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Abstract
In this paper, we deal with the sensitivity analysis in vector equilibrium problems by
using the S-derivative of a set-valued mapping. We first investigate the S-derivative on
a kind of set-valued gap function for the vector equilibrium problems. Based on these
results, S-derivative estimations on a perturbed mapping for the parametric vector
equilibrium problem are given. Moreover, we provide some examples to illustrate the
obtained results. Finally, we derive the S-derivative estimations of a solutions
mapping of the parametric vector equilibrium problems via S-derivative estimations
of a kind of the parametric variational system.
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1 Introduction
Stability analysis and sensitivity analysis have important theory and application in opti-
mization theory. Roughly speaking, stability analysis investigates the continuity of a per-
turbation mapping or marginal function of optimization problems. However, sensitivity
analysis mainly studies the derivative and subdifferential expressions of a perturbation
mapping for optimization problems.

In the past decades, many scholars have carried out extensive research on the sensitivity
analysis of numerical optimization problems and obtained some research results, see [1–
6]. It is well known that the optimal value for a vector optimization problem is not unique.
Thus, various derivatives of set-valued mappings are usually applied to study derivatives
and differential expression of perturbation maps on vector optimization problems, see [7–
12]. On the one hand, the generalized derivatives and coderivatives for set-valued map-
pings have been used to study the sensitivity analysis of vector optimization problems.
Tanino [13, 14] studied the behavior of set-valued perturbation maps via the concept of
contingent derivative. Kuk, Tanino, and Tanaka [15, 16] further investigated sensitivity
analysis in vector optimization problems and extended Tanino’s results. Especially, Shi
[17, 18] investigated various sensitivity analysis results in vector optimization problems
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using the concept of TP-derivative which is called S-derivative by Chuong [19]. The re-
cent paper provides formulae for inner and outer evaluating of the S-derivative of the effi-
cient point multifunction in parametric vector optimization problems. On the other hand,
many scholars have studied sensitivity analysis of vector variational inequalities and vector
equilibrium problems by using the concept of contingent derivatives introduced by Aubin
[20]. Li et al. [21–24] investigated sensitivity analysis of vector variational inequalities by
virtue of a set-valued gap function of parametric vector variational inequalities. Li and Li
[25] obtained some results on sensitivity analysis via a set-valued gap function of paramet-
ric vector equilibrium problems. To the best of our knowledge, there have been no results
in the literature on sensitivity analysis of a vector equilibrium problem via S-derivative of
a set-valued mapping, and this is the motivation for our present work.

In this work, the S-derivative and the set-valued gap function are exploited to study the
sensitivity analysis of vector equilibrium problems. That is, we establish formulae for the
S-derivative of a perturbation mapping and solution mappings on parametric vector equi-
librium problems. The rest of the paper is organized as follows. In Sect. 2, we first provide
some basic definitions and notations from vector optimization and set-valued analysis.
In Sect. 3, we establish formulae of the S-derivative for a set-valued gap function of the
parametric vector equilibrium problems. In Sect. 4, the formulae of S-derivative on per-
turbation mappings for the vector equilibrium problems are given by using the formulae
of S-derivative in Sect. 3. Moreover, some examples are also simultaneously provided to
analyze and illustrate the obtained results. In Sect. 5, the formulae of S-derivative on a
solution mapping for the parametric vector equilibrium problems is further given under
some conditions.

2 Preliminaries
Throughout this paper, unless otherwise specified, let P, X, and Y be three Euclidean
spaces with the usual norms. Let C denote a nonempty, closed, convex, and pointed cone
in Y with apex at the origin and int C �= ∅, where int C denotes the topological interior of C.
Furthermore, the origins of all Euclidean spaces are denoted by 0, the set of nonnegative
real numbers is denoted by R+, the set of the positive integer number is denoted by N.

Definition 2.1 ([26]) We say that y ∈ � ⊂ Y is called a C-minimal point of � iff (� –
{y}) ∩ (–C) = {0}. The set of all C-minimal points of � is denoted by minC �. An element
y ∈ � ⊂ Y is called a weakly C-minimal point of � iff (� – {y}) ∩ (– int C) = ∅. The set of
all weakly C-minimal points of � is denoted by minint C �.

Let F : P → 2Y be a set-valued mapping. The effective domain and the graph of F are
defined by

dom F :=
{

p ∈ P|F(p) �= ∅}
,

gph F :=
{

(p, y) ∈ P × Y |y ∈ F(p)
}

.

Definition 2.2 ([17]) Let (p̄, ȳ) ∈ gph F .
(i) The TP-cone to gph F at (p̄, ȳ) is defined by

TP
(
gph F ; (p̄, ȳ)

)
:=

{
(p, y) ∈ P × Y |∃{tn} ⊂ R+, pn ⊂ P,∃yn ∈ F(pn)

such that pn → p̄, tn(pn – p̄, yn – ȳ) → (p, y)
}

.
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(ii) The set-valued mapping DSF(p̄, ȳ) : P → 2Y is said to be the S-derivative of F at
(p̄, ȳ) iff gph DSF(p̄, ȳ) = TP(gph F ; (p̄, ȳ)). Equivalently, ∀p ∈ P,

TP
(
gph F ; (p̄, ȳ)

)
:=

{
(p, y) ∈ P × Y |∃{tn} ⊂ R+, pn ⊂ P,∃yn ∈ F(pn)

such that pn → p̄, tn(pn – p̄, yn – ȳ) → (p, y)
}

.

