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1 Introduction
For the research on the competition index, m-competition index, the scrambling index
and the generalized μ-scrambling index, please refer to [1–3, 5, 6, 8, 9] and [7, 11], respec-
tively. Cho et al. [6] defined the m-step competition graph of a digraph which is an exten-
sion of a competition graph. In 2009, Akelbek and Kirkland [2] defined and studied the
scrambling index of a primitive digraph and provided an upper bound on the scrambling
index of a primitive digraph. The m-competition index of a primitive digraph was intro-
duced by Kim [8]. Kim investigated the m-competition index of a primitive digraph and
gave an upper bound for the m-competition indices of primitive digraphs. In 2010, Huang
and Liu [7] gave the definition of the generalized μ-scrambling indices for a primitive di-
graph which are a generalization of the scrambling index and m-competition index and
they provided some bounds for the generalized μ-scrambling indices of some primitive
digraphs. In this paper, we give some bounds for μ-scrambling indices of some primitive
digraphs.

The outline of this paper is as follows: Some notation and notions used throughout this
paper are introduced in Sect. 2. In Sect. 3, we study the generalized μ-scrambling indices
of the primitive digraphs with d loops.

2 Definitions and terminology
In this section, we introduce some definitions,notations which are needed to use in the
presentations and proofs of our main results in this paper.
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A digraph D consists of a nonempty set V = V (D) and an arc set E = E(D). In D,
loops are permitted but multiple arcs are not. A path P = x → y is a sequence of edges
{(x, v1), (v1, v2), . . . , (vk–1, y)} in which all vertices are distinct. A cycle C is a closed path
with the first and the last vertices coincided. A walk from x to y is a sequence of arcs:
e1, e2, . . . , ek such that the terminal vertex of ei is the same as the initial vertex of ei+1 for
i = 1, 2, . . . , k – 1, denoted by W = x → y. The length of a walk or cycle is the number of
arcs. A walk W = x → y of length k is denoted by x k→ y. A cycle of length l is denoted by
Cl . The girth of D which has at least one cycle, is the length of a shortest cycle in D.

A digraph D is primitive with a walk of length k from each vertex x to each vertex y (not
necessarily distinct). The digraph D is primitive if and only if D is strongly connected and
the greatest common divisor of the lengths of its cycles is 1 (see [4]). For a positive integer
s, the sth power of D, denoted by D(s), is the digraph on the same vertex set V (D) and with
an arc from i to j if and only if i s→ j in D. The scrambling index k(D) of a primitive digraph
D is the smallest positive integer k such that, for every pair of vertices u and v, there exists
a vertex w such that u k→ w and v k→ w in D (see [2]).

Let D be a digraph with vertex set V and let k be a positive integer. A vertex w of D is a
k-step common prey for u and v if u k→ w and v k→ w. The k-step m-competition graph of
D has the same vertex set of D and an edge between vertices u and v if and only if there are
at least m distinct vertices v1, . . . , vm in D such that u k→ vi and v k→ vi for i = 1, 2, . . . , m (see
[6]). The m-competition index c(D, m) of a primitive digraph D is the smallest positive in-
teger k such that, for every pair of vertices u and v, there are m distinct vertices v1, . . . , vm in
D such that u k→ vi and v k→ vi for i = 1, 2, . . . , m (see [2]). That is to say, the m-competition
index of D is the smallest positive integer k such that the k-step m-competition graph is
complete.

Let Pn denote the set of all primitive digraphs of order n.

Definition 2.1 ([7]) Let D ∈ Pn, and λ, μ be integers with 1 ≤ λ,μ ≤ n. For X ⊆ V (D), let
k(μ)

X be the smallest positive integer m such that there exist μ vertices w1, w2, . . . , wμ of D
such that x m→ wi (i = 1, 2, . . . ,μ) in D for every vertex x of X. Then

h(D,λ,μ) := min
{

k(μ)
X | X ⊆ V (D) and | X |= λ

}
and

k(D,λ,μ) := max
{

k(μ)
X | X ⊆ V (D) and | X |= λ

}

are called the λth lower and upper μ-scrambling indices of D, respectively. For conve-
nience, let kX(D) := k(1)

X (D), h(D,λ) := h(D,λ, 1) and k(D,λ) := k(D,λ, 1).

