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Abstract
In this work, we introduce a new accelerated algorithm using a linesearch technique
for solving convex minimization problems in the form of a summation of two lower
semicontinuous convex functions. A weak convergence of the proposed algorithm is
given without assuming the Lipschitz continuity on the gradient of the objective
function. Moreover, the convexity of this algorithm is also analyzed. Some numerical
experiments in machine learning are also discussed, namely regression and
classification problems. Furthermore, in our experiments, we evaluate the convergent
behavior of this new algorithm, then compare it with various algorithms mentioned
in the literature. It is found that our algorithm performs better than the others.
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1 Introduction
In this paper, we study the convex minimization problem in the form of a summation of
two convex functions. It can be expressed as follows:

min
x∈H

{
f (x) + g(x)

}
, (1)

where f , g : H → R ∪ {+∞} are proper, lower semicontinuous convex functions and H
is a Hilbert space. This problem has been analyzed excessively due to its applications in
major subjects such as physics, economics, engineering, statistics, and computer science.
Some examples of the applications are compressed sensing, signal and image processing,
medical image reconstruction, automatic control systems, and machine learning tasks in
the form of data prediction and data classification. As seen in [1–7] and the references
therein, these problems can be formulated as (1).
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In the case that f is differentiable, then x∗ solves (1) if and only if

x∗ = proxαg(I – α�f )
(
x∗), (2)

where α > 0, proxαg(x∗) = J∂g
α (x∗) = (I – α∂g)–1(x∗), ∂g is a subdifferential of g , and I is an

identity mapping. One of the most famous algorithms for solving (1) is forward–backward
algorithm [8] which is defined in the following form:

xn+1 = proxαng(I – αn�f )(xn) for all n ∈ N, (3)

where αn is a suitable step size. This method has been studied and improved by many
works, see [2, 3, 9, 10] for examples. Most of these works assume that �f is L-Lipschitz
continuous, which might be challenging to verify in general cases. So, in this work, we
turn our attention to some iterative methods for which the Lipschitz continuity of �f is
not required.

In 2016, Cruz and Nghia [11] replaced the L-Lipschitz continuity of �f with the follow-
ing conditions.

A1. f , g are proper lower semicontinuous convex functions with dom g ⊆ dom f ,
A2. f is differentiable on an open set containing dom g , and �f is uniformly continuous

on any bounded subset of dom g and maps any bounded subset of dom g to a
bounded set of H .

Moreover, the authors introduced a linesearch technique as follows:

Linesearch 1 Given x ∈ dom g , σ > 0, θ ∈ (0, 1), and δ > 0.
Input Set α = σ .
While α‖�f (proxαg(x – α�f (x))) – �f (x)‖ > δ‖proxαg(x – α�f (x)) – x‖
Set α = θα

End While
Output α.

They asserted that Linesearch 1 terminates after a finite number of iterations and intro-
duced the following algorithm:

Algorithm 1 Given x1 ∈ dom g , σ > 0, θ ∈ (0, 1), and δ ∈ (0, 1
2 ). For n ∈ N,

xn+1 = proxγng(I – γn�f )(xn), (4)

where γn := Linesearch 1(xn,σ , θ , δ). They proved weak convergence theorem of (4) under
assumptions A1 and A2.

Following the idea of Cruz and Nghia, very recently, Kankam et al. [4] introduced a new
linesearch technique as follows.

Linesearch 2 Given x ∈ dom g , σ > 0, θ ∈ (0, 1), and δ > 0. Define

L(x,α) = proxαg
(
x – α�f (x)

)
and

S(x,α) = proxαg
(
L(x,α) – α�f

(
L(x,α)

))
.
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Input Set α = σ .
While

α max
{∥∥�f

(
S(x,α)

)
– �f

(
L(x,α)

)∥∥,
∥∥�f

(
L(x,α)

)
– �f (x)

∥∥}

> δ
(∥∥S(x,α) – L(x,α)

∥∥ +
∥∥L(x,α) – x

∥∥)

Set α = θα

End While
Output α.

They showed that Linesearch 2 terminates at finitely many iterations, then established
the following two-step algorithm.

Algorithm 2 Given x1 ∈ dom g , σ > 0, θ ∈ (0, 1), and δ ∈ (0, 1
8 ). For n ∈ N,

⎧
⎨

⎩
yn = proxγng(xn – γn�f (xn)),

xn+1 = proxγng(yn – γn�f (yn)),
(5)

where γn := Linesearch 2(xn,σ , θ , δ). They proved that this algorithm converges weakly to
a solution of (1) under assumptions A1 and A2.

Recently, many authors employed the inertial technique in order to accelerate their al-
gorithms. It was first introduced by Polyak [12] for solving smooth convex minimization
problems. After that many inertial-type algorithms have been introduced and analyzed.
For instance, in 2001, Alvarez and Attouch [13] introduced the idea of an inertial-proximal
operator to solve the inclusion problem of a maximal monotone operator A. It was defined
as follows:

xn+1 = JA
λn

(
xn + θn(xn – xn–1)

)
for all n ∈N,

where x0, x1 ∈ H are given as starting points, and {λn} and {θn} are nonnegative real se-
quences. In this algorithm, θn(xn – xn–1) is regarded as an inertial term.

In 2019, Attouch and Cabot [14] analyzed the convergence rate of an algorithm called
RIPA defined by

⎧
⎨

⎩
yn = xn + θn(xn – xn–1),

xn+1 = (1 – ρn)yn + ρnJA
μn (yn),

where A is a maximal monotone operator. Under mild restrictions of control parameters,
they showed that RIPA gives fast convergence rate.

Inertial-type algorithms have been proposed and studied widely by many authors, see
[15–22], which showed that inertial step improves the convergence rate of algorithms.