Definition 2.3 ([27]) The domination property holds for F around p̄ ∈ P iff there exists a
neighborhood U of p̄ such that

F(p) ⊂ min
C

F(p) + C, ∀p ∈ U .

We consider the following parametric vector equilibrium problem: find x ∈ K(p) such
that

f (p, x, y) /∈ –C\{0}, ∀y ∈ K(p),

where x is a decision variable, p is a perturbation parameter, f : P ×X ×X → Y is a vector-
valued objective function, and K : P → 2X is a set-valued constraint map, which specifies
a feasible decision set. The parametric vector optimization problem is a kind of special
case of the parametric vector equilibrium problem. For all x, y ∈ K(p), we take

f (p, x, y) := h(p, y) – h(p, x),

where h : P × X → Y is a vector-valued mapping. Then we may get the parametric vector-
valued optimization problem:

min
C

h(p, y), ∀y ∈ K(p).

We now introduce a class of set-valued gap functions for parametric vector equilibrium
problems. Define a set-valued mapping G : P × X → 2Y by

G(p, x) =
⋃

y∈K (p)

f (p, x, y) ∪ {0}.

A set-valued mapping V : P × X → 2Y is defined by

V (p, x) = min
C

G(p, x), ∀(p, x) ∈ gphK .

Proposition 2.1 The set-valued mapping V is a gap function of parametric vector equi-
librium problems.

Proof Take any z ∈ C\{0}, x ∈ K(p) and 0 ∈ G(p, x), then we have

0 ∈ {
z – C\{0}} ∩ G(p, x).

Thus, z /∈ V (p, x) and then V (p, x) ∩ {–C\{0}} = ∅, which shows that 0 ∈ V (p, x).
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Using the definition of V , we have

0 ∈ V (p, x) ⇔ 0 ∈ min
C

G(p, x) ⇔ G(p, x) ∩ {–C} = {0}.

So we get G(p, x) ∩ {–C\{0}} = ∅, that is, f (p, x, y) /∈ –C\{0}, ∀y ∈ K(p). �

We give an example on the class set-valued gap functions for parametric vector equilib-
rium problems.

Example 2.1 Let P = X = Y = R and C = R+. Putting f (p, x, y) := x(p + y) and K(p) :=
[–|p|, p]. So we get

G(p, x) =
⋃

y∈K (p)

x(p + y) ∪ {0}.

Hence,

V (p, x) =

⎧
⎨

⎩
{2px}, if p > 0, x < 0,

{0}, otherwise.
(1)

It is easy to check that (1) becomes set-valued gap functions for the above parametric
vector equilibrium problems.

3 S-derivative of set-valued gap functions for parametric vector equilibrium
problems

In this section, we derive the formulas for computing S-derivative of the set-valued gap
function V for parametric vector equilibrium problems. We first need to compute S-
derivative of the set-valued mapping G + C.

Proposition 3.1 Let (p̄, x̄, z̄) ∈ gph G. Assume that

DSG(p̄, x̄, z̄)(0, 0) ∩ (–C) = {0}. (2)

One has

DSG(p̄, x̄, z̄)(p, x) + C = DS(G + C)(p̄, x̄, z̄)(p, x), ∀(p, x) ∈ P × X.

Proof Let us first prove that DSG(p̄, x̄, z̄)(p, x) + C ⊂ DS(G + C)(p̄, x̄, z̄)(p, x) for all (p, x) ∈
P × X. For any p ∈ P, z ∈ DSG(p̄, x̄, z̄)(p, x) and c ∈ C, then there are sequences {tn} ⊂ R+,
{(pn, xn)} ⊂ P × X and {zn} ⊂ Y such that

zn ∈ G(pn, xn), (pn, xn) → (p̄, x̄), tn(pn – p̄, xn – x̄, zn – z̄) → (p, x, z).

It follows that

zn +
1
tn

c ∈ G(pn, xn) + C, (pn, xn) → (p̄, x̄),
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tn

(
pn – p̄, xn – x̄, zn +

1
tn

c – z̄
)

→ (p, x, z + c).

Thus, z+c ∈ DS(G+C)(p̄, x̄, z̄)(p, x). Now we justify the reverse inclusion. For all z ∈ DS(G+
C)(p̄, x̄, z̄), there are sequences {tn} ⊂ R+, {(pn, xn)} ⊂ P × X, {zn} ⊂ Y and {cn} ⊂ C such
that

zn ∈ G(pn, xn), (pn, xn) → (p̄, x̄), tn(pn – p̄, xn – x̄, zn + cn – z̄) → (p, x, z). (3)

If there is n0 ∈ N such that cn = 0 for all n ≥ n0, then z ∈ DSG(p̄, x̄, z̄)(p̄, x̄). Otherwise, we
may suppose that cn �= 0, ∀n ∈ N . Assume further that

lim
n→∞

cn

‖cn‖ = c ∈ C \ {0}. (4)

Next, we prove that the sequence ‖tncn‖ is bounded, if not, assume that limn→∞ ‖tncn‖ =
+∞. It holds that

1
cn

(pn – p̄, xn – x̄, zn – z̄) =
(

tn(pn – p̄)
‖tncn‖ ,

tn(xn – x̄)
‖tncn‖ ,

tn(zn + cn – z̄)
‖tncn‖ –

cn

‖cn‖
)

.

