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Abstract
We have constructed the sequence space (�(ζ , t))υ , where ζ = (ζl) is a strictly
increasing sequence of positive reals tending to infinity and t = (tl) is a sequence of
positive reals with 1 ≤ tl <∞, by the domain of (ζl)-Cesàro matrix in the Nakano

sequence space �(tl ) equipped with the function υ(f ) =
∑∞

l=0(
|∑l

z=0 fz�ζz |
ζl

)tl for all
f = (fz) ∈ �(ζ , t). Some geometric and topological properties of this sequence space,
the multiplication mappings defined on it, and the eigenvalues distribution of
operator ideal with s-numbers belonging to this sequence space have been
investigated. The existence of a fixed point of a Kannan pre-quasi norm contraction
mapping on this sequence space and on its pre-quasi operator ideal formed by
(�(ζ , t))υ and s-numbers is presented. Finally, we explain our results by some
illustrative examples and applications to the existence of solutions of nonlinear
difference equations.
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1 Introduction
Variable exponent Lebesgue spaces go back many years, and in successive centuries, vari-
able Lebesgue and Sobolev spaces have been systematically examined. Many variable ex-
ponent real function spaces and complex function spaces have been presented since then,
including Hardy spaces, Besov spaces, Bessel potential spaces, Trieble–Lizorkin spaces,
Morrey spaces, Herz–Morrey spaces, Herz spaces, Fock spaces, and Bergman spaces. For
three centuries, variable exponent function spaces have been widely applied in approxi-
mation theory, image processing, and differential equations. Thus far, the theory of vari-
able exponent function spaces has pensively built upon the boundedness of the Hardy–
Littlewood maximal operator, and this confines its procedure to differential equations,
approximation, and optimization. By CN, �∞, �r , and c0, we suggest the spaces of each,
bounded, r-absolutely summable, and null sequences of complex numbers, where N =
{0, 1, 2, . . .}. We denote the space of all, finite rank, approximable, and compact bounded
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linear mappings from a Banach space P into a Banach space Q by B(P ,Q), F(P ,Q),
A(P ,Q), and K(P ,Q), and if P = Q, we mark B(P), F(P), A(P), and K(P), respectively.
The ideals of all, finite rank, approximable, and compact mappings are denoted by B, F,
A, and K. We designate el = (0, 0, . . . , 1, 0, 0, . . .), as 1 presents at the lth coordinate, with
l ∈ N.

Definition 1.1 ([1]) An s-number function is a mapping defined on B(P ,Q) which maps
every mapping X ∈ B(P ,Q) to a nonnegative scalar sequence (sl(X))∞l=0 that satisfies the
following conditions:

(a) ‖X‖ = s0(X) ≥ s1(X) ≥ s2(X) ≥ · · · ≥ 0 for every X ∈ B(P ,Q);
(b) sl+a–1(X1 + X2) ≤ sl(X1) + sa(X2) for each X1, X2 ∈ B(P ,Q) and l, a ∈ N;
(c) Ideal property: sa(ZYX) ≤ ‖Z‖sa(Y )‖X‖ for all X ∈ B(P0,P), Y ∈ B(P ,Q), and

Z ∈ B(Q,Q0), where P0 and Q0 are discretionary Banach spaces;
(d) For G ∈ B(P ,Q) and γ ∈ C , one has sa(γ G) = |γ |sa(G);
(e) Rank property: Assume rank(X) ≤ a, then sa(X) = 0 for each X ∈ B(P ,Q);
(f ) Norming property: sl≥a(Ia) = 0 or sl<a(Ia) = 1, where Ia mirrors the unit mapping on

the a-dimensional Hilbert space �a
2 .

For an assorted illustration of s-numbers, we provide the next setting:
(1) The ath Kolmogorov number, denoted by da(X), is defined as

da(X) = inf
dim J≤a

sup
‖f ‖≤1

inf
g∈J

‖Xf – g‖.

(2) The ath approximation number, denoted by αa(X), is defined as

αa(X) = inf
{‖X – Y‖ : Y ∈ B(P ,Q) and rank(Y ) ≤ a

}
.

Notations 1.2 ([2])

B
s
V :=

{
B

s
V (P ,Q);PandQare Banach spaces

}
, where

B
s
V (P ,Q) :=

{
X ∈ B(P ,Q) : (

(
sa(X)

)∞
a=0 ∈ V

}
.

B
α
V :=

{
B

α
V (P ,Q);PandQare Banach spaces

}
, where

B
α
V (P ,Q) :=

{
X ∈ B(P ,Q) : (

(
αa(X)

)∞
a=0 ∈ V

}
.

B
d
V :=

{
B

d
V (P ,Q)PandQare Banach spaces

}
, where

B
d
V (P ,Q) :=

{
X ∈ B(P ,Q) : (

(
da(X)

)∞
a=0 ∈ V

}
.

A few of ideals in the class of Banach spaces or Hilbert spaces are evident by inconsis-
tent scalar sequence spaces. For example, the ideal of compact mappings is constructed
by the space c0 and da(X), for X ∈ B(P ,Q). Pietsch [3] approved the quasi-ideals Bα

�b
for

0 < b < ∞. He investigated that the ideals of nuclear mappings and of Hilbert–Schmidt
mappings between Hilbert spaces are explored by �1 and �2, respectively. He examined
that F(�b) are dense in B(�b), and the algebra B(�b), where (1 ≤ b < ∞), constructed a sim-
ple Banach space. Pietsch [4] proved that Bα

�b
for 0 < b < ∞ is small. Makarov and Faried

[5] examined that, for each infinite dimensional Banach space P , Q, and r > b > 0, then
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B
α
�b

