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Abstract
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1 Introduction
The theory of probabilistic metric space (PM-space) as a generalization of ordinary metric
space was introduced by Menger in [12]. In this space, distribution functions are consid-
ered as the distance of a pair of points in statistics rather than deterministic.

The concept of the generalized metric space (briefly G-metric space) was introduced by
Mustafa and Sims in 2006 [16]. Then, in 2014, Zhou et al. [26] generalized the notion of
PM-space to the G-metric spaces and defined the probabilistic generalized metric space
which is denoted by PGM-space.

In [3], Choi et al. proposed a generalization of G-metric space named g-metric space
with degree l, in which the distance function with degrees l = 1, 2 is equivalent to ordinary
and G-metric, respectively.

The idea of statistical convergence was first introduced by Steinhaus [25] for real se-
quences and developed by Fast [7], then reintroduced by Shoenberg [22]. Many authors,
such as [4, 6, 8, 9, 17, 21], have discussed and developed this concept. The theory of sta-
tistical convergence has many applications in various fields such as approximation theory
[5], finitely additive set functions [4], trigonometric series [27], and locally convex spaces
[11].

In 2008, Sencimen and Pehlivan [24] introduced the concepts of statistically convergent
sequence and statistically Cauchy sequence in the probabilistic metric space endowed with
strong topology.
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The purpose of this paper is to develop a concept to generalize the probabilistic G-metric
space to the probabilistic g-metric space with degree l. Here, the notation of the general-
ized space is still referred as PGM-space. The l-dimensional asymptotic density of a subset
A of Nl defined previously by the author in [1] is used to introduce the statistically con-
vergent and Cauchy sequences with respect to strong topology, and some basic facts are
studied. Note that in this definition l = 1 and l = 2 values coincide exactly with the statis-
tical convergence in PM-space and PGM-space (related to G-metric), respectively. Thus,
the definitions and the obtained results show that this study is more comprehensive.

2 Preliminaries
In this section, some basic definitions and results related to PM-space, PGM-space, and
statistical convergence are presented and discussed. First, recall the definition of triangular
norm (t-norm) as follows.

Definition 2.1 ([23]) A mapping T : [0, 1] × [0, 1] → [0, 1] is called a continuous t-norm
if T satisfies the following conditions:

(i) T is commutative and associative, i.e., T(a, b) = T(b, a) and
T(a, T(b, c)) = T(T(a, b), c) for all a, b, c ∈ [0, 1];

(ii) T is continuous;
(iii) T(a, 1) = a for all a ∈ [0, 1];
(iv) T(a, b) ≤ T(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

A distribution function F is a map from extended reals R∞ := R ∪ {–∞,∞} into [0, 1]
such that it is nondecreasing, left-continuous at every real number, and F(–∞) = 0 and
F(∞) = 1. The set of all distribution functions is denoted by � and �+ := {F ∈ � : F(0) = 0}.

Definition 2.2 ([23]) A Menger probabilistic metric space (PM-space) is a triple (X, F , T),
where X is a nonempty set, T is a continuous t-norm. and F is a mapping from X ×X → �+

satisfying the following conditions:
(F(x,y) denotes the value of F at the pair (x, y))

(i) F(x,y)(t) = 1 for all x, y ∈ X and t > 0 if and only if x = y;
(ii) F(x,y)(t) = F(y,x)(t);

(iii) F(x,y)(t + s) ≥ T(F(x,z)(t), F(z,y)(s)) for all x, y, z ∈ X and t, s ≥ 0.

Definition 2.3 ([16]) Let X be a nonempty set and G : X × X × X → R
+, be a function

satisfying:
1) G(x, y, z) = 0 if x = y = z;
2) 0 < G(x, x, y) for all x, y ∈ X with x �= y;
3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z �= y;
4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · (symmetry in all three variables);
5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X .

Then the pair (X, G) is called G-metric space.

The following definition is a developing of PM-space on G-metric.