Thus, we have

zn ∈ G(pn, xn), (pn, xn) → (p̄, x̄),
1
cn

(pn – p̄, xn – x̄, zn – z̄) → (0, 0, –c).

Therefore, –c ∈ DSG(p̄, x̄, z̄)(0, 0), which contradicts (2). So our results are obtained. With-
out loss of generality, we may suppose that ‖tncn‖ → a > 0. We get

tn(pn – p̄, xn – x̄, zn – z̄) =
(

tn(pn – p̄), tn(xn – x̄), tn(zn + cn – z̄) – ‖tncn‖ cn

‖cn‖
)

.

Combining this with (3) and (4), we have

zn ∈ G(pn, xn), (pn, xn) → (p̄, x̄), tn(pn – p̄, xn – x̄, zn – z̄) → (p, x, z – ac).

Thus, z – ac ∈ DSG(p̄, x̄, z̄)(p, x). That is, z ∈ DSG(p̄, x̄, z̄)(p, x) + C, which completes the
proof. �

The following example illustrates that the condition in Proposition 3.1 is essential.

Example 3.1 Let P = X = Y = R, C = R+ and G : P × X → 2Y be defined by

G(p, x) :=

⎧
⎨

⎩
{0}, if p + x ≤ 0,

{p + x, –√p + x}, if p + x > 0.

Consider p̄ = 0, x̄ = 0 and z̄ = 0. By computing, we get

DSG(p̄, x̄, z̄)(p, x) =

⎧
⎪⎪⎨

⎪⎪⎩

{0}, if p + x < 0,

] – ∞, 0], if p + x = 0,

p + x, if p + x > 0,
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DS(G + C)(p̄, x̄, z̄) =

⎧
⎨

⎩
R+, if p + x ≤ 0,

R, if p + x > 0.

Then

DSG(p̄, x̄, z̄)(0, 0) ∩ (–C) = ] –∞, 0].

When p + x > 0, we have

DSG(p̄, x̄, z̄)(p, x) + C = R+,

DS(G + C)(p̄, x̄, z̄)(p, x) = R.

Hence,

DSG(p̄, x̄, z̄)(p, x) + C �= DS(G + C)(p̄, x̄, z̄)(p, x), as p + x > 0.

Using Proposition 3.1 and reference [19], we give S-derivative formulas of V at the refer-
ence point via the set of C-minimal points or weakly C-minimal points of the S-derivative
of G at the corresponding point.

Theorem 3.1 Let (p̄, x̄, z̄) ∈ gph V . Assume that G has the domination property around
(p̄, x̄). Suppose that one of the following conditions is satisfied:

(i) DSG(p̄, x̄, z̄)(0, 0) ∩ (–C) = {0};
(ii) G(p, x) is convex for (p, x) ∈ U , where U is a neighborhood of (p̄, x̄).

One has

DSV (p̄, x̄, z̄)(p, x) ⊃ min
C

DSG(p̄, x̄, z̄)(p, x).

Theorem 3.2 Let (p̄, x̄, z̄) ∈ gph V . Assume for any (p, x, z) ∈ TP(gph V ; (p̄, x̄, z̄)) that

DSG(p̄, x̄, z̄)(p, x) ∩ (z – int C) ⊂ {
v ∈ Z|∀tn ⊂ R+,∀{

(pn, xn)
} ⊂ P × X, (5)

(pn, xn) → (p̄, x̄), tn(pn – p̄, xn – x̄) → (p, x),

∃z̄n ∈ G(pn, xn), tn(z̄n – z̄) → v
}

. (6)

One has

DSV (p̄, x̄, z̄)(p, x)) ⊂ min
int C

DSG(p̄, x̄, z̄)(p, x), ∀(p, x) ∈ P × X.

Remark 3.1 We mention that our results in Theorem 3.1 and Theorem 3.2 are new, and
therefore they do not coincide with the existing ones in the literature (see [28–30] and the
cited references therein).
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4 S-derivative of perturbation maps for parametric vector equilibrium
problems

In this section, we give a formula for computing the S-derivative of the perturbation map
in parameterized vector equilibrium problems by using the formulae of S-derivative in
Sect. 3. Finally we provide an example to analyze and illustrate these results.

Lemma 4.1 Let p̄ ∈ P, x̄ ∈ X and ȳ ∈ � = {y ∈ K(p̄)|f (p̄, x̄, y) = 0}. Assume that f is contin-
uous and Fréchet differentiable at (p̄, x̄, ȳ). Moreover, K is compact and that

DSK(p̄, ȳ)(0) = {0}. (7)

One has

DSG(p̄, x̄, 0)(p, x) =
⋃

ȳ∈�

{∇f (p̄, x̄, ȳ)(p, x, y)|y ∈ DSK(p̄, ȳ)(p)
}

, ∀(p, x) ∈ P × X. (8)

Proof Let us first justify that (7) leads to the following:

DSG(p̄, x̄, 0)(0, 0) = {0}. (9)

Assume to the contrary that DSG(p̄, x̄, 0)(0, 0) �= {0}, then there is z0 ∈ DSG(p̄, x̄, 0)(0, 0)\{0}.
Hence, there are sequences {tn} ⊂R+, {(pn, xn)} ⊂ P × X and {zn} ⊂ Y such that

zn ∈ G(pn, xn), (pn, xn) → (p̄, x̄), tn(pn – p̄, xn – x̄, zn) → (0, 0, z0).