(P ,Q) �B
α
�r (P ,Q) �B(P ,Q). Yaying et al. [6], introduced the sequence space χ t

r , the
domain of r-Cesàro matrix in �t , with r ∈ (0, 1] and 1 ≤ t ≤ ∞. They investigated the quasi
Banach ideal of type χ t

r for r ∈ (0, 1] and 1 < t < ∞. They found its Schauder basis, α–, β–,
and γ – duals, and determined certain matrix classes related to this sequence space. On
sequence spaces, Başarir and Kara probed the compact mappings on some Euler B(m)-
difference sequence spaces [7], some difference sequence spaces of weighted means [8],
the Riesz B(m)-difference sequence space [9], the B-difference sequence space derived by
weighted mean [10], and the mth order difference sequence space of generalized weighted
mean [11]. Mursaleen and Noman [12, 13] recognized the compact mappings on some dif-
ference sequence spaces. The multiplication mappings on Cesàro sequence spaces with
the Luxemburg norm were introduced by Komal et al. [14]. İlkhan et al. [15] analyzed the
multiplication mappings on Cesàro second order function spaces. Recently, many authors
in the literature have investigated some nonabsolute type sequence spaces and introduced
recent high quality papers. For example, Mursaleen and Noman [16] defined the sequence
spaces �λ

p and �λ∞ of nonabsolute type and showed that the spaces �λ
p and �λ∞ are linearly

isomorphic for 0 < p ≤ ∞, �λ
p is a p-normed space, a BK-space in the cases for 0 < p < 1

and 1 ≤ p ≤ ∞, and formed the basis for the space �λ
p for 1 ≤ p < ∞. In [17], they studied

the α–, β–, and γ – duals of �λ
p and �λ∞ of nonabsolute type for 1 ≤ p < ∞. They character-

ized some related matrix classes and derived the characterizations of some other classes
by means of a given basic lemma. On Cesàro summable sequences, Mursaleen and Başar
[18] defined some spaces of double sequences whose Cesàro transforms are bounded, con-
vergent in the Pringsheim’s sense, null in the Pringsheim’s sense, both convergent in the
Pringsheim’s sense and bounded, regularly convergent, and absolutely q-summable, re-
spectively, and examined some topological properties of those sequence spaces. The Ba-
nach fixed point theorem [19] opened the door for many mathematicians to investigate
many extensions of contraction mappings defined in space or generalize space itself. Kan-
nan [20] examined an instance of a class of operators with the identical fixed point ac-
tions as contractions, though it fails to be continuous. Ghoncheh [21] was the only one
who described Kannan operators in modular vector spaces. He proved the existence of a
fixed point of Kannan mapping in complete modular spaces that have the Fatou property.
Bakery and Mohamed [22] introduced the concept of the pre-quasi norm on a Nakano
sequence space with its variable exponent in (0, 1]. They investigated the sufficient condi-
tions on it equipped with the definite pre-quasi norm to form pre-quasi Banach and closed
space and examined the Fatou property of different pre-quasi norms on it. Moreover, they
proved the existence of a fixed point of Kannan pre-quasi norm contraction mappings on
it and on the pre-quasi Banach operator ideal constructed by s-numbers which belong
to this sequence space. The given inequality will be used in the sequel [23]: If ta ≥ 1 and
xa, za ∈ C , with a ∈ N, and � = supa ta, then

|xa + za|ta ≤ 2�–1(|xa|ta + |za|ta
)
. (1)

The organization of the paper is efficient like so: In Sect. 3, we give the definition and
some inclusion relations of the sequence space (�(ζ , t))υ under the function υ . In Sect. 4,
we explain the sufficient conditions for �(ζ , t) with definite function υ to become pre-
modular private sequence space (pss). This implies that (�(ζ , t))υ is a pre-quasi normed
pss. In Sect. 5, we define a multiplication mapping on (�(ζ , t))υ and give the necessary
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and sufficient conditions on this sequence space such that the multiplication mapping
is bounded, approximable, invertible, Fredholm, and closed range. In Sect. 6, firstly, we
introduce the sufficient settings (not necessary) on (�(ζ , t))υ , so thatF is dense inB

s
(�(ζ ,t))υ .

This explains a negative answer of the Rhoades [24] open problem about the linearity of
s-type (�(ζ , t))υ spaces. Secondly, we introduce the conditions on (�(ζ , t))υ so that the
components of pre-quasi ideal Bs

�(ζ ,t) are complete and closed. Thirdly, we investigate the
sufficient conditions on (�(ζ , t))υ for Bα

(�(ζ ,t))υ to be precisely confined for altered weights
and powers. We explain the set-ups for which the pre-quasi ideal Bα

(�(ζ ,t))υ is minimum.
Fourthly, we describe the settings for which the Banach pre-quasi ideal Bs

(�(ζ ,t))υ is simple.
Fifthly, we expound the sufficient settings on (�(ζ , t))υ such that the class of all bounded
linear mappings whose sequence of eigenvalues in (�(ζ , t))υ equals Bs

(�(ζ ,t))υ . In Sect. 7, the
existence of a fixed point of Kannan pre-quasi norm contraction mapping on this sequence
space and on its pre-quasi operator ideal formed by (�(ζ , t))υ and s-numbers is given.
Finally, in Sect. 8, we explain our results by some illustrative examples and applications to
the existence of solutions of nonlinear difference equations.

2 Definitions and preliminaries
Lemma 2.1 ([3]) If U ∈ B(P ,Q) and U /∈A(P ,Q), then there are mappings X ∈ B(P) and
Y ∈ B(Q) so that YUXel = el for every l ∈ N.

Definition 2.2 ([3]) A Banach space V is said to be simple if the algebra B(V) includes a
unique nontrivial closed ideal.

Theorem 2.3 ([3]) Let V be an infinite dimensional Banach space, then

F(V) �A(V) �K(V) �B(V).