Since k(D, 2) = k(D), in [7] Huang and Liu called h(D,λ,μ) and k(D,λ,μ) the generalized
μ-scrambling indices, h(D,λ) and k(D,λ) the generalized scrambling indices of D in Pn.
As k(D, 2, m) = c(D, m), the generalized μ-scrambling indices are also generalizations of
the m-competition index.

3 Generalized μ-scrambling indices
In [7], Huang and Liu investigated generalized scrambling indices of the primitive digraphs
with d loops. In this section, we study the generalized μ-scrambling indices of the primi-
tive digraphs with d loops.
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For a vertex subset X ⊆ V (D), define RD
t (X) to be the set of vertices in D reachable from

some vertices in X via a walk of length t.
Let d be an integer with 1 ≤ d ≤ n and let Pn(d) be the class of primitive digraphs

with n vertices and d loops. Let Ln,d (1 ≤ d ≤ n) be the digraph with vertex set V (Ln,d) =
{1, 2, . . . , n} and arc set

E(Ln,d) =
{

(i, i + 1)|1 ≤ i ≤ n – 1
} ∪ {

(n, 1)
} ∪ {

(i, i)|n – d + 1 ≤ i ≤ n
}

.

Theorem 3.1 Let D ∈ Pn(d) and 1 ≤ λ,μ ≤ n.

h(D,λ,μ) ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ + μ – 2, λ + μ < n + 1,

n – 1, d ≥ λ,λ + μ ≥ n + 1,

n – 1, d < λ, n + 1 ≤ λ + μ ≤ n + d,

λ + μ – d – 1, d < λ,λ + μ > n + d,

and the bound can be attained by the digraph Ln,d .

Proof Since D ∈ Pn(d), there exists a loop vertex u such that there is a set Y of λ–1 vertices
whose distances to u are at most λ–1. If λ+μ < n+1, let X = Y ∪{u}. Then |X| = λ. Since D
is strongly connected and u is a loop vertex, the minimum number of vertices that can be
reached from u at (μ – 1)-step in D is μ. Therefore, |⋂x∈X RD

λ+μ–2({x})| ≥ μ, which implies
that h(D,λ,μ) ≤ λ + μ – 2.

If d ≥ λ and λ + μ ≥ n + 1, let X be a vertex set which contains λ loop vertices. Since
each vertex in X is a loop vertex, we have RD

n–1(X) = V (D). Therefore, |RD
n–1(X)| = |V (D)| =

n ≥ μ, which implies that h(D,λ,μ) ≤ λ + μ – 2.
If d < λ, let Z be the vertex set of d loop vertices and Xi ⊆ (V (D) \ Z) be the vertex set

of xi vertices whose shortest distance to vertices of Z is i, where 1 ≤ i ≤ λ – d. Assume
∑r

i=1 xi ≤ λ – d <
∑r+1

i=1 xi, where 1 ≤ r ≤ λ – d. Let X = Z ∪ X1 ∪ · · · ∪ Xr ∪ X̄r+1, where
X̄r+1 ⊆ Xr+1 contains x̄r+1 vertices and

∑r
i=1 xi + x̄r+1 = λ – d. Then |X| = λ.

If d < λ and n + 1 ≤ λ + μ ≤ n + d, since RD
n–1(Z) = V (D) and RD

n–1(X1 ∩ · · · ∩ Xr ∩ X̄r+1)
contains at least n –

∑r
i=1 xi – x̄r+1 = n – λ + d vertices, we have |RD

n–1(X)| ≥ n – λ + d ≥ μ.
Therefore, h(D,λ,μ) ≤ λ + μ – 2.

If d < λ and λ + μ > n + d, let k = λ + μ – n – d. Notice that RD
λ+μ–d–1(Xi) = V (D), for

1 ≤ i ≤ k. If k ≥ r + 1, then |RD
λ+μ–d–1(X)| = |V (D)| = n ≥ μ.