Definition 2.4 ([26]) A Menger probabilistic G-metric space (PGM-space) is a triple
(X, G∗, T), where X is a nonempty set, T is a continuous t-norm, and G∗ is a mapping
from X × X × X into �+, satisfying the following conditions:
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(i) G∗
(x,y,z)(t) = 1 for all x, y, z ∈ X and t > 0 if and only if x = y = z;

(ii) G∗
(x,x,y)(t) ≥ G∗

(x,y,z)(t) for all x, y ∈ X with z �= y and t > 0;
(iii) G∗

(x,y,z)(t) = G∗
(x,z,y)(t) = G∗

(y,x,z)(t) = · · · (symmetry in all three variables);
(iv) G∗

(x,y,z)(t + s) ≥ T(G∗
(x,a,a)(t), G∗

(a,y,z)(s)) for all x, y, z, a ∈ X and s, t ≥ 0.

Definition 2.5 ([26]) Let (X, G∗, T) be a PGM-space and x0 ∈ X. For ε > 0 and 0 < δ < 1,
the (ε, δ)-neighborhood of x0 is defined as follows:

Nx0 (ε, δ) =
{

y ∈ X : G∗
(x0,y,y)(ε) > 1 – δ, G∗

(y,x0,x0)(ε) > 1 – δ
}

.

Definition 2.6 ([26])
(i) A sequence {xn} in a PGM-space (X, G∗, T) is said to be convergent to a point x ∈ X

if, for every ε > 0 and 0 < δ < 1, there exists a positive integer Mε,δ such that
xn ∈ Nx(ε, δ) whenever n > Mε,δ .

(ii) A sequence {xn} in a PGM-space (X, G∗, T) is called a Cauchy sequence if, for every
ε > 0 and 0 < δ < 1, there exists a positive integer Mε,δ such that G∗

(xm ,xn ,xl)
(ε) > 1 – δ

whenever m, n, l > Mε,δ .
(iii) A PGM-space (X, G∗, T) is said to be complete if every Cauchy sequence in X

converges to a point in X .

In the following, some basic concepts of statistical convergence are discussed.

Definition 2.7 ([7]) Let A ⊂ N and A(n) = {k ∈ A; k ≤ n}. Then the asymptotic density of
A is defined as follows:

δ(A) = lim
n→∞

|A(n)|
n

.

For a subset A of N, if δ(A) = 1, then it is said to be statistically dense. It is clear that
δ(N – A) = 1 – δ(A).

Definition 2.8 ([7]) A sequence {xn} in R is said to be statistically convergent to a point x
in R if, for each ε > 0,

lim
n→∞

1
n

∣∣{k ≤ n : |xk – x| ≥ ε
}∣∣ = 0.

For more information about statistical convergence, the references [2, 4, 7–10, 13–15,
18–20] can be addressed.

3 Main results
In this section the main definitions and results are introduced and discussed. First of all,
consider the following definition which is a generalization of a G-metric space to an l-
dimensional case, where l ∈N.

Definition 3.1 ([3]) Let X be a nonempty set. A function g : Xl+1 −→ R+ is called a g-
metric with degree l on X if it satisfies the following conditions:

g1) g(x0, x1, . . . , xl) = 0 if and only if x0 = x1 = · · · = xl ,
g2) g(x0, x1, . . . , xl) = g(xσ (0), xσ (1), . . . , . . . , xσ (l)) for permutation σ on {0, 1, . . . , l},
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g3) g(x0, x1, . . . , xl) ≤ g(y0, y1, . . . , yl) for all (x0, x1, . . . , xl), (y0, y1, . . . , yl) ∈ Xl+1 with
{xi : i = 0, 1, . . . , l} ⊆ {yi : i = 0, 1, . . . , l},

g4) For all x0, x1, . . . , xs, y0, y1, . . . , yt , w ∈ X with s + t + 1 = l,

g(x0, x1, . . . , xs, y0, y1, . . . , yt) ≤ g(x0, x1, . . . , xs, w, w, . . . , w)+g(y0, y1, . . . , yt , w, w, . . . , w).

The pair (X, g) is called a g-metric space. It is noteworthy that, if l = 1 (resp. l = 2), then it
is equivalent to an ordinary metric space (resp. G-metric space).

Definition 3.2 ([3]) Let (X, g) be a g-metric space, x ∈ X be a point, and {xk} ⊆ X be a
sequence.

1) {xk} g-converges to x if for all ε > 0 there exists N ∈N such that

i1, . . . , il ≥ N �⇒ g(x, x1, . . . , xl) < ε.

2) {xk} is said to be g-Cauchy if for all ε > 0 there exists N ∈ N such that

i0, i1, . . . , il ≥ N �⇒ g(xi0 , xi1 , . . . , xil ) < ε.