Definition 2.4 ([25]) A mapping U ∈ B(V) is said to be Fredholm if dim(Range(U))c <
∞, dim(ker(U)) < ∞, and Range(U) is closed, where (Range(U))c is the complement of
Range(U).

Definition 2.5 ([26]) A subclass W of B is called an operator ideal if every component
W(P ,Q) = W∩B(P ,Q) verifies the next set-ups:

(i) I� ∈ W if � illustrates a Banach space of one dimension.
(ii) W(P ,Q) is a linear space on C .

(iii) Suppose X ∈ B(P0,P), Y ∈W(P ,Q), and Z ∈ B(Q,Q0), then ZYX ∈W(P0,Q0),
where P0 and Q0 are normed spaces.

Faried and Bakery [2] introduced the notion of pre-quasi ideal, which is more general
than the quasi ideal.

Definition 2.6 A function  : W→ [0,∞) is said to be a pre-quasi norm on the operator
ideal W if the following conditions hold:

(1) For each X ∈W(P ,Q), (X) ≥ 0 and (X) = 0 ⇐⇒ X = 0;
(2) We have E0 ≥ 1 such that (κX) ≤ E0|κ|(X) for all X ∈ W(P ,Q) and κ ∈ C ;
(3) We have G0 ≥ 1 for (Z1 + Z2) ≤ G0[(Z1) + (Z2)] for all Z1, Z2 ∈ W(P ,Q);
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(4) We have D0 ≥ 1, if X ∈ B(P0,P), Y ∈ W(P ,Q), and Z ∈ B(Q,Q0), then (ZYX) ≤
D0‖Z‖(Y )‖X‖.

Theorem 2.7 ([2])  is a pre-quasi norm on the ideal W, whenever  is a quasi norm on
the operator ideal W.

Definition 2.8 ([27]) The linear space of sequences V is called a private sequence space
(pss) if it satisfies the following:

(1) eb ∈ V with b ∈ N;
(2) V is solid, i.e., for f = (fb) ∈ CN, |g| = (|gb|) ∈ V and |fb| ≤ |gb| over b ∈ N, then |f | ∈ V ;
(3) (|f[ b

2 ]|)∞b=0 ∈ V , while [ b
2 ] illustrates the integral part of b

2 if (|fb|)∞b=0 ∈ V .

Theorem 2.9 ([27]) If the linear sequence space V is a pss, then B
s
V is an operator ideal.

Definition 2.10 ([27]) A subclass of the pss is said to be a pre-modular pss if there is a
mapping υ : V → [0,∞) with the settings:

(i) When f ∈ V , f = θ ⇐⇒ υ(|f |) = 0, with υ(f ) ≥ 0, where θ is the zero element of V ;
(ii) If f ∈ V and ρ ∈ C , we have E0 ≥ 1 with υ(ρf ) ≤ |ρ|E0υ(f );
(iii) υ(f + g) ≤ G0(υ(f ) + υ(g)) holds for some G0 ≥ 1 with f , g ∈ V ;
(iv) For b ∈ N, |fb| ≤ |gb|, we get υ((|fb|)) ≤ υ((|gb|));
(v) The inequality υ((|fb|)) ≤ υ((|f[ b

2 ]|)) ≤ D0υ((|fb|)) holds for D0 ≥ 1;
(vi) If F denotes the space of all sequences with finite nonzero coordinates, then

F = Vυ ;
(vii) We have � > 0 so that υ(ρ, 0, 0, 0, . . .) ≥ � |ρ|υ(1, 0, 0, 0, . . .) with ρ ∈ C .

Definition 2.11 ([27]) The pss Vυ is called a pre-quasi normed pss if υ supports points
(i)–(iii) of Definition 2.10. If V is complete equipped with υ , then Vυ is called a pre-quasi
Banach pss.

Theorem 2.12 ([27]) A pre-quasi normed pss Vυ , whenever it is pre-modular pss.

Theorem 2.13 ([27]) The function  is a pre-quasi norm on B
s
(V)υ , where (Z) =

υ(sb(Z))∞b=0 for all Z ∈ B
s
(V)υ (P ,Q) if (V)υ is a pre-modular pss.

Definition 2.14 ([22]) A pre-quasi norm υ on V verifies the Fatou property if, for every
sequence {ta} ⊆ Vυ with lima→∞ υ(ta – t) = 0 and all z ∈ Vυ , υ(z – t) ≤ supj infa≥j υ(z – ta).

Definition 2.15 ([22]) A pre-quasi norm  on the idealBs
V , where (W ) = υ((sa(W ))∞a=0),

verifies the Fatou property if, for all sequence {Wa}a∈N ⊆ B
s
V (Z, M) with lima→∞ (Wa –

W ) = 0 and every V ∈ B
s
V (Z, M),

(V – W ) ≤ sup
a

inf
i≥a

(V – Wi).

Definition 2.16 ([22]) An operator W : Vυ → Vυ is said to be a Kannan υ-contraction if
there is λ ∈ [0, 1

2 ) such that υ(Wz – Wt) ≤ λ(υ(Wz – z) + υ(Wt – t)) for every z, t ∈ Vυ .

An element t ∈ Vυ is called a fixed point of W if W (t) = t.
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Definition 2.17 ([22]) An operator W : Bs
V (Z, M) → B

s
V (Z, M) is called a Kannan -

contraction if there is λ ∈ [0, 1
2 ) such that (WV – WT) ≤ λ((WV – V ) + (WT – T))

for every V , T ∈ B
s
V (Z, M).

Definition 2.18 ([22]) Let Vυ be a pre-quasi normed (sss), W : Vυ → Vυ , and b ∈ Vυ . The
operator W is called υ-sequentially continuous at b if and only if, when lima→∞ υ(ta – b) =
0, then lima→∞ υ(Wta – Wb) = 0.