If k < r + 1, then RD
λ+μ–d–1(X) =

⋂r
i=k+1[RD

λ+μ–d–1(Xi)] ∩ RD
λ+μ–d–1(X̄r+1). Since

⋂r
i=k+1[RD

λ+μ–d–1(Xi)] ∩ RD
λ+μ–d–1(X̄r+1) contains at least n – (

∑r
i=k+1 xi + x̄r+1) vertices, we

have |RD
λ+μ–d–1(X)| ≥ n – (λ – d –

∑k
i=1 xi) ≥ n – λ + d + k = n – λ + d + (λ + μ – n – d) = μ.

We thus arrive at h(D,λ,μ) ≤ λ + μ – 2.
On the other hand, consider the digraph Ln,d . Lex X be a vertex set with λ vertices. If λ +

μ < n + 1, since RLn,d
λ+μ–3(i) = {i, . . . , n, . . . ,λ+μ+ i – n – 3}, for n – d + 1 ≤ i ≤ n and RLn,d

λ+μ–3(i) =
{n – d + 1, . . . , n, . . . ,λ + μ + i – n – 3}, for 1 ≤ i ≤ n – d + 1, we obtain |⋂x∈X RLn,d

λ+μ–3({x})| ≤
μ – 1.

Noticing that RLn,d
n–2 (i) = {i, . . . , n, . . . , i – 2}, for n – d + 1 ≤ i ≤ n, and RLn,d

n–2 (i) = {n – d +
1, . . . , n, . . . , i – 2}, for 1 ≤ i < n – d + 1. If d ≥ λ and λ + μ ≥ n + 1, then, for any vertex
x ∈ X, RLn,d

n–2 ({x}) contains at most n – 2 vertices. Therefore,
⋂

x∈X RLn,d
n–2 ({x}) contains at
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most n – λ – 1 vertices. As λ + μ ≥ n + 1, we have |⋂x∈X RLn,d
n–2 ({x})| ≤ μ – 2. Consequently,

we obtain h(D,λ,μ) = λ + μ – 2.
If d < λ and n + 1 ≤ λ + μ ≤ n + d, we have for any set X, there is at least one vertex

x ∈ X such that RLn,d
n–2 ({x}) contains at most n – 3 vertices. Thus,

⋂
x∈X RLn,d

n–2 ({x}) contains at
most n – λ – 2 vertices. Since λ + μ ≥ n + 1, we obtain |⋂x∈X RLn,d

n–2 ({x})| ≤ μ – 3. Therefore,
h(D,λ,μ) = λ + μ – 2.

If d < λ and λ + μ > n + d, we have RLn,d
λ+μ–d–2(i) = V (Ln,d), for 2n + 2 – λ – μ ≤ i ≤ n,

and RLn,d
λ+μ–d–2(i) = {n – d + 1, . . . , n, . . . ,λ + μ + i – n – d – 2}, for 1 ≤ i < 2n + 2 – λ – μ.

Thus, for any vertex set X of λ vertices, there is a set Y ⊆ X of at least n + 1 – μ vertices,
such that, for any vertex y ∈ Y , RLn,d

λ+μ–d–2({y}) contains at most λ + μ + y – n – 2 vertices,
where 1 ≤ y < 2n + 2 – λ – μ. It follows that

⋂
y∈Y RLn,d

λ+μ–d–2({y}) containing at most μ – 1
vertices. Therefore, |⋂x∈X RLn,d

λ+μ–d–2({x})| ≤ |⋂y∈Y RLn,d
λ+μ–d–2({y})| ≤ μ – 1. It follows that

h(D,λ,μ) = λ + μ – 2. This completes the proof. �

Lemma 3.2 ([10]) Let D ∈ Pn(d) and ∅ 
= X ⊆ V (D). Then, for nonnegative integers i, j, t,
k, we have RD

i (X) = RD
i–j(RD

j (X)) for i ≥ j, and |⋃k
t=0 RD

t (X)| ≥ min{|X| + k, n}.

Theorem 3.3 Let D ∈ Pn(d) and 1 ≤ λ,μ ≤ n. Then

k(D,λ,μ) ≤
⎧
⎨

⎩
n – � d–μ+1

λ
�, μ ≤ d,

n + μ – d – 1, μ > d,

and the bound can be attained by the digraph Ln,d .