3) (X, g) is complete if every g-Cauchy sequence in (X, g) is g-convergent in (X, g).

Now, by equipping Definition 2.4 with g-metric, we introduce the following definition
that is a generalization.

Definition 3.3 A Menger probabilistic g-metric space (still is denoted as PGM-space) is
a triple (X, F , T), where X is a nonempty set, T is a continuous t-norm, and F is a mapping
from Xl+1 into �+, satisfying the following conditions:

(i) F(x0,x1,...,xl)(t) = 1 for all x0, x1, . . . , xl ∈ X and t > 0 if and only if x0 = x1 = · · · = xl ;
(ii) F(x0,x1,...,xl)(t) ≥ F(y0,y1,...,yl)(t) for all (x0, x1, . . . , xl), (y0, y1, . . . , yl) ∈ Xl+1 with

{xi : i = 0, 1, . . . , l} ⊆ {yi : i = 0, 1, . . . , l};
(iii) F(x0,x1,...,xl)(t) = F(xσ (0),xσ (1),...,...,xσ (l))(t) for permutation σ on {0, 1, . . . , l};
(iv) For all x0, x1, . . . , xm, y0, y1, . . . , yn, w ∈ X with m + n + 1 = l,

F(x0,x1,...,xm ,y0,y1,...,yn)(t + s) ≥ T
(
F(x0,x1,...,xm ,w,w,...,w)(t), F(y0,y1,...,yn ,w,w,...,w)(s)

)
.

In the following, according to the generalization of asymptotic density given in [1], sta-
tistically convergent and Cauchy sequences in a PGM-space are introduced.

Definition 3.4 Let (X, F , T) be a PGM-space. For any ε > 0, 0 < δ < 1 and x ∈ X, the strong
(ε, δ)-vicinity of x is defined by the subset Mx(ε, δ) of Xl as follows:

Mx(ε, δ) =
{

(x1, x2, . . . , xl) ∈ Xl; F(x,x1,x2,...,xl)(ε) > 1 – δ
}

.

Next, we generalize the concept of asymptotic density of a set in an l-dimensional case.

Definition 3.5 Let K ⊂N
l , the l-dimensional asymptotic density of K is defined by

δl(K) = lim
n→∞

l!
nl

∣∣{(i1, i2, . . . , il) ∈ K ; i1, i2, . . . , il ≤ n
}∣∣.



Abazari Journal of Inequalities and Applications        (2021) 2021:134 Page 5 of 11

Definition 3.6 Let (X, F , T) be a PGM-space.
(i) A sequence {xn} in X is statistically convergent to a point x in X w.r.t. strong

topology if, for any ε > 0 and 0 < δ < 1,

δl
({

(i1, i2, . . . , il) ∈ N
l : F(xi1 ,xi2 ,...,xil ,x)(ε) ≤ 1 – δ

})
= 0,

and is denoted by xn
st−→ x or st – limn→∞ xn = x.

(ii) {xn} is said to be statistically Cauchy w.r.t. strong topology if, for all ε > 0 and
0 < δ < 1, there exists iε ∈N such that

δl
({

(i1, i2, . . . , il) ∈ N
l : F(xi1 ,xi2 ,...,xil ,xiε )(ε) ≤ 1 – δ

})
= 0.

We can restate part (i) of the above definition as follows:
(i′) xn

st−→ x if and only if, for any ε > 0 and 0 < δ < 1,

δl
({

(i1, i2, . . . , il) ∈N
l : (xi1 , xi2 , . . . , xil ) /∈ Mx(ε, δ)

})
= 0.

The following theorem shows that if a sequence is statistically convergent to a point in X,
then that point is unique.

Theorem 3.7 Let {xn} be a sequence in a PGM-space (X, F , T) such that xn
st−→ x and

xn
st−→ y, then x = y.

Proof Let ε > 0 and 0 < δ < 1, by the continuity of T , there exists 0 < δ0 < 1 such that

T(1 – δ0, 1 – δ0) > 1 – δ.

Set

A(ε, δ) :=
{

(i1, i2, . . . , il) ∈N
l : F(xi1 ,xi2 ,...,xil ,x)

(
ε

2

)
≤ 1 – δ0

}
,

B(ε, δ) :=
{

(i1, i2, . . . , il) ∈N
l : F(xi1 ,xi2 ,...,xil ,y)

(
ε

2

)
≤ 1 – δ0

}
,

and

C(ε, δ) := A(ε, δ) ∪ B(ε, δ).