Definition 2.19 ([22]) For the pre-quasi norm  on the ideal B
s
V , where (W ) =

υ((sa(W ))∞a=0), G : Bs
V (Z, M) → B

s
V (Z, M), and B ∈ B

s
V (Z, M). The operator G is called -

sequentially continuous at B if and only if, when limp→∞ (Wp – B) = 0, then
limp→∞ (GWp – GB) = 0.

Definition 2.20 ([27]) If ω = (ωk) ∈ CN and Vυ is a pre-quasi normed pss. The mapping
Hω : Vυ → Vυ is called a multiplication mapping on Vυ , when Hωf = (ωbfb) ∈ Vυ with
f ∈ Vυ . The multiplication mapping is called created by ω if Hω ∈ B(Vυ ).

Theorem 2.21 ([28]) For s-type Vυ := {f = (sr(X)) ∈ RN : X ∈ B(P ,Q)andυ(f ) < ∞}. If Bs
Vυ

is a mapping ideal, then the following conditions are verified:
1. F ⊂ s-type Vυ .
2. Assume (sr(X1))∞r=0 ∈ s-type Vυ and (sr(X2))∞r=0 ∈ s-type Vυ , then (sr(X1 + X2))∞r=0 ∈

s-type Vυ .
3. If λ ∈ C and (sr(X))∞r=0 ∈ s-type Vυ , then |λ|(sr(X))∞r=0 ∈ s-type Vυ .
4. The sequence space Vυ is solid, i.e., if (sr(Y ))∞r=0 ∈ s-type Vυ and sr(X) ≤ sr(Y ) for all

r ∈ N and X, Y ∈ B(P ,Q), then (sr(X))∞r=0 ∈ s-type Vυ .

3 The sequence space (�(ζ , t))υ
We introduce in this section the definition and some inclusion relations of the sequence
space (�(ζ , t))υ under the function υ .

Definition 3.1 For all (tl) ∈ R+N, where R+N is the space of all sequences of positive reals
and (ζl) ∈ R+N is strictly increasing tending to infinity, the sequence space (�(ζ , t))υ under
the function υ is defined as follows:

(
�(ζ , t)

)
υ

=
{

f = (fk) ∈ CN : υ(ρf ) < ∞ for some ρ > 0
}

, where

υ(f ) =
∞∑

l=0

( |∑l
z=0 fz�ζz|

ζl

)tl

and �ζz = ζz – ζz–1.

Suppose that ζz = 0 for z < 0.

Theorem 3.2 If (tl) ∈ R+N ∩ �∞, then

(
�(ζ , t)

)
υ

=
{

f = (fk) ∈ CN : υ(ρf ) < ∞ for any ρ > 0
}

.
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Proof Assume (tl) ∈ R+N ∩ �∞, one has

(
�(ζ , t)

)
υ

=
{

f = (fk) ∈ CN : υ(ρf ) < ∞for someρ > 0
}

=

{

f = (fk) ∈ CN :
∞∑

l=0

( |∑l
z=0 ρfz�ζz|

ζl

)tl

< ∞for someρ > 0

}

=

{

f = (fk) ∈ CN : inf
l

ρtl

∞∑

l=0

( |∑l
z=0 fz�ζz|

ζl

)tl

< ∞for someρ > 0

}

=

{

f = (fk) ∈ CN :
∞∑

l=0

( |∑l
z=0 fz�ζz|

ζl

)tl

< ∞
}

=
{

f = (fk) ∈ CN : υ(ρf ) < ∞ for any ρ > 0
}

. �

Remark 3.3
(1) For tz = t, for all z ∈ N and t ≥ 1, the sequence space �(ζ , t) = �

ζ
t was defined and

investigated by Mursaleen and Noman [16].
(2) Assume tz = t, �ζz = rz for all z ∈ N, 0 < r ≤ 1, and t ≥ 1, the sequence space

�(ζ , t) = χ t
r was investigated by Yaying et al. [6].

(3) If tz = t, �ζz = 1 for all z ∈ N and t ≥ 1, hence �(ζ , t) = cest was made current and
considered by Ng and Lee [29].

Theorem 3.4 If (�ζl), (tl) ∈ R+N with 1 ≤ tl < ∞, then (�(ζ , t))υ is of nonabsolute type.

Proof By taking f = (1, –1, 0, 0, 0, . . . ), then |f | = (1, 1, 0, 0, 0, . . . ). We have

υ(f ) = 1 +
( |2ζ0 – ζ1|

ζ1

)t1

+
( |2ζ0 – ζ1|

ζ2

)t2

+ · · · = 2 +
(

ζ1

ζ2

)t2

+ · · · = υ
(|f |).

Therefore, the sequence space (�(ζ , t))υ is of nonabsolute type. �

Definition 3.5 For all (�ζl), (tl) ∈ R+N. The (ζl)-generalized Cesàro sequence space of
absolute type (ces(ζ , t))ϕ is defined as follows:

(
ces(ζ , t)

)
ϕ

=
{

f = (fk) ∈ CN : ϕ(ρf ) < ∞ for some ρ > 0
}

, where

ϕ(f ) =
∞∑

l=0

(∑l
z=0 |fz|�ζz

ζl

)tl

.

Theorem 3.6 If (�ζl), (tl) ∈ R+N ∩ �∞ with infl �ζl > 0, then (ces(ζ , t))ϕ � (�(ζ , t))υ .

Proof Let f ∈ (ces(ζ , t))ϕ , since

∞∑

l=0

( |∑l
z=0 fz�ζz|

ζl

)tl

≤
∞∑

l=0

(∑l
z=0 |fz|�ζz

ζl

)tl

< ∞.