Thus, if (pn, xn) = (p̄, x̄) for all n ∈N, we take tn ∈ (0, min{ 1
n , ‖zn‖

n }), otherwise tn = max{‖pn –
p̄‖,‖xn – x̄‖}. Then tn → 0 and ‖ zn

tn
‖ → ∞. By zn ∈ G(pn, xn) for all n ∈ N, there is

{(pn, xn)} ⊂ P × X such that

yn ∈ K(pn), zn = f (pn, xn, yn), ∀n ∈N. (10)

Let

p̃n =
pn – p̄

tn
, x̃n =

xn – x̄
tn

, ỹn =
yn – ȳ

tn
, ∀n ∈ N. (11)

Since ‖p̃n‖ ≤ 1 and ‖x̃n‖ ≤ 1 for all n ∈ N, we may suppose that p̃n → p̃ ∈ P and
x̃n → x̃ ∈ X. We prove that {ỹn} is bounded, if not, one may assume that ‖ỹn‖ → ∞. For
any n ∈N, set

ŷn =
ỹn

‖ỹn‖ , p̂n =
p̃n

‖ỹn‖ , t̂n = tn‖ỹn‖, t̃n =
1
t̂n

.

Then t̂np̂n = tnp̃n, t̂nŷn = tnỹn, ‖ŷn‖ = 1 for all n ∈N and p̂n → 0. Since X is finite dimension,
we may suppose that ŷn → ŷ with ‖ŷ‖ = 1. It is easy to see that

pn = p̄ + tnp̃n = p̄ + t̂np̂n, yn = ȳ + tnỹn = ȳ + t̂nŷn, ∀n ∈N.
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Hence,

t̃n(pn – p̄) = t̃nt̂np̂n = p̂n → 0, t̃n(yn – ȳ) = t̃nt̂nŷn = ŷn → ŷ.

Thus, there are the sequences {t̃n} ⊂R+, {(pn, yn)} ⊂ P × X such that

yn ∈ K(pn), pn → p̄, t̃n(pn – p̄, yn – ȳ) → (0, ŷ).

This means that ŷ ∈ DSK(p̄, ȳ)(0), which contradicts (7). So {ỹn} is bounded. There is no
loss of generality in assuming that ỹn → ỹ ∈ X. By (10) and (11),

zn = f (p̄ + tnp̃n, x̄ + tnx̃n, ȳ + tnỹn), ∀n ∈N.

Since f is Fréchet differentiable at (p̄, x̄, ȳ), it holds that

lim
n→∞

zn

tn
= lim

n→∞
f (p̄ + tnp̃n, x̄ + tnx̃n, ȳ + tnỹn)

tn
= ∇f (p̄, x̄, ȳ)(p̃, x, ỹ),

which contradicts ‖ zn
tn

‖ → ∞. Thus, (9) holds true. Note that (7) and (9) lead to (8) for
p = 0. Hence, it is enough to prove (8) in the case p �= 0. We now justify the inclusion

DSG(p̄, x̄, 0)(p, x) ⊃
⋃

ȳ∈�

{∇f (p̄, x̄, ȳ)(p, x, y)|y ∈ DSK(p̄, ȳ)(p)
}

, ∀p �= 0.

Take any p ∈ P\{0} and y ∈ DSK(p̄, ȳ)(p). Set z := ∇f (p̄, x̄, ȳ)(p, x, y), ∀ȳ ∈ �. We must show
that z ∈ DSG(p̄, x̄, 0)(p, x). Since y ∈ DSK(p̄, x̄)(p), there are {tn} ⊂ R+, {pn} ⊂ P and yn ∈
K(pn) for all n ∈N such that

pn → p̄, tn(pn – p̄, yn – ȳ) → (p, y).

Putting p̃n = tn(pn – p̄) and ỹn = tn(yn – ȳ). Then pn → p̄, p̃n = tn(pn – p̄) → p. So p �= 0 and
tn is unbounded. We may suppose that tn → ∞. Setting t̃n = 1

tn
. Then there are {t̃n} ⊂R+,

{pn} ⊂ P and {ỹn} ⊂ X such that

t̃n → 0, p̃n → p, ỹn → y, ȳ + t̃nỹn ∈ K(p̄ + t̃np̃n).

Set x̃n = x for all n ∈N. By the definition of G, we have

zn = f (p̄ + t̃np̃n, x̄ + t̃nx̃n, ȳ + t̃nỹn) ∈ G(p̄ + tnp̃n, x̄ + t̃nx̃n), ∀n ∈N.

Since f is Fréchet differentiable at (p̄, x̄, ȳ), it holds that

lim
n→∞ tnzn = lim

n→∞
f (p̄ + t̃np̃n, x̄ + t̃nx̃n, ȳ + t̃nỹn)

t̃n
= ∇f (p̄, x̄, ȳ)(p, x, y) = z.

Thus, there are {tn} ⊂R+, {(pn, xn)} ⊂ P × X and zn ∈ G(pn, xn) such that

(pn, xn) → (p̄, x̄), tn(pn – p̄, xn – x̄, zn) → (p, x, z).

This means that z ∈ DSG(p̄, x̄, 0)(p, x).
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We now verify the reverse inclusion

DSG(p̄, x̄, 0)(p, x) ⊂
⋃

ȳ∈�

{∇f (p̄, x̄, ȳ)(p, x, y)|y ∈ DSK(p̄, ȳ)(p)
}

, ∀p �= 0.