There are several approaches to solving (1), many authors have proposed algorithms for
solving inclusion problems. For instance, Moudafi [23] proposed an algorithm for solving
inclusion problems in Hilbert spaces. Cholamjiak and Shehu [24] introduced an algorithm
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for such problems in Banach space, we refer to these works for more comprehensive dis-
cussion on inclusion problems and related problems. Under the assumption that �f is
Lipschitz continuous, algorithms proposed in [23, 24] can be used to solve (1).

Another approach to solving (1) is solving a proximal split feasibility problem. This prob-
lem can be reduced to convex minimization (1). Many authors have introduced algorithms
for solving this problem, we refer to Shehu and Iyiola [25] for more in-depth discussion
on this topic.

Inspired by all the works mentioned in the literature, we aim to introduce a new two-
step algorithm which combines a linesearch technique with an inertial step to improve
its performance. We obtain a weak convergence of the proposed algorithm to a solution
of (1) without assuming �f to be L-Lipschitz continuous. Moreover, the complexity of
this algorithm is also analyzed. Then, we apply our algorithm to solving regression and
classification problems. Furthermore, we compare the performance of the proposed with
other linesearch algorithms, namely Algorithms 1 and 2.

This work is organized as follows: In Sect. 2, we recall some definitions and lemmas
which will be used in the main results. In Sect. 3, a new algorithm is introduced. We
show that the proposed algorithm converges weakly to a solution of (1) as well as ana-
lyze its complexity. In Sect. 4, experiments on data classification and regression problems
are conducted. Then, we evaluate the performance of the proposed algorithm and other
algorithms using various evaluation tools. In the last section, Sect. 5, the conclusion of
this research is included.

2 Preliminaries
We recall some definitions and lemmas which are crucial to the main results in this section.

We denote xn → x and xn ⇀ x as strong and weak convergence of {xn} to x, respectively.
Let h : H → R be a proper lower semicontinuous convex function and dom h = {x ∈ H :
f (x) < +∞}.

For any x ∈ H , a subdifferential of h at x is defined by

∂h(x) :=
{

u ∈ H : 〈u, y – x〉 + h(x) ≤ h(y), y ∈ H
}

.

A proximal operator proxαh : H → dom h is defined by

proxαh(x) = (I + α∂h)–1(x),

where I is an identity operator and α > 0. This operator is single-valued with full domain,
and the following holds:

x – proxαh(x)
α

∈ ∂h
(
proxαh(x)

)
for all x ∈ H and α > 0. (6)

Next, we recall some crucial lemmas for this work.

Lemma 1 ([26]) Let ∂h be a subdifferential operator, then ∂h is maximal monotone. More-
over, its graph, Gph(∂h) := {(x, y) ∈ H ×H : y ∈ ∂h(x)}, is demiclosed. In other words, for any
sequence (xn, yn) ⊆ Gph(∂h) such that {xn} converges weakly to x and {yn} converges strongly
to y, then (x, y) ∈ Gph(∂h).
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Lemma 2 ([27]) Let f , g : H → R be proper lower semicontinuous convex functions with
dom g ⊆ dom f and J(x,β) = proxβg(x – β�f (x)). Then, for any x ∈ dom g and β2 ≥ β1 > 0,
we have

β2

β1

∥∥x – J(x,β1)
∥∥≥ ∥∥x – J(x,β2)

∥∥≥ ∥∥x – J(x,β1)
∥∥.

Lemma 3 ([28]) Let H be a real Hilbert space. Then, for all a, b ∈ H and ζ ∈ [0, 1], the
following hold:

(i) ‖a ± b‖2 = ‖a‖2 ± 2〈a, b〉 + ‖b‖2,
(ii) ‖ζa + (1 – ζ )b‖2 = ζ‖a‖2 + (1 – ζ )‖b‖2 – ζ (1 – ζ )‖a – b‖2,
(iii) ‖a + b‖2 ≤ ‖a‖2 + 2〈b, a + b〉.

Lemma 4 ([3]) Let {an} and {βn} be sequences of nonnegative real numbers such that

an+1 ≤ (1 + βn)an + βnan–1 for all n ∈N.

Then the following holds:

an+1 ≤ K ·
n∏

j=1

(1 + 2βj), where K = max{a1, a2}.

Moreover, if
∑+∞

n=1 βn < +∞, then {an} is bounded.

Lemma 5 ([28]) Let {an}, {bn}, and {δn} be sequences of nonnegative real numbers such
that

an+1 ≤ (1 + δn)an + bn for all n ∈N.

If
∑+∞

n=1 δn < +∞ and
∑+∞

n=1 bn < +∞, then limn→+∞ an exists.

Lemma 6 ([29], Opial) Let H be a Hilbert space and {xn} be a sequence in H such that
there exists a nonempty subset 
 of H satisfying the following:

(i) for any x∗ ∈ 
, limn→+∞ ‖xn – x∗‖ exists;
(ii) every weak-cluster point of {xn} belongs to 
.

Then {xn} converges weakly to an element in 
.

Throughout this work, we suppose that a solution of (1) exists and the set of these solu-
tions is denoted by S∗.

3 Main results
In this section, we propose an accelerated algorithm by employing a linesearch technique
(Linesearch 1) together with the inertial technique for solving (1) and prove its weak con-
vergence. Our algorithm is defined as follows.
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Algorithm 3 Given x0, x1 ∈ dom g , σ > 0, θ ∈ (0, 1), δ ∈ (0, 1
2 ), αn ∈ [0, 1], and βn ≥ 0. For

n ∈N,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̂n = xn + βn(xn – xn–1),

yn = Pdom g x̂n,

zn = proxγng(yn – γn�f (yn)),

xn+1 = (1 – αn)zn + αnproxρng(zn – ρn�f (zn)),

where γn := Linesearch 1(yn,σ , θ , δ) and ρn := Linesearch 1(zn,γn, θ , δ), and Pdom g is a
metric projection onto dom g .