Then f ∈ (�(ζ , t))υ . For (tl) ∈ (1,∞)N ∩ �∞, we choose g = ( (–1)z

�ζz
)z∈N, one has g ∈ (�(ζ , t))υ

and g /∈ (ces(ζ , t))ϕ . For (tl) ∈ (0, 1]N, we choose h = ( 1
ζ0

, 1
ζ0–ζ1

, 0, 0, 0, . . .), one has h ∈
(�(ζ , t))υ and h /∈ (ces(ζ , t))ϕ = {(0, 0, . . .)}. �
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4 Pre-modular private sequence space
In this section, we offer enough set-ups for �(ζ , t) with the definite function υ to become
pre-modular pss. This implies that �(ζ , t) is a pre-quasi normed pss.

Here and after, we denote the space of all monotonic decreasing and monotonic increas-
ing sequences of positive reals by �↘ and �↗, respectively.

Theorem 4.1 �(ζ , t) is a pss if the following conditions hold:
(f1) (tl) ∈ �↗ ∩ �∞ with t0 > 1.
(f2) (�ζz)∞z=0 ∈ �↘ with infz �ζz > 0 or (�ζz)∞z=0 ∈ �↗ ∩ �∞, and there exists C ≥ 1 such

that �ζ2z+1 ≤ C�ζz .

Proof (1-i) Assume f , g ∈ �(ζ , t). One has

∞∑

l=0

( |∑l
z=0(fz + gz)�ζz|

ζl

)tl

≤ 2�–1

( ∞∑

l=0

( |∑l
z=0 fz�ζz|

ζl

)tl

+
∞∑

l=0

( |∑l
z=0 gz�ζz|

ζl

)tl
)

< ∞,

so f + g ∈ �(ζ , t).
(1-ii) Suppose ρ ∈ C , f ∈ �(ζ , t) and as (tl) ∈ �↗ ∩ �∞, we obtain

∞∑

l=0

( |∑l
z=0 ρfz�ζz|

ζl

)tl

≤ sup
l

|ρ|tl

∞∑

l=0

( |∑l
z=0 fz�ζz|

ζl

)tl

< ∞.

Hence ρf ∈ �(ζ , t). Relative to (1-i) and (1-ii), we have �(ζ , t) is a linear space.
Also as (tl) ∈ �↗ ∩ �∞ with t0 > 1, one has

∞∑

l=0

( |∑l
z=0(eb)z�ζz|

ζl

)tl

=
∞∑

l=b

(
�ζb

ζl

)tl

≤ sup
l

(�ζb)tl

∞∑

l=b

(
1
ζl

)tl

< ∞.

Therefore, eb ∈ �(ζ , t) with b ∈ N.
(2) If |fb| ≤ |gb| for each b ∈ N and |g| ∈ �(ζ , t), one can see

∞∑

l=0

(∑l
z=0 |fz|�ζz

ζl

)tl

≤
∞∑

l=0

(∑l
z=0 |gz|�ζz

ζl

)tl

< ∞,

hence |f | ∈ �(ζ , t).
(3) Assume (|fz|) ∈ �(ζ , t), where (tl), (�ζz) ∈ �↗ ∩ �∞ and there is C ≥ 1 such that

�ζ2z+1 ≤ C�ζz , we get

∞∑

l=0

(∑l
z=0 |f[ z

2 ]|�ζz

ζl

)tl

=
∞∑

l=0

(∑2l
z=0 |f[ z

2 ]|�ζz

ζ2l

)t2l

+
∞∑

l=0

(∑2l+1
z=0 |f[ z

2 ]|�ζz

ζ2l+1

)t2l+1

≤
∞∑

l=0

( |fl|�ζ2l +
∑l

z=0 |fz|(�ζ2z + �ζ2z+1)
ζl

)tl

+
∞∑

l=0

(∑l
z=0 |fz|(�ζ2z + �ζ2z+1)

ζl

)tl
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≤ 2�–1

( ∞∑

l=0

(∑l
z=0 |fz|�ζ2z

ζl

)tl

+
∞∑

l=0

(∑l
z=0 2C|fz|�ζz

ζl

)tl
)

+
∞∑

l=0

(∑l
z=0 2C|fz|�ζz

ζl

)tl

≤ (
22�–1 + 2�–1 + 2�

)
C�

∞∑

l=0

(∑l
z=0 |fz|�ζz

ζl

)tl

< ∞,

so (|f[ z
2 ]|) ∈ �(ζ , t). �

By using Theorem 2.9, we can get the next theorem.

Theorem 4.2 If conditions (f1) and (f2) are satisfied, then B
s
�(ζ ,t) is an operator ideal.

Theorem 4.3 (�(ζ , t))υ is a pre-modular pss if setups (f1) and (f2) are satisfied.

Proof
(i) Easily, υ(f ) ≥ 0 and υ(|f |) = 0 ⇔ f = θ .

(ii) We have E0 = max{1, supl |ρ|tl–1} ≥ 1 with υ(ρf ) ≤ E0|ρ|υ(f ) for every f ∈ �(ζ , t)
and ρ ∈ C .

(iii) One has υ(f + g) ≤ 2�–1(υ(f ) + υ(g)) for each f , g ∈ �(ζ , t).
(iv) Definitely, from the proof part (2) of Theorem 4.1.
(v) Indeed, the proof part (3) of Theorem 4.1 gives that D0 ≥ (22�–1 + 2�–1 + 2�)C� ≥ 1.

(vi) Obviously, F = �(ζ , t).
(vii) We have 0 < � ≤ supl |ρ|tl–1 with υ(ρ, 0, 0, 0, . . .) ≥ � |ρ|υ(1, 0, 0, 0, . . .) for each

ρ = 0 and � > 0, if ρ = 0. �

Theorem 4.4 If settings (f1) and (f2) are satisfied, then (�(ζ , t))υ is a pre-quasi Banach
pss.