For all p ∈ P \ {0}, take any y ∈ DSG(p̄, x̄, 0)(p, x). Then there exist sequences {tn} ⊂ R+,
{(pn, xn)} ⊂ P × X and zn ∈ G(pn, xn) for all n ∈N such that

(pn, xn) → (p̄, x̄), tn(pn – p̄, xn – x̄, zn) → (p, x, z).

Set

p̃n := tn(pn – p̄), x̃n := tn(xn – x̄), ∀n ∈N.

Since p̃n = tn(pn – p̄) → p �= 0, it shows that {tn} is unbounded. Without loss of generality,
one may suppose that tn → ∞. By zn ∈ G(pn, xn), there exists {yn} ⊂ X such that

yn ∈ K(pn), zn = f (pn, xn, yn), ∀n ∈N. (12)

Let ỹn = tn(yn – ỹ). We prove that {ỹn} is bounded. If not, we may assume that ‖ỹn‖ → ∞.
For any n ∈N, set

ŷn =
ỹn

‖ỹn‖ , p̂n =
p̃n

‖ỹn‖ , t̂n =
‖ỹn‖

tn
, t̃n =

1
t̂n

.

Then t̂np̂n = p̃n
tn

, t̂nŷn = ỹn
tn

, ‖ŷn‖ = 1 for all n ∈ N and p̂n → 0. Since ‖ŷn‖ = 1 and X is finite
dimension, we may assume that ŷn → ŷ and ‖ŷ‖ = 1. It holds that

pn = p̄ +
p̃n

tn
= p̄ + t̂np̂n, yn = ȳ +

ỹn

tn
= ȳ + t̂nŷn, ∀n ∈N.

Hence,

t̃n(pn – p̄) = t̃nt̂np̂n = p̂n → 0, t̃n(yn – ȳ) = t̃nt̂nŷn = ŷn → ŷ.

So, we have the sequences {tn} ⊂ R+, {(pn, yn)} ⊂ P × X satisfying yn ∈ K(pn) for all n ∈ N

and

pn → p̄, t̃n(pn – p̄, yn – ȳ) → (0, ŷ).

That is, ŷ ∈ DSK(p̄, ȳ)(0), which contradicts (7). Therefore, {ỹn} is bounded. We may sup-
pose that ỹn → ỹ ∈ X. Then we get the sequence {tn} ⊂ R+, {(pn, yn)} ⊂ P × X such that
yn ∈ K(pn) for any n ∈N and

pn → p̄, t̃n(pn – p, yn – ȳ) → (p, y),

which means that y ∈ DSK(p̄, ȳ)(p). By (12),

ȳ +
1
tn

ỹn ∈ K
(

p̄ +
1
tn

p̃n

)
, zn = f

(
p̄ +

1
tn

p̃n, x̄ +
1
tn

x̃n, ȳ +
1
tn

ỹn

)
.
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Since K is compact and f is continuous, we get ȳ ∈ K(p̄) and f (p̄, x̄, ȳ) = 0. Using the Fréchet
differentiability of f at (p̄, x̄, ȳ), we have

z = lim
n→∞ tnzn = lim

n→∞
f (p̄ + 1

tn
p̃n, x̄ + 1

tn
x̃n, ȳ + 1

tn
ỹn)

1
tn

= ∇f (p̄, x̄, ȳ)(p, x, ỹ).

Therefore, (8) has been established for p �= 0.
Next, we give formulae for inner and outer evaluating of the S-derivative of the pertur-

bation map V in parameterized vector equilibrium problems by using the S-derivative of
the constraint mapping K and the Fréchet derivative of the objective function f . �

Theorem 4.1 Let p̄ ∈ P, x̄ ∈ X and ȳ ∈ � = {y ∈ K(p̄)|f (p̄, x̄, y) = 0}. Assume that f is con-
tinuous and Fréchet differentiable at (p̄, x̄, ȳ) and G has the domination property around
(p̄, x̄). Assume further that one of the following conditions is satisfied:

(i) DSK(p̄, ȳ)(0) = {0}.
(ii) DSG(p̄, x̄, 0)(0, 0) ∩ (–C) = {0} or G is convex at (p, x) ∈ U , with U being a

neighborhood of (p̄, x̄).

Then, for any (p, x) ∈ P × X, we have

DSV (p̄, x̄, 0)(p, x) ⊃ min
C

⋃

ȳ∈�

{∇f (p̄, x̄, ȳ)(p, x, y)|y ∈ DSK(p̄, ȳ)(p)
}

. (13)

Proof Using Lemma 4.1 and Theorem 3.1, we obtain the above results. �

Theorem 4.2 Let p̄ ∈ P, x̄ ∈ X and ȳ ∈ � = {y ∈ K(p̄)|f (p̄, x̄, y) = 0}. Assume that f is con-
tinuous and Fréchet differentiable at (p̄, x̄, ȳ). Furthermore, (5) and (6) hold true. Then, for
any (p, x) ∈ P × X, one has

DSV (p̄, x̄, 0)(p, x) ⊂ min
int C

⋃

ȳ∈�

{∇f (p̄, x̄, ȳ)(p, x, y)|y ∈ DSK(p̄, ȳ)(p)
}

. (14)

Proof The proof follows from Lemma 4.1 and Theorem 3.2. �

Remark 4.1 The results on sensitivity analysis for vector equilibrium problems in Theo-
rem 4.1 and Theorem 4.2 are new because we use the S-derivative of a set-valued mapping,
while the other authors [24, 25, 31] used a contingent derivative and an adaptive subgradi-
ent for computing set-valued derivative formulae on some vector optimization problems.

