii) of Lemma 2 and
(22),

d2(pn+1, x) ≤ ‖pn+1 – x‖2

=
∥∥γnpn + (1 – γn)qn – x

∥∥2

= γn‖pn – x‖2 + (1 – γn)‖qn – x‖2 – γn(1 – γn)‖pn – qn‖2

= γnd2(pn, x) + (1 – γn)d2(qn, x) – γn(1 – γn)d2(pn, qn)

≤ γnd2(pn, x) + (1 – γn)d2(pn, x) – γn(1 – γn)d2(pn, qn)

= d2(pn, x) – γn(1 – γn)d2(pn, qn), ∀n ∈N,

which implies that

γn(1 – γn)d2(pn, qn) ≤ d2(pn, x) – d2(pn+1, x), ∀n ∈N. (23)

From the fact that 0 < γ1 ≤ γn ≤ γ2 < 1, we have γ1(1 – γ2) ≤ γn(1 – γn) for all n ∈ N.
Summing (23) from i = 0 to i = n, we obtain

γ1(1 – γ2)
n∑

i=0

d2(pi, qi) ≤ d2(p0, x) – d2(pn+1, x), ∀n ∈ N.

Letting n → ∞, we have

γ1(1 – γ2)
∞∑

i=0

d2(pi, qi) ≤ d2(p0, x) < ∞.
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Hence,

lim
n→∞ d(pn, qn) = 0. (24)

Next, we prove y ∈ (A + B)–1(0). Since λ̂ ≤ λn ≤ 2α, we may assume without the loss of
generality that limk→∞ λnk = λ for some λ ∈ [λ̂, 2α]. Recall that qn = JB

λn (exppn (–λnA(pn))).
Then, by (24) and Lemma 4, we obtain limk→∞ qnk = y and that y = JB

λ (expy(–λA(y))). It
indicates that y ∈ (A + B)–1(0) by applying (ii) of Lemma 5. By (iii) of Lemma 3, the se-
quence {pn} converges to a singularity of the inclusion problem (8). Therefore, the proof
is completed. �

In the order to present an example in support of our main theorem, we need the follow-
ing results.

Let M be a Riemannian manifold and φ : M → R a differentiable function. The direc-
tional derivative of φ at p in direction ν ∈ TpM is

φ′(p;ν) := lim
t→0+

φ(expp tν) – φ(p)
t

.

The gradient of φ at p ∈ M [39] is given by 〈gradφ(p),ν〉 := φ′(p;ν) for all ν ∈ TpM. If
φ : M→R is a twice differentiable function, then the Hessian of φ at p ∈M [40], denoted
by Hessφ, is defined by

Hessφ(p) := ∇ν

(
gradφ(p)

)
, ∀ν ∈ TpM,

where ∇ is the Riemannian connection of M.
The norm of the Hessian, hess φ, at p ∈M is given by

∥∥hessφ(p)
∥∥ := sup

{∥∥hessφ(p)ν
∥∥ : ν ∈ TpM,‖ν‖ = 1

}
. (25)

Proposition 6 ([20]) Let M be an Hadamard manifold and φ : M → R a twice continu-
ously differentiable function. If Hessφ is bounded, then the gradient vector field gradφ is
K-Lipschitz continuous.

Definition 9 ([31]) Let ϕ : � → R be a geodesic convex function. Take p ∈ �, a vector
ν ∈ TpM is said to be a subgradient of ϕ at p if and only if

ϕ(q) ≥ ϕ(p) +
〈
ν, exp–1

p q
〉
, ∀q ∈ �. (26)

The set of all subgradients of ϕ, denoted by ∂ϕ(p) is said to be the subdifferential of ϕ at
p, which is a closed geodesic convex (possibly empty) set.

Lemma 6 ([24]) Let ϕ : � → R ∪ {+∞} be a proper, lower semicontinuous and geodesic
convex function and D(ϕ) = �. Then the subdifferential ∂ϕ of ϕ is a maximal monotone
vector field.