Proof Let X ⊆ V (D) be a vertex set of any λ vertices. Set X = {v1, v2, . . . , vλ}.
Case 1. If μ ≤ d.
For any vertex vi ∈ X, since D ∈ Pn(d) ⊆ Pn, by Lemma 3.2,

∣∣∣∣∣

n–� d–μ+1
λ

�⋃

t=0

RD
t
({vi}

)
∣∣∣∣∣
≥ n –

⌈
d – μ + 1

λ

⌉
+ 1,

where i = 1, 2, . . . ,λ. Let d–μ+1
λ

= k′ + a where k′ is a nonnegative integer and 0 ≤ a < 1.
Therefore, if 0 < a < 1,

∣∣∣∣∣

λ⋂

i=1

[n–k′–1⋃

t=0

RD
t
({vi}

)
]∣∣∣∣∣

≥ λ
(
n – k′) – n(λ – 1) ≥ n – d + μ + λa – 1.

Since λa ≥ 1,

∣∣∣∣∣

λ⋂

i=1

[n–k′–1⋃

t=0

RD
t
({vi}

)
]∣∣∣∣∣

≥ n – d + μ.

If a = 0,

∣∣∣∣∣

λ⋂

i=1

[n–k′–1⋃

t=0

RD
t
({vi}

)
]∣∣∣∣∣

≥ λ
(
n – k′ + 1

)
– n(λ – 1) ≥ n – d + μ + λ – 1.
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Since λ ≥ 1, we have

∣∣∣∣∣

λ⋂

i=1

[n–k′–1⋃

t=0

RD
t
({vi}

)
]∣∣∣∣∣

≥ n – d + μ.

It follows that there are at least μ loop vertices u1, u2, . . . , uμ such that ui ∈
⋂λ

i=1[
⋃n–k′–1

t=0 RD
t ({vi})], where i = 1, 2, . . . ,μ. That is to say,

∣∣∣∣∣

λ⋂

i=1

RD
n–k′–1

({vi}
)
∣∣∣∣∣
≥ μ.

Therefore, k(D,λ,μ) ≤ n – � d–μ+1
λ

�.
Consider the digraph Ln,d . Let

t = n –
⌈

d – μ + 1
λ

⌉
and k∗ =

⌈
d – μ + 1

λ

⌉
.

Then we consider the following two subcases.
Subcase 1. If λ ≤ d + 1.
When λ = 1, then t = n – d + μ – 1. Noting that

RLn,d
t–1

({1}) = {n – d + 1, n – d + 2, . . . , n – d + μ – 1},

then

∣∣RLn,d
t–1

({1})∣∣ = μ – 1.

When λ = 2, as

RLn,d
t–1

({1}) =
{

n – d + 1, . . . , n – k∗}

and

RLn,d
t–1

({
n – k∗ – μ + 2

})
=

{
n – k∗ – μ + 2, . . . , n, 1, . . . , n – 2k∗ – μ + 1

}
,

we have

∣∣RLn,d
t–1

({1}) ∩ RLn,d
t–1

({
n – k∗ – μ + 2

})∣∣ =
∣∣{n – k∗ – μ + 2, . . . , n – 1

}∣∣ = μ – 1.

When λ = 3, if n – 2k∗ – μ + 1 < n – d + 1, then k∗ = 1, t = n – 1. Let

X =
{

1, n – k∗ – μ + 2, u
} ⊆ V (Ln,d),

where u ∈ V (Ln,d) \ {1, n – k∗ – μ + 2}. Then |X| = 3. Since

RLn,d
t–1

({1}) =
{

n – d + 1, . . . , n – k∗}



Zhang et al. Journal of Inequalities and Applications        (2021) 2021:128 Page 6 of 13

and

RLn,d
t–1

({
n – k∗ – μ + 2

})
=

{
n – k∗ – μ + 2, . . . , n, 1, . . . , n – 2k∗ – μ + 1

}
,

we have

RLn,d
t–1

({1}) ∩ RLn,d
t–1

({
n – k∗ – μ + 2

})
=

{
n – k∗ – μ + 2, . . . , n – k∗}.