Theorem 7 Let H be a real Hilbert space, f : H → R ∪ {+∞} and g : H → R ∪ {+∞} be
proper lower semicontinuous convex functions satisfying A1 and A2. In addition, suppose
that dom g is closed and the following is satisfied, for all n ∈N:

B1.
∑+∞

n=1 βn < +∞.
Then a sequence {xn} generated by Algorithm 3 converges weakly to a point in S∗. In other
words, {xn} converges weakly to a solution of (1).

Proof For the sake of convenience, we denote wn = proxρng(zn – ρn�f (zn)), and let x∗ ∈ S∗.
For any x ∈ dom g and n ∈N, we first prove the following:

‖yn – x‖2 – ‖zn – x‖2 ≥ 2γn[(f + g)(zn) – (f + g)(x)] + (1 – 2δ)‖zn – yn‖2, (7)

‖zn – x‖2 – ‖wn – x‖2 ≥ 2ρn[(f + g)(wn) – (f + g)(x)] + (1 – 2δ)‖wn – zn‖2. (8)

In order to show (7), we obtain from (6) that

yn – zn

γn
– �f (yn) ∈ ∂g(zn) for all n ∈ N.

By the definitions of ∂g(zn), �f (yn), and �f (zn), we have

g(x) – g(zn) ≥
〈

yn – zn

γn
– �f (yn), x – zn

〉
,

f (x) – f (yn) ≥ 〈�f (yn), x – yn
〉

and f (yn) – f (zn) ≥ 〈�f (zn), yn – zn
〉

for all n ∈N. From these inequalities and the definition of γn, we obtain

f (x) – f (yn) + g(x) – g(zn) ≥ 1
γn

〈yn – zn, x – zn〉 +
〈
�f (yn), zn – yn

〉

=
1
γn

〈yn – zn, x – zn〉 +
〈
�f (yn) – �f (zn), zn – yn

〉

+
〈
�f (zn), zn – yn

〉

≥ 1
γn

〈yn – zn, x – zn〉 –
∥∥�f (yn) – �f (zn)

∥∥‖zn – yn‖

+
〈
�f (zn), zn – yn

〉
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≥ 1
γn

〈yn – zn, x – zn〉 –
δ

γn
‖zn – yn‖2 + f (zn) – f (yn)

for all n ∈N. Consequently,

1
γn

〈yn – zn, zn – x〉 ≥ (f + g)(zn) – (f + g)(x) –
δ

γn
‖zn – yn‖2 for all n ∈N.

Since 〈yn – zn, zn – x〉 = 1
2 (‖yn – x‖2 – ‖yn – zn‖2 – ‖zn – x‖2), we have

1
2γn

(‖yn – x‖2 – ‖yn – zn‖2 – ‖zn – x‖2)≥ (f + g)(zn) – (f + g)(x) –
δ

γn
‖zn – yn‖2

for all n ∈N. Hence, for any x ∈ dom g , we have

‖yn – x‖2 – ‖zn – x‖2 ≥ 2γn
[
(f + g)(zn) – (f + g)(x)

]
+ (1 – 2δ)‖zn – yn‖2

for all n ∈N. Furthermore, since x∗ ∈ S∗ ⊆ dom g , we have

∥∥yn – x∗∥∥2 –
∥∥zn – x∗∥∥2 ≥ 2γn

[
(f + g)(zn) – (f + g)

(
x∗)] + (1 – 2δ)‖zn – yn‖2

≥ (1 – 2δ)‖zn – yn‖2 for all n ∈ N. (9)

To prove (8), using the same arguments, we obtain the following inequalities:

zn – wn

ρn
– �f (zn) ∈ ∂g(wn),

g(x) – g(wn) ≥
〈

zn – wn

ρn
– �f (zn), x – wn

〉
,

f (x) – f (zn) ≥ 〈�f (zn), x – zn
〉

and f (zn) – f (wn) ≥ 〈�f (wn), zn – wn
〉

for all n ∈N. Again, using the above inequalities, we have

f (x) – f (zn) + g(x) – g(wn) ≥ 1
ρn

〈zn – wn, x – wn〉 +
〈
�f (zn), wn – zn

〉

=
1
ρn

〈zn – wn, x – wn〉 +
〈
�f (zn) – �f (wn), wn – zn

〉

+
〈
�f (wn), wn – zn

〉

≥ 1
ρn

〈zn – wn, x – wn〉 –
∥∥�f (zn) – �f (wn)

∥∥‖wn – zn‖

+
〈
�f (wn), wn – zn

〉

≥ 1
ρn

〈zn – wn, x – wn〉 –
δ

ρn
‖wn – zn‖2 + f (wn) – f (zn)

for all n ∈N, which implies that

1
ρn

〈zn – wn, wn – x〉 ≥ (f + g)(wn) – (f + g)(x) –
δ

ρn
‖wn – zn‖2 for all n ∈N.
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Since 〈zn – wn, wn – x〉 = 1
2 (‖zn – x‖2 – ‖zn – wn‖2 – ‖wn – x‖2), we get

1
2ρn

(‖zn – x‖2 – ‖zn – wn‖2 – ‖wn – x‖2)≥ (f + g)(wn) – (f + g)(x) –
δ

ρn
‖wn – zn‖2

for all n ∈N. It follows that, for all x ∈ dom g and n ∈ N,

‖zn – x‖2 – ‖wn – x‖2 ≥ 2ρn[(f + g)(wn) – (f + g)(x)] + (1 – 2δ)‖wn – zn‖2.