Next, we present an example in the cone of the positive semidefinite matrices with other
metrics.
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Example 3 Let Sn be the set of symmetric matrices, Sn
+ be the cone of the symmetric posi-

tive semidefinite matrices and S
n
++ be the cone of the symmetric positive-definite matrices

both n × n. X, Y ∈ S
n
+, X � X (or X � Y ) means that Y – X ∈ S

n
+ and X � Y (or X ≺ Y )

means that Y – X ∈ S
n
++.

Following Rothaus [41], let M := (Sn
++, 〈·, ·〉) be the Riemannian manifold endowed with

the Riemannian metric defined by

〈U , V 〉 = Tr
(
VX–1UX–1), X ∈ M and U , V ∈ TXM, (27)

where Tr(X) denotes the trace of matrix X ∈ S
n and TXM ≈ S

n, with the corresponding
norm denoted by ‖ · ‖. The gradient and the Hessian of a twice differentiable function
φ : Sn

++ →R are given by

gradφ(X) = Xφ′(X)X, (28)

hessφ(X)V = Xφ′′(X)VX +
1
2
[
Vφ′(X)X + Xφ′(X)V

]
, (29)

where V ∈ TXM, and φ′(X) and φ′′(X) are the Euclidian gradient and Hessian of φ at X,
respectively.

In fact, M is a Hadamard manifold with curvature is not identically zero; see [42, Theo-
rem 1.2. p. 325] for further details. The unique geodesic segment connecting any X, Y ∈ M
is given by

χ (t) = X1/2(X–1/2YX–1/2)tX1/2, t ∈ [0, 1];

see, for example [43]. From the last equation

χ ′(0) = X1/2 ln
(
X–1/2YX–1/2)X1/2.

Thus, for all X ∈ M, exp–1
X : M → TXM and expX : TXM → M are defined, respectively, by

exp–1
X Y = X1/2 ln

(
X–1/2YX–1/2)X1/2, expX V = X1/2e(X–1/2VX–1/2)X1/2. (30)

Now, since the Riemannian distance d is given by d(X, Y ) = ‖ exp–1
X Y‖, from (27), along

with first expression in (30), we have

d2(X, Y ) = Tr
(
ln2 X–1/2YX–1/2) =

n∑

i=1

ln2 ηi
(
X–1/2YX–1/2), (31)

where ηi(X–1/2YX–1/2) denotes the ith eigenvalue of the symmetric matrix X–1/2YX–1/2.
Following [22], let the function φ : Sn

++ →R defined by

φ(X) = a ln
(
det(X)

)2, (32)

where a > 0. The Euclidian gradient and Hessian of φ are given, respectively, by

φ′(X) =
[
2a ln

(
det(X)

)]
X–1, (33)



Chaipunya et al. Journal of Inequalities and Applications        (2021) 2021:147 Page 15 of 22

φ′′(X)V = 2a Tr
(
X–1V

)
X–1 –

[
2a ln

(
det(X)

)]
X–1VX–1, (34)

where X ∈ S
n
++ and V ∈ S

n.
By combining (28), (29), (33) and (34), we obtain, after some calculations,

gradφ(X) = 2a ln
(
det(X)

)
X, (35)

hessφ(X)V = 2a Tr
(
X–1V

)
X, (36)

for all X ∈ M and V ∈ TXM. We further have 〈hessφ(X)V , V 〉 = 2a Tr(X–1V )2 ≥ 0. Thus,
φ is geodesic convex in M. Moreover, (27) together with (36) gives ‖hessφ(X)V‖ =
2a Tr(X–1V ) for all X ∈ M and V ∈ TXM. If we assume that ‖V‖2 = Tr(VX–1VX–1) = 1,
then Tr(X–1V ) ≤ √

n. Hence,

∥∥hessφ(X)V
∥∥ ≤ 2a

√
n, X ∈ M, V ∈ TXM,‖V‖ = 1.