Thus,
∣∣∣∣
⋂

x∈X

RLn,d
t–1

({x})
∣∣∣∣ ≤ ∣∣RLn,d

t–1
({1}) ∩ RLn,d

t–1
({

n – k∗ – μ + 2
})∣∣ = μ – 1.

If n – 2k∗ – μ + 1 ≥ n – d + 1, then n – 2k∗ – μ + 1 < n – d + k∗ + 1 < n – k∗ – μ + 2. Let

X =
{

1, n – k∗ – μ + 2, n – d + k∗} ⊆ V (Ln,d),

where u ∈ V (Ln,d) \ {1, n – k∗ – μ + 2}. Then |X| = 3. Since

RLn,d
t–1

({1}) =
{

n – d + 1, . . . , n – k∗},

RLn,d
t–1

({
n – d + k∗ + 1

})
=

{
n – d + k∗ + 1, . . . , n, 1, . . . , n – d

}

and

RLn,d
t–1

({
n – k∗ – μ + 2

})
=

{
n – k∗ – μ + 2, . . . , n, 1, . . . , n – 2k∗ – μ + 1

}
,

we have

⋂

x∈X

RLn,d
t–1

({x}) =
{

n – k∗ – μ + 2, . . . , n – k∗},

which implies

∣∣∣∣
⋂

x∈X

RLn,d
t–1

({x})
∣∣∣∣ = μ – 1.

When λ = 4, if n – 2k∗ – μ + 1 < n – d + 1, then k∗ = 1 and t = n – 1. Let

X = {1, n – μ + 1, u1, u2} ⊆ V (Ln,d),

where u1, u2 ∈ V (Ln,d) \ {1, n – μ + 1}. Then |X| = 4. Since

RLn,d
t–1

({1}) = {n – d + 1, . . . , n – μ + 1, . . . n – 1}

and

RLn,d
t–1

({n – μ + 1}) = {n – μ + 1, . . . , n, 1, . . . , n – μ – 1},
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we have

∣∣RLn,d
t–1

({1}) ∩ RLn,d
t–1

({n – μ + 1})∣∣ =
∣∣{n – μ + 1, . . . , n – 1}∣∣ = μ – 1.

This implies

|
⋂

x∈X

RLn,d
t–1

({x}) ≤ μ – 1.

If n – d + k∗ + 1 > n – 2k∗ – μ + 1 ≥ n – d + 1, letting

X =
{

1, n – k∗ – μ + 2, n – d + k∗ + 1, w
} ⊆ V (Ln,d),

where w ∈ V (Ln,d) \ {1, n – k∗ – μ + 2, n – d + k∗ + 1}, we have |X| = 4. Since

RLn,d
t–1

({1}) =
{

n – d + 1, . . . , n – k∗},

RLn,d
t–1

({
n – d + k∗ + 1

})
=

{
n – d + k∗ + 1, . . . , n, 1, . . . , n – d

}
,

RLn,d
t–1

({
n – μ – k∗ + 2

})
=

{
n – μ – k∗ + 2, . . . , n, 1, . . . , n – 2k∗ – μ + 1

}
,

we have

RLn,d
t–1

({1})∩RLn,d
t–1

({
n –μ– k∗ + 2

})∩RLn,d
t–1

({
n – d + k∗ + 1

})
=

{
n – k∗ –μ+ 2, . . . , n – k∗}.

Thus,

∣∣∣∣
⋂

x∈X

RLn,d
t–1

({x})
∣∣∣∣ ≤ ∣∣RLn,d

t–1
({1})∩RLn,d

t–1
({

n –μ– k∗ + 2
})∩RLn,d

t–1
({

n – d + k∗ + 1
})∣∣ ≤ μ– 1.