So, putting x = x∗, we obtain

∥∥zn – x∗∥∥2 –
∥∥wn – x∗∥∥2 ≥ (1 – 2δ)‖wn – zn‖2 for all n ∈N. (10)

Furthermore, from the definition of xn+1, (9) and (10), we conclude that

∥∥xn+1 – x∗∥∥2 = (1 – αn)
∥∥zn – x∗∥∥2 + αn

∥∥wn – x∗∥∥2 – (1 – αn)(αn)‖zn – wn‖2

≤ ∥∥zn – x∗∥∥2 (11)

≤ ∥∥yn – x∗∥∥2 for all n ∈N. (12)

Now, we show that limn→+∞ ‖xn – x∗‖ exists.
From (12) and the nonexpansiveness of Pdom g , we obtain the following:

∥∥xn+1 – x∗∥∥≤ ∥∥yn – x∗∥∥

=
∥∥Pdom g x̂n – Pdom gx∗∥∥

≤ ∥∥x̂n – x∗∥∥

≤ ∥∥xn – x∗∥∥ + βn‖xn – xn–1‖ (13)

≤ (1 + βn)
∥∥xn – x∗∥∥ + βn

∥∥xn–1 – x∗∥∥ for all n ∈ N.

By Lemma 4, we have {xn} is bounded, and hence
∑+∞

n=1 βn‖xn –xn–1‖ < +∞. Consequently,

‖x̂n – xn‖ = βn‖xn – xn–1‖ → 0, as n → +∞. (14)

From (13), we have

∥∥xn+1 – x∗∥∥≤ ∥∥xn – x∗∥∥ + βn‖xn – xn–1‖ for all n ∈N.

By Lemma 5, we get that limn→+∞ ‖xn – x∗‖ exists. Now, from the convexity of dom g and
the definitions of zn–1 and xn, we conclude that xn ∈ dom g . Consequently,

‖x̂n – yn‖ ≤ ‖x̂n – xn‖ → 0, as n → +∞. (15)

By (14) and (15), we have limn→+∞ ‖xn – yn‖ = 0. Using (13) and (14), we obtain
limn→+∞ ‖xn – x∗‖ = limn→+∞ ‖yn – x∗‖. From (11) and (12), we get limn→+∞ ‖yn – x∗‖ =
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limn→+∞ ‖zn – x∗‖, and hence (9) implies that limn→+∞ ‖yn – zn‖ = 0. As a result, we have
limn→+∞ ‖xn – zn‖ = 0.

Next, we prove that every weak-cluster point of {xn} belongs to S∗. To do this, let w be a
weak-cluster point of {xn}. Then there exists a subsequence {xnk } of {xn} such that xnk ⇀ w
and hence znk ⇀ w.

If γnk 
= σ for finitely many k, thus, we can suppose that γnk = σ for all k ∈ N without loss
of generality. The definition of γnk implies that

∥∥�f (znk ) – �f (ynk )
∥∥≤ δ

σ
‖znk – ynk ‖.

Since �f is uniformly continuous, we get limk→+∞ ‖�f (znk ) – �f (ynk )‖ = 0. We know that

ynk – znk

γnk

– �f (ynk ) + �f (znk ) ∈ ∂g(znk ) + �f (znk ) = ∂(f + g)(znk ).

We conclude from the demiclosedness of Gph(∂(f + g)) that (w, 0) ∈ Gph(∂(f + g)). Hence,
0 ∈ ∂(f + g)(w), which implies that w ∈ S∗.

Now, suppose that there exists a subsequence {znkj
} of {znk } such that γnkj

≤ σθ for all

j ∈ N. In this case, we can set γ̂nkj
=

γnkj
θ

and ẑnkj
= proxγ̂nkj

g(ynkj
– γ̂nkj

�f (ynkj
)). By the

definition of γnkj
, we obtain

∥∥�f (ẑnkj
) – �f (ynkj

)
∥∥ >

δ

γ̂nkj

‖ẑnkj
– ynkj

‖. (16)

Moreover, by Lemma 2, we have

1
θ
‖ynkj

– znkj
‖ ≥ ‖ynkj

– ẑnkj
‖.

Therefore, ‖ynkj
– ẑnkj

‖ → 0, as j → +∞, which implies that ẑnkj
⇀ w. Again, using the

uniform continuity of �f , we obtain ‖�f (ẑnkj
) – �f (ynkj

)‖ → 0, as j → +∞. Combining

with (16), we obtain
‖ẑnkj

–ynkj
‖

γ̂nkj
→ 0, as j → +∞. Moreover, we know that

ynkj
– ẑnkj

γ̂nkj

– �f (ynkj
) + �f (ẑnkj

) ∈ ∂g(ẑnkj
) + �f (ẑnkj

) = ∂(f + g)(ẑnkj
).

It implies, by the demiclosedness of Gph(∂(f + g)), that 0 ∈ ∂(f + g)(w), so w ∈ S∗.
By Lemma 6, we obtain that {xn} converges weakly to an element in S∗, and the proof is

complete. �

By setting βn = 0 and αn = 0 for all n ∈N, then yn = xn, and hence Algorithm 3 is reduced
to Algorithm 1. As a consequence of Theorem 7, we obtain the following result which is
one part of Theorem 4.2 in [11].

Corollary 8 Let H be a real Hilbert space, f , g : H → R∪ {+∞} be proper lower semicon-
tinuous convex functions satisfying A1 and A2. If S∗ 
= ∅, then a sequence {xn} generated by
Algorithm 1 converges weakly to a point in S∗.
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In the next theorem, we prove the complexity of Algorithm 3. We first introduce the
control sequence {tn} defined in [14] by

tn = 1 +
+∞∑

k=n

( k∏

i=n

βi

)

for all n ∈N. (17)

This sequence is well defined if the following assumption holds:

+∞∑

k=n

( k∏

i=n

βi

)

< +∞ for all n ∈N.

It is easy to see that under the above assumption we have

βntn+1 = tn – 1 for all n ∈N. (18)

Next, we prove the following theorem.