Since xn
st−→ x and xn

st−→ y, so δl(A(ε, δ)) = δl(B(ε, δ)) = 0 and hence δl(C(ε, δ)) = 0, there-
fore δl(Cc(ε, δ)) = 1. Suppose (i1, i2, . . . , il) ∈ Cc(ε, δ), then by parts (ii) of Definition 3.3 and
(iv) of Definition 2.1 we have

F(x,y,y,...,y)(ε) ≥ T
(

F(xi1 ,xi1 ,...,xi1 ,x)

(
ε

2

)
, F(xi1 ,y,y,...,y)

(
ε

2

))

≥ T
(

F(xi1 ,xi2 ,...,xil ,x)

(
ε

2

)
, F(xi1 ,xi2 ,...,xil ,y)

(
ε

2

))
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> T(1 – δ0, 1 – δ0)

> 1 – δ.

Since δ > 0 is arbitrary, we conclude that F(x,y,y,...,y)(ε) = 1, and therefore x = y. �

Theorem 3.8 Every convergent sequence in a PGM-space is statistically convergent.

Proof Let {xn} be a sequence in the PGM-space (X, F , T) that converges to a point x ∈ X.
For ε > 0 and 0 < δ < 1, there exists n0 ∈N such that, for all i1, i2, . . . , il ≥ n0,

F(xi1 ,xi2 ,...,xil ,x)(ε) > 1 – δ.

Set

A(n) :=
{

(i1, i2, . . . , il) ∈ N
l : i1, i2, . . . , il ≤ n, F(xi1 ,xi2 ,...,xil ,x)(ε) > 1 – δ

}
,

then

∣∣A(n)
∣∣ ≥

(
n – n0

l

)

and

lim
n→∞

l!|A(n)|
nl ≥ lim

n→∞
l!
nl

(
n – n0

l

)
= 1,

so

st – lim
n→∞ xn = x. �

Example 3.9 shows that the converse of the above theorem is not valid.

Example 3.9 Let X = R and G : R×R×R −→R
+ be a G-metric on R defined by

G(x, y, z) = |x – y| + |x – z| + |y – z|.

(T = min) Define a function F : R×R×R−→ R
+ as follows:

F(x,y,z)(t) =

⎧
⎨

⎩
H(t), x = y = z,

D( t
G(x,y,z) ), otherwise,

where H(t) and D(t) are distribution functions as follows:

H(t) =

⎧
⎨

⎩
0, t ≤ 0,

t, t > 0.
, D =

⎧
⎨

⎩
0, t ≤ 0,

1 – e–t , t > 0.
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Now, consider the following sequence in R:

xn =

⎧
⎨

⎩
n, n is square,

1, otherwise.

It is clear that {xn} statistically converges to 1 but it is not convergent normally.

Definition 3.10 A set A = {nk : k ∈N} is said to be statistically dense in N if the set

A(n) =
{

(i1, i2, . . . , il) ∈ Al, i1, i2, . . . , il ≤ n
}

has asymptotic density 1, i.e.,

δl(A) = lim
n→∞

l!|A(n)|
nl = 1.

Theorem 3.11 Let {xn} be a sequence in the PGM-space (X, F , T). Then the following are
equivalent:

(i) {xn} statistically converges to a point x ∈ X .
(ii) There is a sequence {yn} in X such that xn = yn for almost all n, and {yn} converges

to x.
(iii) There is a statistically dense subsequence {xnk } of {xn} such that {xnk } is convergent.
(iv) There is a statistically dense subsequence {xnk } of {xn} such that {xnk } is statistically

convergent.

Proof (i �⇒ ii) Let {xn} be a sequence that converges to x, so

δl
({

(i1, i2, . . . , il) ∈N
l : F(xi1 ,xi2 ,...,xil ,x)(ε) > 1 – δ

})

= lim
n→∞

l!
nl

∣∣{(i1, i2, . . . , il) ∈ N
l; i1, i2, . . . , il ≤ n, F(xi1 ,xi2 ,...,xil ,x)(ε) > 1 – δ

}∣∣ = 1.