Proof Let the set-ups be satisfied, then from Theorem 4.3 the space (�(ζ , t))υ is a pre-
modular pss. By using Theorem 2.12, the space (�(ζ , t))υ is a pre-quasi normed pss. To
show that (�(ζ , t))υ is a pre-quasi Banach pss, assume that f a = (f a

z )∞z=0 is a Cauchy se-
quence in (�(ζ , t))υ , then for all ε ∈ (0, 1), there is a0 ∈ N so that, for all a, b ≥ a0, one
has

υ
(
f a – f b) =

∞∑

l=0

( |∑l
z=0(f a

z – f b
z )�ζz|

ζl

)tl

< ε�.

Hence, for a, b ≥ a0 and z ∈ N, we have |f a
z – f b

z | < ε. So (f b
z ) is a Cauchy sequence in C

for fixed z ∈ N, this gives limb→∞ f b
z = f 0

z for fixed z ∈ N. Hence υ(f a – f 0) < ε� for all
a ≥ a0. Finally, to show that f 0 ∈ (�(ζ , t))υ , one has υ(f 0) ≤ 2�–1(υ(f a – f 0) + υ(f a)) < ∞,
so f 0 ∈ (�(ζ , t))υ . This means that (�(ζ , t))υ is a pre-quasi Banach pss. �

By using Theorem 2.21, we conclude the following properties of the s-type (�(ζ , t))υ .

Theorem 4.5 For s-type (�(ζ , t))υ := {f = (sn(X)) ∈ RN : X ∈ B(P ,Q) and υ(f ) < ∞}. The
following settings are verified:
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1. We have s-type (�(ζ , t))υ ⊃F .
2. If (sr(X1))∞r=0 ∈ s-type (�(ζ , t))υ and (sr(X2))∞r=0 ∈ s-type (�(ζ , t))υ , then

(sr(X1 + X2))∞r=0 ∈ s-type (�(ζ , t))υ .
3. For all λ ∈ C and (sr(X))∞r=0 ∈ s-type (�(ζ , t))υ , then |λ|(sr(X))∞r=0 ∈ s-type (�(ζ , t))υ .
4. The s-type (�(ζ , t))υ is solid.

5 Multiplication mappings on (�(ζ , t))υ
In this section, we define a multiplication mapping on the pre-quasi normed pss (�(ζ , t))υ
and investigate the necessary and sufficient conditions on (�(ζ , t))υ for the multiplication
mapping to be bounded, invertible, approximable, Fredholm, and closed range.

Theorem 5.1 Suppose ω ∈ CN, conditions (f1) and (f2) are satisfied, then ω ∈ �∞ if and
only if Hω ∈ B((�(ζ , t))υ).

Proof Let ω ∈ �∞. Hence there is ν > 0 such that |ωb| ≤ ν with b ∈ N. For f ∈ (�(ζ , t))υ ,
one has

υ(Hωf ) = υ(ωf ) =
∞∑

l=0

( |∑l
z=0 ωzfz�ζz|

ζl

)tl

≤
∞∑

l=0

( |∑l
z=0 νfz�ζz|

ζl

)tl

≤ sup
l

νtl

∞∑

l=0

( |∑l
z=0 fz�ζz|

ζl

)tl

= sup
l

νtlυ(f ).

Therefore, Hω ∈ B((�(ζ , t))υ).
On the contrary, let Hω ∈ B((�(ζ , t))υ) and ω /∈ �∞. Hence, for all b ∈ N, there is xb ∈ N

such that ωxb > b. We have

υ(Hωexb ) = υ(ωexb ) =
∞∑

l=0

( |∑l
z=0 ωz(exb )z�ζz|

ζl

)tl

=
∞∑

l=xb

( |ωxb |�ζxb

ζl

)tl

>
∞∑

l=xb

(
b�ζxb

ζl

)tl

> btxb υ(exb ).

Hence Hω /∈ B((�(ζ , t))υ). So ω ∈ �∞. �

Theorem 5.2 Assume ω ∈ CN and (�(ζ , t))υ is a pre-quasi normed pss, then ωb = g for
every b ∈ N and g ∈ C with |g| = 1 if and only if Hω is an isometry.

Proof Let the sufficient condition be verified. One has

υ(Hωf ) = υ(ωf ) =
∞∑

l=0

( |∑l
k=0 ωkfk�ζk|

ζl

)tl

=
∞∑

l=0

( |∑l
k=0 |g|fk�ζk|

ζl

)tl

= υ(f )

with f ∈ (�(ζ , t))υ . So Hω is an isometry.
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Let the necessity condition be satisfied and |ωb| < 1 for some b = b0. We get

υ(Hωeb0 ) = υ(ωeb0 ) =
∞∑

l=0

( |∑l
k=0 ωk(eb0 )k�ζk|

ζl

)tl

=
∞∑

l=b0

( |ωb0 |�ζb0

ζl

)tl

<
∞∑

l=b0

(
�ζb0

ζl

)tl

= υ(eb0 ).

Also when |ωb0 | > 1, it is easy to show that υ(Hωeb0 ) > υ(eb0 ), which is an inconsistency for
the two cases. Therefore, |ωb| = 1 for all b ∈ N. �

By F we denote the space of all sets with a finite number of elements.

Theorem 5.3 Suppose ω ∈ CN, setups (f1) and (f2) are satisfied, then Hω ∈A((�(ζ , t))υ) if
and only if (ωb)∞b=0 ∈ c0.