If n – d + k∗ + 1 ≤ n – 2k∗ – μ + 1, letting

X =
{

1, n – d + k∗ + 1, n – k∗ – μ + 2, n – 2k∗ – μ + 2
} ⊆ V (Ln,d),

we have |X| = 4. Since

RLn,d
t–1

({1}) =
{

n – d + 1, . . . , n – k∗},

RLn,d
t–1

({
n – d + k∗ + 1

})
=

{
n – d + k∗ + 1, . . . , n, 1, . . . , n – d

}
,

RLn,d
t–1

({
n – k∗ – μ + 2

})
=

{
n – μ – k∗ + 2, . . . , n, 1, . . . , n – 2k∗ – μ + 1

}
,

RLn,d
t–1

({
n – 2k∗ – μ + 2

})
=

{
n – 2k∗ – μ + 2, . . . , n, 1, . . . , n – 3k∗ – μ + 1

}
,

we have

∣∣∣∣
⋂

x∈X

RLn,d
t–1

({x})
∣∣∣∣ =

∣∣{n – k∗ – μ + 2, n – k∗ – μ + 3, . . . , n – k∗}∣∣ = μ – 1.
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When λ ≥ 5, if n – 2k∗ – μ + 1 < n – d + 1, letting

X =
{

1, n – k∗ – μ + 2, v1, . . . , vλ–2
} ⊆ V (Ln,d),

where vi ∈ V (Ln,d) \ {1, n – k∗ – μ + 2} for i = 1, 2, . . . ,λ – 2, then |X| = λ. Since

RLn,d
t–1

({1}) =
{

n – d + 1, . . . , n – k∗}

and

RLn,d
t–1

({
n – k∗ – μ + 2

})
=

{
n – μ – k∗ + 2, . . . , n, 1, . . . , n – 2k∗ – μ + 1

}
,

we have

(
⋂

x∈X

RLn,d
t–1

({x}) ⊆ (
RLn,d

t–1
({1}) ∩ RLn,d

t–1
({

n – μ – k∗ + 2
}))

=
{

n – k∗ – μ + 2, . . . , n – k∗},

which implies that

∣∣∣∣
⋂

x∈X

RLn,d
t–1

({x})
∣∣∣∣ ≤ μ – 1.

If n – d + k∗ + 1 > n – 2k∗ – μ + 1 ≥ n – d + 1, letting

X =
{

1, n – d + k∗ + 1, n – k∗ – μ + 2, v1, . . . , vλ–3
} ⊆ V (Ln,d),

where vi ∈ V (Ln,d) \ {1, n – d + k∗ + 1, n – k∗ – μ + 2}, for i = 1, 2, . . . ,λ – 3, then |X| = λ. As

RLn,d
t–1

({1}) =
{

n – d + 1, . . . , n – k∗},

RLn,d
t–1

({
n – d + k∗ + 1

})
=

{
n – d + k∗ + 1, . . . , n, 1, . . . , n – d

}
,

and

RLn,d
t–1

({
n – k∗ – μ + 2

})
=

{
n – μ – k∗ + 2, . . . , n, 1, . . . , n – 2k∗ – μ + 1

}
,

we have

RLn,d
t–1

({1})∩RLn,d
t–1

({
n –μ– k∗ + 2

})∩RLn,d
t–1

({
n – d + k∗ + 1

})
=

{
n – k∗ –μ+ 2, . . . , n – k∗}.

Thus,
∣∣∣∣
⋂

x∈X

RLn,d
t–1

({x})
∣∣∣∣ ≤ ∣∣RLn,d

t–1
({1})∩ RLn,d

t–1
({

n – μ – k∗ + 2
})∩ RLn,d

t–1
({

n – d + k∗ + 1
})∣∣ = μ – 1.

If n – (r + 1)k∗ – μ + 1 < n – d + k∗ + 1 ≤ n – rk∗ – μ + 1 and 2 ≤ r ≤ λ – 3, letting

Y =
{

1, n – d + k∗ + 1, n – k∗ – μ + 2, n – 2k∗ – μ + 2, . . . , n – rk∗ – μ + 2
} ⊆ V (Ln,d),
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and

X =
(
Y ∪ {v1, . . . , vλ–r–2}

) ⊆ V (Ln,d),

where vi ∈ V (Ln,d) \ {1, n – d + k∗ + 1, n – k∗ – μ + 2, n – 2k∗ – μ + 2, . . . , n – rk∗ – μ + 2} for
i = 1, 2, . . . ,λ – r – 2, then |X| = λ. Since