For each k ∈N, we can choose an increasing sequence {nk} such that, for every n > nk ,

l!
nl

∣∣∣∣

{
(i1, i2, . . . , il) ∈N

l; i1, i2, . . . , il ≤ n, F(xi1 ,xi2 ,...,xil ,x)(ε) > 1 –
1
2k

}∣∣∣∣ > 1 –
1
2k .

Define the sequence {yn} as follows:

ym =

⎧
⎪⎪⎨

⎪⎪⎩

xm, 1 ≤ m ≤ n1,

xm, nk < m ≤ nk+1, i1, i2, . . . , il–1 ≤ nk+1, F(xi1 ,xi2 ,...,xil–1 ,xm ,x)(ε) > 1 – 1
2k ,

x, otherwise.

Choose k ∈ N such that 1
2k < δ. It is clear that {ym} converges to x. Fix n ∈ N, for nk < n ≤

nk+1, we have

{
(i1, i2, . . . , il) ∈N

l; i1, i2, . . . , il ≤ n; xij �= yij
}

⊆ {
(i1, i2, . . . , il) ∈N

l; i1, i2, . . . , il ≤ n
}

–
{

(i1, i2, . . . , il) ∈N
l; i1, i2, . . . , il ≤ nk , F(xi1 ,xi2 ,...,xil ,x)(ε) > 1 –

1
2k

}
.
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Hence,

lim
n→∞

l!
nl

∣∣{(i1, i2, . . . , il) ∈ N
l; i1, i2, . . . , il ≤ n; xij �= yij

}∣∣

≤ 1 – lim
n→∞

l!
nl

∣∣∣∣

{
(i1, i2, . . . , il) ∈N

l; i1, i2, . . . , il ≤ nk , F(xi1 ,xi2 ,...,xil ,x)(ε) > 1 –
1
2k

}∣∣∣∣

<
1
2k < δ,

so

δl
({

(i1, i2, . . . , il) ∈N
l; i1, i2, . . . , il ≤ n; xij �= yij

})

= lim
n→∞

l!
nl

∣∣{(i1, i2, . . . , il) ∈ N
l; i1, i2, . . . , il ≤ n; xij �= yij

}∣∣ = 0.

(ii �⇒ iii) Let {yn} be a convergent sequence in X and A = {n ∈ N : yn �= xn}. We have
δl(A) = 1, so the sequence {yn} is a statistical dense subsequence of {xn} that is convergent.

(iii �⇒ iv) It is obvious from Theorem 3.8.
(iv �⇒ i) Let {xnk } be a statistically dense subsequence of {xn} that is statistically conver-

gent to a point x ∈ X. Set A = {nk : k ∈N}, so δl(A) = 1. For ε > and 0 < δ < 1,

{
(i1, i2, . . . , il) ∈N

l; i1, i2, . . . , il ≤ n, F(xi1 ,xi2 ,...,xil ,x)(ε) > 1 – δ
}

⊇ {
(i1, i2, . . . , il) ∈A

l; i1, i2, . . . , il ≤ n, F(xi1 ,xi2 ,...,xil ,x)(ε) > 1 – δ
}

.

Hence,

lim
n→∞

l!
nl

∣∣{(i1, i2, . . . , il) ∈ N
l; i1, i2, . . . , il ≤ n, F(xi1 ,xi2 ,...,xil ,x)(ε) > 1 – δ

}∣∣

≥ lim
n→∞

l!
nl

∣∣{(i1, i2, . . . , il) ∈ A
l; i1, i2, . . . , il ≤ n, F(xi1 ,xi2 ,...,xil ,x)(ε) > 1 – δ

}∣∣ = 1.

So,

δl
({

(i1, i2, . . . , il) ∈N
l; i1, i2, . . . , il ≤ n, F(xi1 ,xi2 ,...,xil ,x)(ε) > 1 – δ

})
= 1.

Therefore {xn} statistically converges to x. �

The following corollary is a direct consequence of the above theorem.

Corollary 3.12 Every statistically convergent sequence in a PGM-space has a convergent
subsequence.

Theorem 3.13 Every statistically convergent sequence in a PGM-space is statistically
Cauchy.