Proof Let Hω ∈ A((�(ζ , t))υ), so Hω ∈ K((�(ζ , t))υ). Suppose limb→∞ ωb = 0. Therefore,
we have � > 0 such that the set K� = {b ∈ N : |ωb| ≥ �} � F. If {αb}b∈N ⊂ K� , hence {eαb :
αb ∈ K�} ∈ �∞ is an infinite set in (�(ζ , t))υ . Since

υ(Hωeαa – Hωeαb ) = υ(ωeαa – ωeαb ) =
∞∑

l=0

( |∑l
k=0 ωk((eαa )k – (eαb )k)�ζk|

ζl

)tl

≥
∞∑

l=0

( |∑l
k=0 �((eαa )k – (eαb )k)�ζk|

ζl

)tl

≥ inf
l

�tlυ(eαa – eαb )

with αa,αb ∈ K� . Therefore, {eαb : αb ∈ K�} ∈ �∞, which cannot have a convergent subse-
quence under Hω . Hence Hω /∈K((�(ζ , t))υ). This implies Hω /∈A((�(ζ , t))υ), this gives an
inconsistency. So, limb→∞ ωb = 0. On the other hand, let limb→∞ ωb = 0. Hence, for all � >
0, one has K� = {b ∈ N : |ωb| ≥ �} ⊂ F. Hence, for each � > 0, we have dim(((�(ζ , t))υ)K� ) =
dim(CK� ) < ∞. So Hω ∈ F(((�(ζ , t))υ )K� ). Define ωa ∈ CN for all a ∈ N by

(ωa)b =

⎧
⎨

⎩

ωb, b ∈ K 1
a+1

,

0, otherwise.

It is clear that Hωa ∈ F(((�(ζ , t))υ)B 1
a+1

) as dim(((�(ζ , t))υ)B 1
a+1

) < ∞ for all a ∈ N. From
(tl) ∈ �↗ ∩ �∞ with t0 > 1, one can see

υ
(
(Hω – Hωa )f

)
= υ

(((
ωb – (ωa)b

)
fb

)∞
b=0

)

=
∞∑

l=0

( |∑l
b=0(ωb – (ωa)b)fb�ζb|

ζl

)tl

=
∞∑

l=0,l∈K 1
a+1

( |∑l
b=0(ωb – (ωa)b)fb�ζb|

ζl

)tl

+
∞∑

l=0,l /∈K 1
a+1

( |∑l
b=0(ωb – (ωa)b)fb�ζb|

ζl

)tl
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=
∞∑

l=0,l /∈K 1
a+1

( |∑l
b=0 ωbfb�ζb|

ζl

)tl

≤ 1
(a + 1)t0

∞∑

l=0,l /∈K 1
a+1

( |∑l
b=0 �ζbfb|

ζl

)tl

<
1

(a + 1)t0

∞∑

l=0

( |∑l
b=0 fb�ζb|

ζl

)tl

=
1

(a + 1)t0
υ(f ).

Hence ‖Hω – Hωa‖ ≤ 1
(a+1)t0 . This gives Hω is a limit of finite rank mappings. Therefore,

Hω ∈A((�(ζ , t))υ). �

Theorem 5.4 Assume ω ∈ CN, conditions (f1) and (f2) are satisfied, then Hω ∈ K((�(ζ ,
t))υ) if and only if (ωb)∞b=0 ∈ c0.

Proof Obviously, since A((�(ζ , t))υ) �K((�(ζ , t))υ). �

Corollary 5.5 If setups (f1) and (f2) are satisfied, then K((�(ζ , t))υ) �B((�(ζ , t))υ).

Proof As ω = (1, 1, . . . ) creates the multiplication mapping I on (�(ζ , t))υ . Therefore, I /∈
K((�(ζ , t))υ) and I ∈ B((�(ζ , t))υ). �

Theorem 5.6 If (�(ζ , t))υ is a pre-quasi Banach pss and Hω ∈ B((�(ζ , t))υ), then there are
α > 0 and η > 0 such that α < |ωb| < η with b ∈ (ker(ω))c if and only if Range(Hω) is closed.

Proof Assume that the sufficient condition is confirmed. Hence there is � > 0 such that
|ωb| ≥ � with b ∈ (ker(ω))c. To show that Range(Hω) is closed, if g is a limit point of
Range(Hω), we have Hωfb ∈ (�(ζ , t))υ with b ∈ N so that limb→∞ Hωfb = g . Obviously, the
sequence Hωfb is a Cauchy sequence. As (tl) ∈ �↗ ∩ �∞ with t0 > 1, one has

υ(Hωfa – Hωfb) =
∞∑

l=0

( |∑l
k=0(ωk(fa)k – ωk(fb)k)�ζk|

ζl

)tl

=
∞∑

l=0,l∈(ker(ω))c

( |∑l
k=0(ωk(fa)k – ωk(fb)k)�ζk|

ζl

)tl

+
∞∑

l=0,l /∈(ker(ω))c

( |∑l
k=0(ωk(fa)k – ωk(fb)k)�ζk|

ζl

)tl

≥
∞∑

l=0,l∈(ker(ω))c

( |∑l
k=0(ωk(fa)k – ωk(fb)k)�ζk|

ζl

)tl

=
∞∑

l=0

( |∑l
k=0(ωk(ua)k – ωk(ub)k)�ζk|

ζl

)tl

>
∞∑

l=0

( |∑l
k=0 �((ua)k – (ub)k)�ζk|

ζl

)tl

≥ inf
l

�tlυ(ua – ub),
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where

(ua)k =

⎧
⎨

⎩

(fa)k , k ∈ (ker(ω))c,

0, k /∈ (ker(ω))c.