Therefore, (25) and Proposition 6 imply that gradφ is Lipschitz with constant K ≤ 2a
√

n.
We also have gradφ is 1

K -inverse-strongly-monotone vector field with constant K ≤ 2a
√

n.
Let � = {X ∈ S

n
++ : ηmin(X) ≥ 1}, where ηmin(X) denotes the minimum eigenvalue of the

matrix X, be a nonempty, closed and geodesic convex subset of M and ϕ : � →R∪ {+∞}
be a proper, lower semicontinuous and geodesic convex defined by

ϕ(X) = d2(X, I) =
n∑

i=1

ln2 ηi
(
X–1),

where ηi(X–1) is the ith eigenvalue of the matrix X–1. One can see that I is a minimizer
of ϕ, where I denotes the identity matrix. By Definition 9, the subdifferential of ϕ at X is
defined by

∂ϕ(X) =

{

U ∈ TXM
∣∣
∣

n∑

i=1

ln2 ηi
(
Y –1) –

n∑

i=1

ln2 ηi
(
X–1)

≥ Tr
(
X1/2 ln

(
X–1/2YX–1/2)X1/2X–1UX–1)

}

, ∀Y ∈ �.

The subdifferential ∂ϕ of ϕ is a maximal monotone vector field, according to Lemma 6.
Moreover, we have

J∂ϕ
λ (X) = arg min

Y∈�

{
ϕ(Y ) +

1
2λ

d2(Y , X)
}

, ∀λ > 0.

Since the minimizer of ϕ is I , it is easy to see that 0 ∈ ∂ϕ(I).
Let A : � → S

n is a 1
K -inverse-strongly-monotone vector field defined by

A(X) = 2(ln det X)X,

where K ≤ 2
√

n, and B : � → 2S
n be a maximal monotone multivalued field defined by

B(X) = ∂ϕ(X).
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We see that (A + B)–1(0) = {I}. Choose initial point X0 ∈ �, then Theorem 2 is applicable
leading us to conclude that any sequence generated by Eq. (21) converges to a singularity
of the inclusion problem (8).

Remark 3 It is worth noting that φ is non-convex with non-Lipschitz continuous gradient
on S

n
++ endowed with the Euclidean metric. Thus we cannot apply existence results, e.g.

[8, 16], to solve the corresponding inclusion problem in the Euclidean setting.

5 Applications
In this section, we shall utilize the Mann-type splitting method presented in the paper to
study the convex minimization problems and variational inequality problems.

5.1 Convex minimization problems
Let φ,ϕ : � →R∪{+∞} are proper, lower semicontinuous and geodesic convex functions
such that φ is differentiable. We consider the problem of finding p∗ ∈ � such that

φ
(
p∗) + ϕ

(
p∗) = min

p∈�

{
φ(p) + ϕ(p)

}
. (37)

The problem is said to be a convex minimization problem. We denote S by the set of min-
imizers of the problem (37), that is, S := {p ∈ � : φ(p) + ϕ(p) ≤ φ(q) + ϕ(q),∀q ∈ �}. It is to
see that the problem (37) is equivalent to the following inclusion problem: find p ∈ � such
that 0 ∈ grad f (p) + ∂g(p), that is,

p ∈ S ⇐⇒ 0 ∈ gradφ(p) + ∂ϕ(p). (38)

For further details see [30].
If φ : � → R ∪ {+∞} is a proper, twice continuously differentiable and geodesic convex

function such that Hessφ is bounded, then, by Proposition 6, gradφ is K-Lipschitz con-
tinuous vector field. Then gradφ is 1

K -inverse-strongly-monotone vector field. Moreover,
from Lemma 6, ∂ϕ is a maximal monotone vector field. By replacing A and B by gradφ

and ∂ϕ, respectively, in Theorem 2, we get the following result for convex minimization
problem (37).

Theorem 3 Suppose that S �= ∅. Let � be a nonempty, closed and geodesic convex subset of
a Hadamard manifold M. Let φ : � → R ∪ {+∞} be a proper, differentiable and geodesic
convex function such that Hessφ is bounded, ϕ : � → R ∪ {+∞} a proper, lower semicon-
tinuous and geodesic convex function such that D(ϕ) = �. Choose p0 ∈ � and define {pn} as
follows:

qn = J∂ϕ
λn

(
exppn

(
–λn gradφ(pn)

))
,

pn+1 = exppn (1 – γn) exp–1
pn qn,

for all n ∈N, where {γn} is a sequence in (0, 1) and {λn} is a real positive sequence satisfying
the following conditions:

(i) 0 < γ1 ≤ γn ≤ γ2 < 1, ∀n ∈N,
(ii) 0 < λ̂ ≤ λn ≤ 2α < ∞, ∀n ∈N.