Theorem 9 Given x0 = x1 ∈ dom g , let {xn} be a sequence generated by Algorithm 3, and
suppose that all assumptions in Theorem 7 hold. Additionally, the following assumptions
are also true for all n ∈N:

C1.
∑+∞

k=n(
∏k

i=n βi) < +∞, and t2
n+1 – tn+1 ≤ t2

n ,
C2. αn ∈ [ 1

2 , 1], and αn ≤ αn–1,
C3. γn = Linesearch 1(yn,ρn–1, θ , δ), ρn := Linesearch 1(zn,γn, θ , δ), and ρn ≥ ρ > 0.

Then

(f + g)(xn+1) – min
x∈H

(f + g)(x) ≤ d(x1, S∗)2 + t2
1ζ1[(f + g)(x1) – minx∈H (f + g)(x)]

3ρt2
n+1

for all n ∈N, where ζ1 = 2(γ1 + α1ρ1). In other words,

(f + g)(xn+1) – min
x∈H

(f + g)(x) = O
(

1
t2
n+1

)
for all n ∈N.

Proof Let x∗ ∈ S∗. For any x ∈ dom g , we know that

‖yn – x‖2 – ‖zn – x‖2 ≥ 2γn
[
(f + g)(zn) – (f + g)(x)

]
, (19)

‖zn – x‖2 – ‖wn – x‖2 ≥ 2ρn
[
(f + g)(wn) – (f + g)(x)

]
(20)

for all n ∈N. Put x = zn in (20), then

–‖wn – x‖2 ≥ (f + g)(wn) – (f + g)(zn),

thus (f + g)(zn) ≥ (f + g)(wn) for all n ∈N. Since f and g are convex, we have

(f + g)(xn+1) ≤ (1 – αn)(f + g)(zn) + αn(f + g)(wn)

≤ (f + g)(zn). (21)
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From the definition of xn+1, we obtain

‖xn+1 – x‖2 – ‖zn – x‖2 = (1 – αn)‖zn – x‖2 + αn‖wn – x‖2 – ‖zn – x‖2

– (1 – αn)αn‖zn – wn‖2

≤ αn
(‖wn – x‖2 – ‖zn – x‖2).

Hence,

‖zn – x‖2 – ‖xn+1 – x‖2 ≥ αn
(‖zn – x‖2 – ‖wn – x‖2) for all n ∈N. (22)

Combining (20) and (22), we have

‖zn – x‖2 – ‖xn+1 – x‖2 ≥ 2αnρn
[
(f + g)(wn) – (f + g)(x)

]
for all n ∈ N. (23)

Summing (19) and (23), we get

‖yn – x‖2 – ‖xn+1 – x‖2 ≥ 2γn
[
(f + g)(zn) – (f + g)(x)

]

+ 2αnρn
[
(f + g)(wn) – (f + g)(x)

]

≥ 2γn(f + g)(zn) + 2αnρn(f + g)(wn)

– 2(γn + αnρn)(f + g)(x) (24)

for all n ∈N. We claim that

2γn(f + g)(zn) + 2αnρn(f + g)(wn) ≥ 2(γn + αnρn)(f + g)(xn+1) for all n ∈ N. (25)

To validate our claim, we know from (21) and C2 that

(f + g)(zn) + (f + g)(wn) = (1 – αn)(f + g)(zn) + αn(f + g)(wn)

+ αn(f + g)(zn) + (1 – αn)(f + g)(wn)

≥ (f + g)(xn+1) + αn(f + g)(zn) + (1 – αn)(f + g)(wn)

= (f + g)(xn+1) +
(

1 –
1 – αn

αn

)
(f + g)(zn)

+
1 – αn

αn

[
(1 – αn)(f + g)(zn) + αn(f + g)(wn)

]

≥ (f + g)(xn+1) +
(

1 –
1 – αn

αn

)
(f + g)(zn) +

1 – αn

αn
(f + g)(xn+1)

≥ 2(f + g)(xn+1) for all n ∈N.

Consequently,

2γn(f + g)(zn) + 2αnρn(f + g)(wn) = 2(γn – αnρn)(f + g)(zn)

+ 2αnρn
[
(f + g)(zn) + (f + g)(wn)

]
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≥ 2(γn – αnρn)(f + g)(xn+1)

+ 4αnρn(f + g)(xn+1)

= 2(γn + αnρn)(f + g)(xn+1)

for all n ∈N. For simplicity, we denote ζn = 2(γn +αnρn). We note that ζn ≥ ζn+1for all n ∈N

from C2 and C3. We also know that ‖x̂n – x‖ ≥ ‖yn – x‖ since x ∈ dom g .
So, from (24) and (25), we have

‖x̂n – x‖2 – ‖xn+1 – x‖2 ≥ ζn
[
(f + g)(xn+1) – (f + g)(x)

]
for all n ∈ N. (26)

We know that xn, x∗ ∈ dom g and tn+1 > 1. Thus, we conclude that (1 – 1
tn+1

)xn + 1
tn+1

x∗ ∈
dom g . By putting x = (1 – 1

tn+1
)xn + 1

tn+1
x∗ in (26), we obtain

∥∥∥∥xn+1 –
(

1 –
1

tn+1

)
xn –

1
tn+1

x∗
∥∥∥∥

2

–
∥∥∥∥x̂n –

(
1 –

1
tn+1

)
xn –

1
tn+1

x∗
∥∥∥∥

2

≤ ζn

[
(f + g)

((
1 –

1
tn+1

)
xn +

1
tn+1

x∗
)

– (f + g)(xn+1)
]

≤ ζn

[(
1 –

1
tn+1

)
(f + g)(xn) +

1
tn+1

(f + g)
(
x∗) – (f + g)(xn+1)

]

= ζn

[(
1 –

1
tn+1

)[
(f + g)(xn) – (f + g)

(
x∗)] –

[
(f + g)(xn+1) – (f + g)

(
x∗)]