RLn,d
t–1

({1}) =
{

n – d + 1, . . . , n – k∗},

RLn,d
t–1

({
n – d + k∗ + 1

})
=

{
n – d + k∗ + 1, . . . , n, 1, . . . , n – d

}
,

and for 1 ≤ i ≤ r,

RLn,d
t–1

({
n – μ – ik∗ + 2

})
=

{
n – μ – ik∗ + 2, . . . , n, 1, . . . , n – (i + 1)k∗ – μ + 1

}
,

we have

⋂

x∈Y

RLn,d
t–1

({x}) =
{

n – k∗ – μ + 2, . . . , n – k∗}.

Thus,

∣∣∣∣
⋂

x∈Y

RLn,d
t–1

({x})
∣∣∣∣ ≤

∣∣∣∣
⋂

x∈X

RLn,d
t–1

({x})
∣∣∣∣ = μ – 1.

If n – d + k∗ + 1 ≤ n – (λ – 2)k∗ – μ + 1, letting

X =
{

1, n – d + k∗ + 1, n – k∗ – μ + 2, n – 2k∗ – μ + 2, . . . , n – (λ – 2)k∗ – μ + 2
} ⊆ V (Ln,d),

we have |X| = λ. Since

RLn,d
t–1

({1}) =
{

n – d + 1, . . . , n – k∗},

RLn,d
t–1

({
n – d + k∗ + 1

})
=

{
n – d + k∗ + 1, . . . , n, 1, . . . , n – d

}
,

for 1 ≤ i ≤ λ – 2

RLn,d
t–1

({
n – μ – ik∗ + 2

})
=

{
n – μ – ik∗ + 2, . . . , n, 1, . . . , n – (i + 1)k∗ – μ + 1

}
,

and n – d + k∗ + 1 > n – (λ – 1)k∗ – μ + 1, we have

⋂

x∈Y

RLn,d
t–1

({x}) =
{

n – k∗ – μ + 2, . . . , n – k∗}.

Therefore,

∣∣∣∣
⋂

y∈Y

RLn,d
t–1

({y})
∣∣∣∣ ≤

∣∣∣∣
⋂

x∈X

RLn,d
t–1

({x})
∣∣∣∣ = μ – 1.
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From the above, we have k(Ln,d,λ,μ) ≥ n – � d–μ+1
λ

�, it follows that k(Ln,d,λ,μ) = n –
� d–μ+1

λ
�.

Subcase 2. If λ > d + 1.
If λ > d + 1, then t = n – 1. It is easy to see that

RLn,d
t–1

({1}) = {n – d + 1, n – d + 2, . . . , n – 1},
RLn,d

t–1
({2}) = {n – d + 1, n – d + 2, . . . , n},

for 3 ≤ i ≤ λ – d,

RLn,d
t–1

({λ – d}) = {n – d + 1, . . . , n, 1, . . . ,λ – d – 2}

and for i = n – d + 1, . . . , n,

RLn,d
t–1

({i}) = {i, . . . , n, 1, . . . , i – 2}.

Let

X1 = {1, . . . ,λ – d, n – d + 1}, X2 = {n – d + 2, . . . , n} and X = X1 ∪ X2.

Then |X| = λ. Since

⋂

x∈X1

RLn,d
t–1

({x}) = {n – d + 1, n – d + 2, . . . , n – 1}

and

⋂

x∈X2

RLn,d
t–1

({x}) = {n, 1, . . . , n – d – 1},

we have
⋂

x∈X RLn,d
t–1 ({x}) = φ. Therefore,

k(Ln,d,λ,μ) ≥ n –
⌈

d – μ + 1
λ

⌉
,

it follows that

k(Ln,d,λ,μ) = n –
⌈

d – μ + 1
λ

⌉
.