Example 4.1 Let T = [0, 1] ∪ {–1} ∪ {2}, P = R, X = R
2, C = R

2
+. f : R×R

2 ×R
2 →R

2, and
gt : R×R

2 →R, t ∈ T is defined as

f (p, x, y) := (2p + x1 + y1, x2 + y2), ∀x = (x1, x2), y = (y1, y2) ∈R
2,∀p ∈ P.

gt(p, x) := tp – tx1 – (1 – t)x2, ∀x = (x1, x2) ∈ R
2,∀p ∈ P.

Reference [19], for all (p, x) ∈ P × X, we get

K(p) =
{

x ∈R
2| – p + x1 – 2x2 ≤ 0, 2p – 2x1 + x2 ≤ 0

}
,
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G(p, x) =
{

z ∈ R
2| – 3p + (2x2 – x1) + (z1 – 2z2) ≤ 0, 6p + (2x1 – x2) + (z2 – 2z1) ≤ 0

}
.

In particular, for p̄ := 0 and x̄ = (0, 0),

K(p̄) =
{

x ∈R
2|x1 – 2x2 ≤ 0, –2x1 + x2 ≤ 0

}
,

G(p̄, x̄) =
{

z ∈ R
2|(2y2 – y1) + (z1 – 2z2) ≤ 0, (2y1 – y2) + (z2 – 2z1) ≤ 0

}
,

and thus ȳ := (0, 0) ∈ K(p̄) and z̄ := f (p̄, x̄, ȳ) = (0, 0) ∈ V (p̄, x̄). It is easy to check that G is
convex and G has the domination property. By simple computation, one has

DSK(p̄, ȳ)(p) =
{

y ∈R
2| – p + y1 – 2y2 ≤ 0, 2p – 2y1 + y2 ≤ 0

}
, ∀p ∈ P.

Hence,

{∇f (p̄, x̄, ȳ)(p, x, y)|y ∈ DSK(p̄, ȳ)(p)
}

=
{∇pf (p̄, x̄, ȳ)(p) + ∇xf (p̄, x̄, ȳ)(x) + ∇yf (p̄, x̄, ȳ)(y)|y ∈ DSK(p̄, ȳ)(p)

}

=
{

z ∈R
2| – 3p + (2x2 – x1) + (z1 – 2z2) ≤ 0,

6p + (2x1 – x2) + (z2 – 2z1) ≤ 0
}

.

Moreover, for all (p, x) × P × X,

DSG(p̄, x̄, z̄)(p, x) =
{

z ∈R
2| – 3p + (2x2 – x1) + (z1 – 2z2) ≤ 0,

6p + (2x1 – x2) + (z2 – 2z1) ≤ 0
}

.

Therefore, (8) is valid. Finally, using Theorem 4.1 and Theorem 4.2, we have

DSV (p̄, x̄, z̄)(p, x) ⊂ {
(4p, 0)

}
, DSV (p̄, x̄, z̄)(p, x) ⊃ {

(4p, 0)
}

, ∀(p, x) ∈ P × X.

This shows that

DSV (p̄, x̄, z̄)(p, x) =
{

(4p, 0)
}

, ∀(p, x) ∈ P × X.

5 S-derivative of solution mapping for parametric vector equilibrium problems
By the definition of gap functions for the parametric vector equilibrium problems and the
parametric vector optimization problems, it is not difficult to find that the solution sets
of these optimization problems can be unified via the following parametric variational
system:

E(p) =
{

x ∈ K(p)|r(p, x) ∈ Q(p, x)
}

, (15)

where Q : P × X → 2Y , K : P → 2X are set-valued mappings and r : P × X → Y is a vector-
valued mapping.

As we all known, r(p, x) ∈ Q(p, x) can be regarded as a special class of generalized equa-
tions, which was first proposed by [32] and has been widely studied by scholars, because
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it provides a unified framework for the optimal solution of many optimization problems,
such as mathematical programming, complementarity problems, variational inequalities,
optimal control, multi-objective optimization problems, vectors variational inequalities,
vector equilibrium problems, and so on.

Using the results of Sect. 3, if r(p, x) = 0, Q(p, x) = V (p, x), then (15) becomes a solution
mapping of the parametric vector equilibrium problem

E(p) =
{

x ∈ K(p)|0 ∈ V (p, x)
}

.

Therefore, we first investigate the formulae of S-derivative for the parametric variational
systems in order to obtain the formulae of S-derivative for the parametric vector equilib-
rium problems.

Definition 5.1 ([32]) The set-valued mapping Q is said to be like-Lipschitz at (p̄, x̄, z̄) ∈
gph Q iff there exist a constant γ > 0 and a neighborhood U at (p̄, x̄) and a neighborhood
V at z̄ such that

Q(p1, x1) ∩ V ⊂ Q(p2, x2) + γ
(‖p1 – p2‖ + ‖x1 – x2‖

)
, ∀(p1, x1), (p2, x2) ∈ U .

Definition 5.2 ([25]) The set-valued mapping E is said to be Robinson metric regular
relative to the set-valued mapping K at (p̄, x̄) ∈ gph E iff there exist a constant μ,γ > 0 and
a neighborhood U at (p̄, x̄) satisfying d(r(p, x), Q(p, x)) < γ , we have

d
(
x, E(p)

) ≤ μd
(
r(p, x), Q(p, x)

)
.