]
(27)

for all n ∈N. We also have, for n ∈N,

∥∥∥∥xn+1 –
(

1 –
1

tn+1

)
xn –

1
tn+1

x∗
∥∥∥∥

2

–
∥∥∥∥x̂n –

(
1 –

1
tn+1

)
xn –

1
tn+1

x∗
∥∥∥∥

2

=
1

t2
n+1

(∥∥tn+1xn+1 – (tn+1 – 1)xn – x∗∥∥2

–
∥∥tn+1xn + βntn+1(xn – xn–1) – (tn+1 – 1)xn – x∗∥∥2)

=
1

t2
n+1

(∥∥tn+1xn+1 – (tn+1 – 1)xn – x∗∥∥2 –
∥∥(tn – 1)(xn – xn–1) + xn – x∗∥∥2)

=
1

t2
n+1

(∥∥tn+1xn+1 – (tn+1 – 1)xn – x∗∥∥2 –
∥∥tnxn – (tn – 1)xn–1 – x∗∥∥2) (28)

and

ζn

(
1 –

1
tn+1

)[
(f + g)(xn) – (f + g)

(
x∗)] – ζn

[
(f + g)(xn+1) – (f + g)

(
x∗)]

=
ζn

t2
n+1

[(
t2
n+1 – tn+1

)[
(f + g)(xn) – (f + g)

(
x∗)]

– t2
n+1
[
(f + g)(xn+1) – (f + g)

(
x∗)]]

≤ ζn

t2
n+1

[
t2
n
[
(f + g)(xn) – (f + g)

(
x∗)] – t2

n+1
[
(f + g)(xn+1) – (f + g)

(
x∗)]]. (29)
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Hence, we obtain from (27), (28), and (29) that, for n ∈ N,

1
t2
n+1

(∥∥tn+1xn+1 – (tn+1 – 1)xn – x∗∥∥2 –
∥∥tnxn – (tn – 1)xn–1 – x∗∥∥2)

≤ ζn

t2
n+1

[
t2
n
[
(f + g)(xn) – (f + g)

(
x∗)] – t2

n+1
[
(f + g)(xn+1) – (f + g)

(
x∗)]]. (30)

We know that ζn+1 ≤ ζn, so after rearranging (30), we have, for n ∈N,

t2
n+1ζn+1

[
(f + g)(xn+1) – (f + g)(x)

]≤ ∥∥tnxn – (tn – 1)xn–1 – x∗∥∥2

–
∥∥tn+1xn+1 – (tn+1 – 1)xn – x∗∥∥2

+ t2
nζn
[
(f + g)(xn) – (f + g)

(
x∗)]. (31)

Furthermore, by using (31), we can inductively show that

t2
n+1ζn+1

[
(f + g)(xn+1) – (f + g)

(
x∗)]≤ ∥∥tnxn – (tn – 1)xn–1 – x∗∥∥2

+ t2
nζn
[
(f + g)(xn) – (f + g)

(
x∗)]

≤ ∥∥tn–1xn–1 – (tn–1 – 1)xn–2 – x∗∥∥2

+ t2
n–1ζn–1

[
(f + g)(xn–1) – (f + g)

(
x∗)]

...

≤ ∥∥t1x1 – (t1 – 1)x0 – x∗∥∥2

+ t2
1ζ1
[
(f + g)(x1) – (f + g)

(
x∗)]

for all n ∈N. Since ζn = 2(γn + αnρn) ≥ 3ρ , we obtain, for all n ∈N, that

(f + g)(xn+1) – min
x∈H

(f + g)
(
x∗)≤ 1

t2
n+1ζn+1

∥∥x1 – x∗∥∥2

+
t2
1ζ1

t2
n+1ζn+1

[
(f + g)(x1) – (f + g)

(
x∗)]

≤ ‖x1 – x∗‖2 + t2
1ζ1[(f + g)(x1) – minx∈H (f + g)(x)]

3ρt2
n+1

.

Since x∗ is chosen from S∗ arbitrarily, we have

(f + g)(xn+1) – min
x∈H

(f + g)(x) ≤ d(x1, S∗)2 + t2
1ζ1[(f + g)(x1) – minx∈H (f + g)(x)]

3ρt2
n+1

for all n ∈N. Hence, we obtain the desired results and the proof is complete. �

Remark 10 To justify that there exists a sequence {βn} satisfying C1, we choose

βn =

⎧
⎨

⎩
0.9, if n ≤ 1000
1

n2 , if n ≥ 1001.
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Obviously, βn ≥ βn+1 for all n ∈N. Since

+∞∑

k=n

( k∏

i=n

βi

)

= βn + βnβn+1 + βnβn+1βn+2 + · · · ,

we have

+∞∑

k=n

( k∏

i=n

βi

)

–
+∞∑

k=n+1

( k∏

i=n+1

βi

)

≥ 0,

and hence tn+1 ≤ tn. Furthermore, it is easy to see that

+∞∑

k=1

( k∏

i=1

βi

)

< +∞.

Therefore,
∑+∞

k=n(
∏k

i=n βi) < +∞ and t2
n+1 – tn+1 ≤ t2

n for all n ∈N, so C1 is satisfied.

4 Applications to data classification and regression problems
In this section, we apply Algorithm 3 to solving regression and classification problems.
Moreover, we conduct some numerical experiments for comparing the performance of
Algorithm 3 with Algorithm 1 and Algorithm 2.

Machine learning is an application of artificial intelligence (AI) which has the ability
to automatically learn and improve from experience. There are many techniques for the
machine to learn, in this work, we focus on extreme learning machine (ELM) introduced
by Huang et al. [30] defined as follows:

Let S := {(xk , tk) : xk ∈R
n, tk ∈R

m, k = 1, 2, . . . , N} be a training set of N distinct samples,
xk is an input data, and tk is a target. The output function of ELM for SLFNs with M
hidden nodes and activation function G is

oj =
M∑

i=1

ηiG
(〈wi, xj〉 + bi

)
,

where wi is the weight vector connecting the ith hidden node and the input node, ηi is
the weight vector connecting the ith hidden node and the output node, and bi is bias. The
hidden layer output matrix H is defined as follows:

H =

⎡

⎢⎢
⎣

G(〈w1, x1〉 + b1) · · · G(〈wM, x1〉 + bM)
...