Proof Suppose that {xn} is a sequence that statistically converges to a point x. Let ε > 0
and 0 < δ < 1. Since T is continuous, there are 0 < δ1 < 1 and 0 < δ2 < 1 such that T(1 –



Abazari Journal of Inequalities and Applications        (2021) 2021:134 Page 9 of 11

δ1, 1 – δ2) > 1 – δ. On the other hand, there exists iε such that

F(xiε ,x,x,...,x)

(
ε

2

)
> 1 – δ1.

Since

F(xi1 ,xi2 ,...,xil ,x)(ε) ≥ T
(

F(xiε ,x,...,x)

(
ε

2

)
, F(xi1 ,xi2 ,...,xil ,xiε )

(
ε

2

))
,

so
{

(i1, i2, . . . , il) ∈N
l; i1, i2, . . . , il ≤ n, F(xi1 ,xi2 ,...,xil ,xiε )

(
ε

2

)
> 1 – δ2

}

⊆ {
(i1, i2, . . . , il) ∈N

l; i1, i2, . . . , il ≤ n, F(xi1 ,xi2 ,...,xil ,x)(ε) > 1 – δ
}

.

Hence

lim
n→∞

l!
nl

∣∣∣∣

{
(i1, i2, . . . , il) ∈ N

l; i1, i2, . . . , il ≤ n, F(xi1 ,xi2 ,...,xil ,xiε )

(
ε

2

)
> 1 – δ2

}∣∣∣∣

≤ lim
n→∞

l!
nl

∣∣{(i1, i2, . . . , il) ∈ N
l; i1, i2, . . . , il ≤ n, F(xi1 ,xi2 ,...,xil ,x)(ε) > 1 – δ

}∣∣.

Since {xn} is statistically convergent, so the right-hand side of the previous inequality is
zero. Therefore it shows that the sequence {xn} is statistically Cauchy. �

Definition 3.14 Let (X, F , T) be a PGM-space. If every statistically Cauchy sequence is
statistically convergent, then (X, F , T) is said to be statistically complete.

Corollary 3.15 Every statistically complete PGM-space is complete.

Proof Let (X, F , T) be a statistically complete PGM-space. Suppose that {xn} is a Cauchy
sequence in (X, F , T), so it is a statistically Cauchy sequence. Since X is statistically com-
plete, so {xn} is statistically convergent. By Corollary 3.12, there is a subsequence {xnk }
of {xn} that converges to a point x ∈ X. By the continuity of T , for 0 < δ < 1, there exist
0 < δ1, δ2, δ3, δ4 < 1 such that

⎧
⎨

⎩
T(1 – δ1, 1 – δ2) > 1 – δ,

T(1 – δ3, 1 – δ4) > 1 – δ1.

Let δ5 := max{δ2, δ3}, then we have

T
(
T(1 – δ5, 1 – δ4), 1 – δ5

)
> 1 – δ.

For ε > 0, since {xn} is Cauchy, then there exist N1 ∈ N and xiε ∈ {xn} such that, for all
i1, i2, . . . , il ≥ N1,

F(xi1 ,xi2 ,...,xil ,xiε )

(
ε

4

)
> 1 – δ5,
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and since xnk −→ x, there exists N2 ≥ N1 such that, for in1 , in2 , . . . , inl ≥ N2,

F(xin1 ,xin2 ,...,xinl
,x)

(
ε

4

)
> 1 – δ5.

For i1, i2, . . . , il, in1 , in2 , . . . , inl ≥ N2, we have

F(xi1 ,xi2 ,...,xil ,x)(ε)

≥ T
(

F(xiε ,x,x,...,x)

(
ε

2

)
, F(xi1 ,xi2 ,...,xil ,xiε )

(
ε

2

))

≥ T
(

T
(

F(xiε ,xin1 ,xin1 ,...,xin1 )

(
ε

4

)
, F(xin1 ,x,x,...,x)

(
ε

4

))
, F(xi1 ,xi2 ,...,xil ,xiε )

(
ε

2

))

≥ T
(

T
(

F(xiε ,xin1 ,xin2 ,...,xinl
)

(
ε

4

)
, F(xin1 ,xin1 ,xin2 ,...,xinl

)

(
ε

4

))
, F(xi1 ,xi2 ,...,xil ,xiε )

(
ε

4

))

> T
(
T(1 – δ5, 1 – δ4), 1 – δ5

)

> 1 – δ.

The third inequality arises from part (ii) of Definition 3.3 and the nondecreasing property
of F . So, {xn} is convergent and therefore (X, F , T) is complete. �
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