Theorem 5.1 Let (p̄, x̄) ∈ gph E, z̄ = r(p̄, x̄). Assume that r is Fréchet differentiable at (p̄, x̄),
E is Robinson metric regular relative to the set-valued mapping K at (p̄, x̄) ∈ gph E and Q
is like-Lipschitz at (p̄, x̄, z̄) ∈ gph Q. Assume further that (7) holds true. Then, for any p ∈ P,
we have

DSE(p̄, x̄)(p) =
{

x ∈ DSK(p̄, x̄)(p)|∇r(p̄, x̄)(p, x) ∈ DSQ(p̄, x̄, z̄)(p, x)
}

. (16)

Proof Let us first justify that (7) leads to the following:

DSQ(p̄, x̄, z̄)(0, 0) = {0}. (17)

Assume the contrary of (17), then there is z0 ∈ DSQ(p̄, x̄, z̄)(0, 0)\{0}. Hence, there are se-
quences {tn} ⊂R+, {(pn, xn)} ⊂ P × X and {zn} ⊂ Y such that

zn = r(pn, xn) ∈ Q(pn, xn), (pn, xn) → (p̄, x̄), tn(pn – p̄, xn – x̄, zn – z̄) → (0, 0, z0).

Thus, if (pn, xn) = (p̄, x̄) for all n ∈ N, we take tn ∈ (0, min{ 1
n , ‖zn–z̄‖

n }), else tn = max{‖pn –
p̄‖,‖xn – x̄‖}. Then tn → 0 and ‖ zn–z̄

tn
‖ → ∞. Let

p̃n =
pn – p̄

tn
, x̃n =

xn – x̄
tn

, ∀n ∈N.
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Since ‖p̃n‖ ≤ 1 and ‖x̃n‖ ≤ 1 for all n ∈ N, we may suppose that p̃n → p̃ ∈ P and x̃n →
x̃ ∈ X. Since r is Fréchet differentiable at (p̄, x̄), it holds that

lim
n→∞

zn – z̄
tn

= lim
n→∞

r(p̄ + tnp̃n, x̄ + tnx̃n) – r(p̄, x̄)
tn

= ∇r(p̄, x̄)(p̃, x̃).

which contradicts ‖ zn–z̄
tn

‖ → ∞. Combining this with (7) and (17), we have (16) holds true
for p = 0.

Hence, it is enough to prove (16) in the case p �= 0. Take any p ∈ P\{0} and x ∈
DSE(p̄, x̄)(p). Then there are {tn} ⊂R+, {pn} ⊂ P and xn ∈ E(pn) for all n ∈N such that

pn → p̄, tn(pn – p̄, xn – x̄) → (p, x). (18)

By xn ∈ E(pn), there exists {xn} ⊂ X such that

xn ∈ K(pn), zn = r(pn, xn) ∈ Q(pn, xn). (19)

This means that there are {tn} ⊂ R+, {pn} ⊂ P, xn ∈ K(pn) such that

pn → p̄, tn(pn – p̄, xn – x̄) → (p, x).

Thus, x ∈ DSK(p̄, x̄)(p). Since pn → p̄, p̃n = tn(pn – p̄) → p, and p �= 0, tn is unbounded. We
may suppose that tn → ∞. Set x̃n = tn(xn – x̄). By (19), we have

r
(

p̄ +
1
tn

p̃n, x̄ +
1
tn

x̃n

)
∈ Q

(
p̄ +

1
tn

p̃n, x̄ +
1
tn

x̃n

)
.

Using (18) and r is Fréchet differentiable at (p̄, x̄), it holds that

lim
n→∞ tn(zn – z̄) = lim

n→∞
r(p̄ + 1

tn
p̃n, x̄ + 1

tn
x̃n) – r(p̄, x̄)

1
tn

= ∇r(p̄, x̄)(p, x).

Thus, there are {tn} ⊂R+, {(pn, xn)} ⊂ P × X and zn ∈ Q(pn, xn) such that

(pn, xn) → (p̄, x̄), tn(pn – p̄, xn – x̄, zn – z̄) → (
p, x,∇r(p̄, x̄)(p, x)

)
.

This means that ∇r(p̄, x̄)(p, x) ∈ DSQ(p̄, x̄, z̄)(p, x).
We now verify the reverse inclusion. For each p ∈ P\{0}, take any y ∈ DSK(p̄, x̄)(p) and

z = ∇r(p̄, x̄)(p, x) ∈ DSQ(p̄, x̄, z̄)(p, x). Then there exist sequences {tn} ⊂R+, {(pn, xn)} ⊂ P ×
X and zn ∈ Q(pn, xn) for all n ∈N such that

(pn, xn) → (p̄, x̄), tn(pn – p̄, xn – x̄, zn – z̄) → (p, x, z).

Since pn → p̄, p̃n := tn(pn – p̄) → p �= 0, it shows that {tn} is unbounded. Without loss of
generality, one may suppose that tn → ∞. Put

t̃n =
1
tn

, pn = p̄ + t̃np̃n, x̃n = tn(xn – x̄), z̃n = tn(zn – z̄).
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Then we have

x̃n → x, z̃n → z, xn = x̄ + t̃nx̃n, zn = z̄ + t̃nz̃n.

Since zn ∈ Q(pn, xn), we have

z̄ + t̃nz̃n ∈ Q(p̄ + t̃np̃n, x̄ + t̃nx̃n).