. . .
...

G(〈w1, xN 〉 + b1) · · · G(〈wM, xN 〉 + bM)

⎤

⎥⎥
⎦ .

To solve ELM is finding η = [ηT
1 , . . . ,ηT

M]T such that Hη = T, where T = [tT
1 , . . . , tT

N ]T is the
training data. We can write the solution η in the form η = H†T, where H† is the Moore–
Penrose generalized inverse of H. However, if H† does not exist, then η is quite difficult
to find. In this case, we can employ the concept of convex minimization to find such η

without relying on the existence of H†.
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To prevent overfitting, we use following regularization: Least absolute shrinkage and
selection operator (LASSO) [31]:

Minimize: ‖Hη – T‖2
2 + λ‖η‖1, (32)

where λ is a regularization parameter, and consider f (x) = ‖Hx – T‖2
2 and g(x) = λ‖x‖1.

Based on this model, we conduct some numerical experiment on a regression of a sine
function and a classification on the Iris and heart disease dataset.

Throughout Sects. 4.1 and 4.2, we use sigmoid as an activation function. Moreover, we
choose parameters according to the hypotheses of Theorem 7. All results are performed
on Intel Core i5-7500 CPU with 16GB RAM and GeForce GTX 1060 6GB GPU.

4.1 Experiments for regression
We generate distinct points x1, x2, . . . , x10 in an interval [–4, 4], and define the training set
S := {sin xn : n = 1, . . . , 10} and a graph of a sine function on [–4, 4] as the target. Moreover,
we set M = 25 as the number of hidden nodes, and λ = 10–5.

For the first experiment, we set δ = 0.49, σ = 0.1, θ = 0.1, and αn = ζn = 0.9n
n+1 in Algorithm

3 to evaluate the convergence behavior of Algorithm 3 with various inertial parameters
βn, namely

β1
n = 0, β2

n =

⎧
⎨

⎩

n
n+1 , if n ≤ 10,000,
1

n2 , if n ≥ 10,001,

β3
n =

⎧
⎨

⎩
0.9, if n ≤ 10,000,
1

n2 , if n ≥ 10,001,
and β4

n =
1010

‖xn – xn–1‖3 + n3 + 1010 .

To evaluate the performance, we use mean square error(MSE) defined as follows:

MSE =
1
n

n∑

i=1

(ȳi – yi)2.

By letting MSE = 1 × 10–3 and 1000 number of iterations as the stopping criteria, we
obtain the following results in Table 1 which show that some inertial parameters improve
the performance of Algorithm 3 substantially.

In the next experiment, we compare the performance of Algorithm 3 with Algorithm 1
and Algorithm 2. All the parameters are chosen as seen in Table 2.

By letting MSE = 1 × 10–3 and 30,000 number of iterations as the stopping criteria, the
results are shown in Table 3.

From Table 3, we see that Algorithm 3 takes only 433 iterations to reach the stopping
criteria, so it outperforms both Algorithm 1 and 2.

Table 1 The effects of inertial parameters

Iteration no. CPU time MSE

β1
n 1000 0.0515 6.29× 10–2

β2
n 425 0.0215 9.36× 10–4

β3
n 1000 0.0507 5.6× 10–3

β4
n 433 0.0226 8.61× 10–4
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Table 2 Chosen parameters of each algorithm

Algorithm 1 Algorithm 2 Algorithm 3

σ 0.49 0.124 0.49
δ 0.1 0.1 0.1
θ 0.1 0.1 0.1
αn - - 0.9n

n+1

βn - - 1010

‖xn–xn–1‖3+n3+1010

Table 3 Comparison of each algorithm

Iteration no. CPU time MSE

Algorithm 1 30,000 0.7607 4.1× 10–3

Algorithm 2 30,000 1.0747 1.8× 10–3

Algorithm 3 433 0.0226 8.61× 10–4

Table 4 Numerical results of a regression of a sine function at the 700th iteration

Iteration no. CPU time MAE RMSE

Algorithm 1 700 0.0206 0.4143 0.5389
Algorithm 2 700 0.0284 0.2817 0.3767
Algorithm 3 700 0.0301 0.0178 0.0257

Figure 1 A regression of a sine function at the 700th
iteration

In the following experiment, we evaluate the performance of each algorithm at the 700th
iteration with mean absolute error (MAE) and root mean squared error (RMSE) defined as
follows:

MAE =
1
n

n∑

i=1

|ȳi – yi|, RMSE =

√√√√1
n

n∑

i=1

(ȳi – yi)2.

The results can be seen in Table 4.
As seen in Table 4, Algorithm 3 achieves the lowest MAE and RMSE at the 700th itera-

tion. In Fig. 1, we illustrate the performance of each algorithm at the 700th iteration.

4.2 Data classification
We conduct some experiments on Iris dataset [32] and heart disease dataset [33] from
https://archive.ics.uci.edu. The Iris dataset contains three classes of Iris plants with 50

https://archive.ics.uci.edu
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Table 5 Detail of each dataset

Dataset Classes Attributes

Iris 3 4
Heart disease 2 13

Table 6 Training and testing data of each dataset

Iris Heart disease

Training Testing Training Testing

105 45 210 93

Table 7 Effects of inertial parameters at the 100th iteration

Iris Heart disease

Acc. train Acc. test Acc. train Acc. test

β1
n 88.57 84.44 83.33 78.49

β2
n 94.29 95.56 88.10 80.65

β3
n 94.29 97.78 86.19 82.80

instances of each, and the heart disease dataset contains two classes, namely 165 patients
with heart disease and 138 patients without heart disease. See Table 5 for more details of
the datasets.