Then {pn} is convergent to a solution of the convex minimization problem (37).
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Proof By replacing A and B by gradφ and ∂ϕ, respectively, in Theorem 2, we get the re-
quired result. �

5.2 Variational inequalities
A monotone variational inequality problem (VIP) on a Hadamard manifold was initially
studied by Németh [44]. Then the problem is to find p∗ ∈ � such that

〈
V

(
p∗), exp–1

p∗ q
〉 ≥ 0, ∀q ∈ �, (39)

where V : � → TM is a single-valued vector field. VIP(V ,�) denotes the set of solutions
of the problem (39). Let N�(p) denote the normal cone of the set � at p ∈ �:

N�(p) :=
{
ν ∈ TpM :

〈
ν, exp–1

p q
〉 ≤ 0,∀q ∈ �

}
.

Let δ� be the indicator function of �, that is,

δ�(p) =

⎧
⎨

⎩
0, if p ∈ �,

+∞, if p /∈ �.
(40)

It is easy to see that δ� is a proper, lower semicontinuous and geodesic convex function
on a Hadamard manifold M. By Lemma 6, ∂δ� is a maximal monotone multivalued vector
field.

From (40), δ�(p) = 0 for all p ∈ �, and therefore, from (26), we get

∂δ�(p) =
{
ν ∈ TpM :

〈
ν, exp–1

p q
〉 ≤ δ�(q) – δ�(p)

}
,

=
{
ν ∈ TpM :

〈
ν, exp–1

p q
〉 ≤ 0

}
. (41)

Thus, ∂δ�(p) = N�(p). For every p ∈ � and V ∈ 	(�), using (41),

p ∈ (V + ∂δ�)–1(0) ⇐⇒ –V (p) ∈ ∂δ�(p)

⇐⇒ 〈
–V (p), exp–1

p q
〉 ≤ 0, ∀q ∈ �

⇐⇒ p ∈ VIP(V ,�).

The resolvent operator J∂δ�
λ of ∂δ� for λ > 0 is given by

J∂δ�
λ (p) :=

{
r ∈ M : p ∈ expr λ∂δ�(r)

}
, ∀p ∈ M.

For every p ∈ �, we get

w = J∂δ�
λ (p) ⇐⇒ p ∈ expw λ∂δ�(w)

⇐⇒ 1
λ

exp–1
w p ∈ ∂δ�(w) = N�(w)

⇐⇒ 1
λ

〈
exp–1

w p, exp–1
w q

〉 ≤ 0, ∀q ∈ �

⇐⇒ P�(p) = w.
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We replace B and Jλ by ∂δ� and P� , respectively, in Theorem 2, then we get the following
result for variational inequality problem (39).

Theorem 4 Let � be a nonempty, closed and geodesic convex subset of a Hadamard mani-
fold M. Let V ∈ 	(�) be an α-inverse-strongly-monotone vector field, where α > 0 such that
VIP(V ,�) �= ∅. Choose p0 ∈ � and define {pn} as follows:

qn = P�

(
exppn

(
–λnA(pn)

))
,

pn+1 = exppn (1 – γn) exp–1
pn qn,

for all n ∈N, where {γn} is a sequence in (0, 1) and {λn} is a real positive sequence satisfying
the following conditions:

(i) 0 < γ1 ≤ γn ≤ γ2 < 1, ∀n ∈N,
(ii) 0 < λ̂ ≤ λn ≤ 2α < ∞, ∀n ∈N.

Then {pn} is convergent to a solution of the variational inequality problem (39).

Proof By replacing B by ∂δ� , in Theorem 2, we get the required result. �

6 Numerical example
We present an illustrative example in Hadamard manifolds to show the applicability of the
Mann-type splitting method in this section. All the program are written in Matlab R2016b
and computed on PC Intel(R) Core(TM) i5 @1.80 GHz, Ram 8.00 GB.

Let M := R
++ = {p ∈ R : p > 0} and R

+ = {p ∈ R : p ≥ 0}. Following [20, Example 1], let
(R++, 〈·, ·〉) be the Riemannian manifold, and 〈·, ·〉 the Riemannian metric defined by

〈υ,ν〉 :=
1
p2 υν, ∀υ,ν ∈ TpM.