By x ∈ DSK(p̄, x̄)(p), there exist {tn} ⊂R+, {p′
n} ⊂ P and x′

n ∈ K(p′
n) such that

p′
n → p̄, tn

(
p′

n – p̄, x′
n – x̄

) → (p, x).

Set

p̃′
n = tn

(
p′

n – p̄
)
, x̃′

n = tn
(
x′

n – x̄
)
.

Then we have

p̃′
n → p, x̃′

n → x, p′
n = p̄ + t̃np̃′

n, x′
n = x̄ + t̃nx̃′

n.

Combining with x′
n ∈ K(p′

n), we get x̄ + t̃nx̃′
n ∈ K(p̄ + t̃np̃′

n). Since Q is like-Lipschitz at
(p̄, x̄, z̄) ∈ gph Q, there exist constants a1, a2 > 0 and δ > 0 such that bn ∈ B(0, δ) and z′

n ∈
Q(p̄ + t̃np̃n, x̄ + t̃nx̃n) for all n ≥ n0 satisfy

z̄ + t̃nz̃n = z′
n + tn

(
a1

∥∥pn – p′
n
∥∥ + a2

∥∥xn – x′
n
∥∥)

bn.

Since E is Robinson metric regular relative to K at (p̄, x̄) ∈ gph E, there are μ > 0, γ > 0, a
neighborhood U of (p̄, x̄) satisfies d(r(p, x), Q(p, x)) < γ , we have

d
(
x, E(p)

) ≤ μd
(
r(p, x), Q(p, x)

)
. (20)

Since r is Fréchet differentiable at (p̄, x̄), then there is n0 ∈ N such that, for all n ≥ n0, we
have

r
(
p̄ + t̃np̃′

n, x̄ + t̃nx̃′
n
)

= r(p̄, x̄) + t̃n

(
∇r(p̄, x̄)(p̃n, x̃n) +

o(‖tn(p′
n, x′

n)‖)
tn

)
.

Hence,

d
(
r
(
p̄ + t̃np̃′

n, x̄ + t̃nx̃′
n
)
, Q

(
p̄ + t̃np̃′

n, x̄ + t̃nx̃′
n
))

≤ ∥∥r
(
p̄ + t̃np̃′

n, x̄ + t̃nx̃′
n
)

– z̄ – t̃nz̃n + t̃n
(
a1

∥∥pn – p′
n
∥∥ + a2

∥∥xn – x′
n
∥∥)

bn
∥∥ = t̃nβ̃(n),

where

β(n) =
∥∥∥∥∇r(p̄, x̄)(p̃n, x̃n) +

o(‖t̃n(p′
n, x′

n)‖)
t̃n

– z̃n +
(
a1

∥∥pn – p′
n
∥∥ + a2

∥∥xn – x′
n
∥∥)

bn

∥∥∥∥.
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By (20), we have

d
(
x̄ + t̃nx̃′

n, E
(
p̄ + t̃np̃′

n
)) ≤ μd

(
r
(
p̄ + t̃np̃′

n, x̄ + t̃nx̃′
n
)
, Q

(
p̄ + t̃np̃′

n, x̄ + t̃nx̃′
n
)) ≤ μt̃nβ̃(n).

So there is x̄ + t̃nx̃′
n ∈ E(p̄ + t̃np̃′

n) + (μt̃nβ̃(n) + t̃2
n)B(0, δ), which means that there exists

b′
n ∈ B(0, δ) such that

x′′
n = x̄ + t̃nx̃′

n – t̃n
(
μβ̃(n) + t̃n

)
b′

n = x′
n – t̃n

(
μβ̃(n) + t̃n

)
b′

n ∈ E
(
p̄ + t̃np̃′

n
)
.

Since (μβ̃(n) + t̃n)‖b′
n‖ converges to 0, this means that there are sequences {tn} ⊂ R+,

{p′
n} ⊂ P and x′′

n ∈ E(p′
n) such that

p′
n → p̄, tn

(
p′

n – p̄, x′′
n – x̄

)
= tn

(
p′

n – p̄, x′
n – x̄ –

(
μβ̃(n) + t̃n

)
b′) → (p, x).

This shows that x ∈ DSE(p̄, x̄)(p). �

Corollary 5.1 Assume that all conditions in Theorem 4.1 and Theorem 5.1 are satisfied.
Then, for any p ∈ P, we have

DSE(p̄, x̄)(p) ⊃ {
x ∈ DSK(p̄, x̄)(p)|∇f (p̄, x̄, ȳ)(p, x, y) /∈ –C\{0}, y ∈ DSK(p̄, ȳ)(p)

}
.

Corollary 5.2 Assume that all conditions in Theorem 4.2 and Theorem 5.1 are satisfied.
Then, for any p ∈ P, we have

DSE(p̄, x̄)(p) ⊂ {
x ∈ DSK(p̄, x̄)(p)|∇f (p̄, x̄, ȳ)(p, x, y) /∈ – int C, y ∈ DSK(p̄, ȳ)(p)

}
.

6 Conclusion
In this paper, we have dealt with the sensitivity analysis on vector equilibrium problems.
S-derivative estimations on a perturbed mapping for the parametric vector equilibrium
problem are given via a set-valued gap function. Moreover, we derive S-derivative es-
timations of a solutions mapping of the parametric vector equilibrium problems by S-
derivative estimations of a kind of the parametric variational system. However, how to
investigate the sensitivity analysis of the parametric vector equilibrium problems by using
other set-valued derivatives is still an interesting problem.
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