We set the number of hidden nodes M = 35 and λ = 10–5 for both datasets. For an esti-
mation of the optimal weight β , we use Algorithm 1, Algorithm 2, and Algorithm 3, and
the output O of training and testing set are calculated by O = Hβ .

Furthermore, the dataset is split into training and testing set, see Table 6 for details.
The accuracy is calculated by the following:

accuracy =
correctly predicted data

all data
× 100.

We denote acc.train and acc.test as accuracy of training and testing set, respectively. We
first compare the accuracy of Algorithm 3 at 100th iteration with different inertial param-
eter β , namely

β1
n = 0, β2

n =

⎧
⎨

⎩

n
n+1 , if n ≤ 1000
1

n2 , if n ≥ 1001,
and β3

n =

⎧
⎨

⎩

0.9, if n ≤ 1000
1

n2 , if n ≥ 1001.

By setting σ = 0.49, δ = 0.1, θ = 0.1, and αn = 0.9n
n+1 in Algorithm 3, the numerical experiment

for data classification can be seen in Table 7.
It is observed that β3

n achieves the highest accuracy, so throughout this section we
choose β3

n as inertial parameters.
The next experiment is a comparison of the performance for Algorithm 1, Algorithm 2,

and Algorithm 3 at the 100th iteration. See Table 8 for the result.
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Table 8 Accuracy comparison of each algorithm at the 100th iteration

Iris Heart disease

Time Acc. train Acc. test Time Acc. train Acc. test

Algorithm 1 0.0204 85.71 80 0.0199 80.95 78.49
Algorithm 2 0.0331 87.62 80 0.0304 80.95 78.49
Algorithm 3 0.0295 94.29 97.78 0.0258 86.19 82.80

Table 9 Comparison of each algorithm at the 100th iteration with 10-fold CV. on Iris dataset

Algorithm 1 Algorithm 2 Algorithm 3

Acc. train Acc. test Acc. train Acc. test Acc. train Acc. test

Fold 1 83.703 86.666 84.444 86.666 97.04 93.33
Fold 2 84.444 80 85.925 80 97.78 86.67
Fold 3 82.962 93.333 84.444 93.333 94.81 93.33
Fold 4 82.962 93.333 84.444 93.333 97.04 93.33
Fold 5 84.444 80 85.185 80 97.04 100
Fold 6 85.185 73.333 85.925 73.333 94.81 93.33
Fold 7 82.222 93.333 83.703 93.333 96.30 86.67
Fold 8 82.962 86.666 84.444 86.666 97.04 100
Fold 9 84.444 80 85.185 80 94.81 100.00
Fold 10 85.185 73.333 85.925 73.333 96.30 100

Average Acc 83.851 84 84.962 84 96.30 94.67

ERR% 16.074 15.5185 4.52
Training time (sec.) 0.0199 0.0329 0.0276

Now, we employ 10-fold stratified cross validation on both Iris and heart disease
datasets. We denote

Average ACC =
N∑

i=1

xi

yi
× 100%/N ,

where N is a number of folds, xi is a number of correctly predicted samples at fold i, and
yi is a number of all samples at fold i.

errL% =
sum of errors in all 10 training sets

sum of all samples in 10 training sets
× 100%,

and

errT% =
sum of errors in all 10 testing sets

sum of all samples in 10 testing sets
× 100%.

Then we define

ERR% = (errL% + errT%)/2.

In Table 9, we show the result for classification of Iris dataset at the 100th iteration by
Algorithm 1, Algorithm 2, and Algorithm 3 at each fold.

In Table 10, we show the result of heart disease dataset at the 100th iteration.
According to Tables 9 and 10, we can conclude that Algorithm 3 achieves the highest

accuracy.
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Table 10 Comparison of each algorithm at the 100th iteration with 10-fold CV. on heart disease
dataset

Algorithm 1 Algorithm 2 Algorithm 3

Acc. train Acc. test Acc. train Acc. test Acc. train Acc. test

Fold 1 80.95 73.33 81.68 76.67 84.98 90
Fold 2 80.15 87.10 80.15 87.10 83.09 93.55
Fold 3 79.04 61.29 79.78 64.52 86.76 67.74
Fold 4 81.99 74.19 81.99 74.19 84.93 77.42
Fold 5 79.49 76.67 79.85 76.67 84.62 83.33
Fold 6 81.68 76.67 81.68 76.67 86.45 83.33
Fold 7 82.78 83.33 82.78 83.33 86.08 80.00
Fold 8 80.95 76.67 80.95 76.67 86.81 86.67
Fold 9 75.82 93.33 75.82 93.33 83.88 96.67
Fold 10 80.22 80.00 79.85 80.00 84.62 80.00

Average Acc 80.31 78.26 80.45 78.91 85.22 83.87

ERR% 20.74 20.33 15.47
Training time (sec.) 0.0231 0.0351 0.0316

5 Conclusions
In this paper, a new algorithm for solving convex minimization problems with an inertial
and a linesearch technique, proposed by Cruz and Nghia [11], is introduced and studied.
We prove a weak convergence of the proposed algorithm to a solution of (1) without as-
suming �f to be L-Lipschitz continuous. The complexity theorem is also proved under
some control conditions. We also employ our algorithm as a machine learning algorithm
based on the extreme learning machine model (ELM) introduced by Huang et al. [30] for
regression and classification problems. Moreover, we conduct some experiments to show
that the proposed algorithm has a good behavior of convergence in terms of low num-
ber of iterations and high accuracy for regression and classification problems which imply
that our algorithm performs very well in terms of speed in comparison to Algorithm 1 and
Algorithm 2.
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