The Riemannian distance d : M × M →R
+ is defined by

d(p, q) :=
∣
∣∣
∣ln

p
q

∣
∣∣
∣, ∀p, q ∈ M;

for further details see [39]. Then (R++, 〈·, ·〉) is a Hadamard manifold and the unique
geodesic χ : R → M starting from χ (0) = p with ν = χ ′(0) ∈ TpM is defined by χ (t) :=
pe(νt/p). Therefore,

expp tν = pe(νt/p).

The inverse of exponential map is defined by

exp–1
p q = p ln

q
p

.

Example 4 Let � = [1, +∞) be a closed and geodesic convex subset of R++ and A : � →R

a single-valued vector field defined by

A(p) := p ln(p), ∀p ∈ �.
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This is 1-Lipschitz continuous vector field, that is,

∥
∥Pp,qA(q) – A(p)

∥
∥ ≤ d(p, q),

for all p, q ∈ �; see [30] for more details. Hence, A is a 1-inverse strongly monotone vector
field. Indeed, let x, y ∈ �, we obtain

〈
A(p), exp–1

p q
〉
+

〈
A(q), exp–1

q p
〉

=
1
p2 (p ln p)

(
p ln

(
q
p

))
+

1
q2 (q ln q)

(
q ln

(
p
q

))

= ln p ln

(
q
p

)
+ ln q ln

(
p
q

)

= – ln2
(

p
q

)

= –d2(p, q)

≤ –
∥
∥Pp,qA(q) – A(p)

∥
∥2.

Let ϕ : � → R∪ {+∞} be a proper, lower semicontinuous and geodesic convex function
defined by

ϕ(p) := d(1, p), ∀p ∈ �.

From Definition 9, we have

∂ϕ(p) =
{
υ ∈ TpM

∣
∣∣ d(1, q) – d(1, p) ≥ υ

p
ln

(
p
q

)}
, for all q ∈ �.

Lemma 6 shows that the subdifferential ∂ϕ of ϕ is a maximal monotone vector field. Now,
consider the maximal monotone vector field B by ∂ϕ. Moreover, we have

J∂ϕ
λ (p) = arg min

q∈�

{
ϕ(q) +

1
2λ

d2(q, p)
}

, ∀λ > 0.

It is clear that {1} = (A + B)–1(0).
Setting γn = λn = 1

2 + 1
n+4 , so the sequences {γn} and {λn} satisfied the conditions (i) and

(ii) of Theorem 2. With initial point x0 = 2 and x0 = 3, we show the numerical behaviour
of Mann-type splitting method in Table 1 and Fig. 1.

7 Concluding remarks
The problem of finding singularities of inclusion problems, which is defined by the sum of
an inverse-strongly-monotone vector field and a multivalued maximal monotone vector
field on a Hadamard manifold, is examined in this paper. A Mann-type splitting method
is proposed for solving this problem. Under suitable conditions, the convergence theorem
for sequences generated by the presented methods was established. We gave an exam-
ple that demonstrates the usefulness of the Mann splitting method’s generalization from
Hilbert spaces to Hadamard manifolds, in the sense that it must help in the explanation of
some previously unconsidered situations. Furthermore, our algorithm was used to solve
convex minimization problems and variational inequalities.



Chaipunya et al. Journal of Inequalities and Applications        (2021) 2021:147 Page 20 of 22

Table 1 Numerical results of Mann-type splitting method

Iteration No. pn with initial point p0 = 2 pn with initial point p0 = 3

0 2 3
1 1.6245 2.1577
2 1.3819 1.6698
3 1.2311 1.3904
4 1.1388 1.2287
5 1.0827 1.1341
6 1.0488 1.0785
7 1.0286 1.0456
8 1.0166 1.0264
9 1.0095 1.0151
10 1.0054 1.0086
11 1.0031 1.0049
12 1.0017 1.0027
13 1.0010 1.0015
14 1.0005 1.0008
15 1.0003 1.0005

Figure 1 Iterative process of Mann-type splitting method
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