Case 2. If μ > d + 1.
Let X ⊆ V (D) be a vertex set of any λ vertices. Set X = {v1, v2, . . . , vλ}. For any vertex

vi ∈ X, since D ∈ Pn(d) ⊆ Pn, by Lemma 3.2,

∣∣∣∣∣

n–1⋃

t=0

RD
t
({vi}

)
∣∣∣∣∣
≥ n – 1 + 1 = n,
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where i = 1, 2, . . . ,λ. Therefore, each loop vertex ui ∈ ⋃n–1
t=0 RD

t ({vi}), where i = 1, 2, . . . , d.
Then

{u1, u2, . . . , ud} ⊆
(

λ⋂

i=1

RD
n–1

({vi}
)
)

.

Since u1, u2, . . . , ud are loop vertices, there are at least μ – d vertices w1, w2, . . . , wμ–d and
wi /∈ {u1, u2, . . . , ud} such that

{w1, w2, . . . , wμ–d} ⊆ RD
μ–d

({u1, u2, . . . , ud}
)
,

where i = 1, 2, . . . ,μ – d. It follows that
∣∣∣∣∣

λ⋂

i=1

RD
n+μ–d+1

({vi}
)
∣∣∣∣∣
≥ d + μ – d = μ.

We thus arrive at

k(D,λ,μ) ≤ n + μ – d – 1.

Next we consider the digraph Ln,d . Let X ⊆ Ln,d be a vertex set of λ vertices and set
X = {1, 2, . . . ,λ}. Let t = n + μ – d – 1. Since for i = 2, . . . , n – d,

RLn,d
t–1

({1}) = {n – d + 1, . . . , n, 1, . . . ,μ – d – 1} ⊆ RLn,d
t–1

({i}),

and for j = n – d + 1, . . . , n,

RLn,d
t–1

({j}) = {1, . . . , n},

we have

⋂

x∈X

RLn,d
t–1

({x}) = {n – d + 1, . . . , n, 1, . . . ,μ – d – 1},

which implies that
∣∣∣∣
⋂

x∈X

RLn,d
t–1

({x})
∣∣∣∣ = μ – 1.

Therefore, k(Ln,d,λ,μ) ≥ n + μ – d – 1. It follows that

k(Ln,d,λ,μ) = n + μ – d – 1.

Combining the proofs of Cases 1 and 2, the theorem follows as expected. �

Theorem 3.4 Let D ∈ Pn with girth s. Then

k(D,λ,μ) ≤
⎧
⎨

⎩
n – s + (n – 1 – � n–μ

λ
�)s, λ ≤ s,

n – s + (n – 1 – � n–μ

s �)s, λ > s.
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Proof Let Cs be a directed cycle of length s in D(s). Consider the digraph D(s). Choose any
r vertices w1, w2, . . . , wr of Cs. Let n–μ

r = k + b
r where 0 ≤ b < r – 1. In D(s), since wi is a loop

vertex, |RDs
n–k–1{wi}| ≥ n – k = n – n–μ

r + b
r where i = 1, 2, . . . , r. Therefore

∣∣∣∣∣

r⋂

i=1

RDs
n–k–1{wi}

∣∣∣∣∣
≥ r

(
n –

n – μ

r
+

b
r

)
– (r – 1)n = μ + b ≥ μ.

It follows that

∣∣∣∣∣

r⋂

i=1

RD
(n–k–1)s{wi}

∣∣∣∣∣
≥ μ.

For any λ vertices v1, v2, . . . , vλ ∈ V (D), there is a walk of length n– s from vi to a vertex ui of
Cs where i = 1, 2, . . . ,λ. If λ ≤ s, then |u1, u2, . . . , uλ| ≤ λ and if λ > s, then |u1, u2, . . . , uλ| ≤ s.
Hence,

k(D,λ,μ) ≤
⎧
⎨

⎩
n – s + (n – 1 – � n–μ

λ
�)s, λ ≤ s,

n – s + (n – 1 – � n–μ

s �)s, λ > s. �

4 Conclusions
In this paper, we studied μ-scrambling indices of primitive digraphs and gave some bounds
for the λth lower and upper μ-scrambling indices of primitive digraphs with d loops. How-
ever, the digraphs attaining the sharp upper bounds are not determined completely. For a
general given primitive digraph, its μ-scrambling indices are not given. It would be nice
to settle these problems in further research.
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