This implies that {ua} is a Cauchy sequence in (�(ζ , t))υ . As (�(ζ , t))υ is complete, there
is f ∈ (�(ζ , t))υ so that limb→∞ ub = f . Since Hω ∈ B((�(ζ , t))υ), we have limb→∞ Hωub =
Hωf . But limb→∞ Hωub = limb→∞ Hωfb = g . So Hωf = g . Hence g ∈ Range(Hω). Therefore,
Range(Hω) is closed. Next, suppose that the necessary condition is satisfied. So, there is
� > 0 such that υ(Hωf ) ≥ �υ(f ) with f ∈ ((�(ζ , t))υ)(ker(ω))c . If K = {b ∈ (ker(ω))c : |ωb| <
�} = ∅, then for a0 ∈ K , one has

υ(Hωea0 ) = υ
((

ωb(ea0 )b
))∞

b=0)

=
∞∑

l=0

( |∑l
b=0 ωb(ea0 )b)�ζb|

ζl

)tl

<
∞∑

l=0

( |∑l
b=0(ea0 )b��ζb|

ζl

)tl

≤ sup
l

�tlυ(ea0 ),

this gives an inconsistency. Therefore, K = φ, we have |ωb| ≥ � with b ∈ (ker(ω))c. This
proves the theorem. �

Theorem 5.7 Suppose that ω ∈ CN and (�(ζ , t))υ is a pre-quasi Banach pss, then there are
α > 0 and η > 0 so that α < |ωb| < η with b ∈ N if and only if Hω ∈ B((�(ζ , t))υ) is invertible.

Proof Let the set-up be true. Assume κ ∈ CN with κb = 1
ωb

. By using Theorem 5.1, the
mappings Hω and Hκ are bounded linear. We have Hω.Hκ = Hκ .Hω = I . Therefore, Hκ =
H–1

ω . Next, let Hω be invertible. So Range(Hω) = ((�(ζ , t))υ)N. Hence Range(Hω) is closed.
Therefore, by Theorem 5.6, there is α > 0 so that |ωb| ≥ α for each b ∈ (ker(ω))c. We have
ker(ω) = ∅ if ωb0 = 0 with b0 ∈ N, this gives eb0 ∈ ker(Hω) which is an inconsistency as
ker(Hω) is trivial. Therefore, |ωb| ≥ α with b ∈ N. As Hω ∈ �∞, from Theorem 5.1, there is
η > 0 so that |ωb| ≤ η with b ∈ N. Hence, one has α ≤ |ωb| ≤ η with b ∈ N. �

Theorem 5.8 Let (�(ζ , t))υ be a pre-quasi Banach pss and Hω ∈ B((�(ζ , t))υ), then Hω is
a Fredholm mapping if and only if (i) ker(ω) � N is finite and (ii) |ωb| ≥ � with b ∈ (ker(ω))c.

Proof Assume that the sufficient condition is satisfied. Let ker(ω) � N be infinite,
hence eb ∈ ker(Hω) with b ∈ ker(ω). Since ebs are linearly independent, this gives that
dim(ker(Hω)) = ∞, this implies an inconsistency. Hence, ker(ω) � N must be finite. Con-
dition (ii) comes from Theorem 5.6. Next, let set-ups (i) and (ii) be confirmed. From Theo-
rem 5.6, set-up (ii) implies that Range(Hω) is closed. Setting (i) gives that dim(ker(Hω)) < ∞
and dim((Range(Hω))c) < ∞. This implies that Hω is Fredholm. �

6 Pre-quasi ideal
In this section, firstly, we introduce the sufficient settings (not necessary) on (�(ζ , t))υ
such that F is dense in B

s
(�(ζ ,t))υ . This investigates a negative answer of the Rhoades [24]
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open problem about the linearity of s-type (�(ζ , t))υ spaces. Secondly, for which condi-
tions on (�(ζ , t))υ are Bs

(�(ζ ,t))υ complete and closed? Thirdly, we give the sufficient set-ups
on (�(ζ , t))υ such that Bα

(�(ζ ,t))υ is strictly contained for different weights and powers. We
explain the settings in order that Bα

(�(ζ ,t))υ is minimum. Fourthly, we explain the conditions
so that the Banach pre-quasi ideal Bs

(�(ζ ,t))υ is simple. Fifthly, we give the sufficient condi-
tions on (�(ζ , t))υ such that the space of all bounded linear mappings whose sequence of
eigenvalues in (�(ζ , t))υ equals Bs

(�(ζ ,t))υ .

6.1 Finite rank pre-quasi ideal
Theorem 6.1 B

s
(�(ζ ,t))υ (P ,Q) = F(P ,Q), whenever setups (f1) and (f2) are satisfied. But

the converse is not necessarily true.

Proof To show that F(P ,Q) ⊆ B
s
(�(ζ ,t))υ (P ,Q) as el ∈ (�(ζ , t))υ with l ∈ N and (�(ζ , t))υ

is a linear space. Let Z ∈ F(P ,Q), one has (sl(Z))∞l=0 ∈ F . To show that Bs
(�(ζ ,t))υ (P ,Q) ⊆

F(P ,Q), one can see
∑∞

l=0( 1
ζl

)tl < ∞. For Z ∈ B
s
(�(ζ ,t))υ (P ,Q), we have (sl(Z))∞l=0 ∈ (�(ζ , t))υ .

As υ(sl(Z))∞l=0 < ∞, suppose ρ ∈ (0, 1), then there is l0 ∈ N – {0} with υ((sl(Z))∞l=l0 ) < ρ

2�+3ηd
for some d ≥ 1, where η = max{1,

∑∞
l=l0 ( 1

ζl
)tl }. As sl(Z) is decreasing, one has

2l0∑

l=l0+1

(∑l
j=0 s2l0 (Z)�ζj

ζl

)tl

≤
2l0∑

l=l0+1

(∑l
j=0 sj(Z)�ζj

ζl

)tl

≤
∞∑

l=l0

(∑l
j=0 sj(Z)�ζj

ζl

)tl

<
ρ

2�+3ηd
. (2)

Therefore, there is Y ∈ F2l0 (P ,Q) so that rank(Y ) ≤ 2l0 and

3l0∑

l=2l0+1

(∑l
j=0 ‖Z – Y‖�ζj

ζl

)tl

≤
2l0∑

l=l0+1

(∑l
j=0 ‖Z – Y‖�ζj

ζl

)tl

<
ρ

2�+3ηd
, (3)

since (tl) ∈ �↗ ∩ �∞, we have

∞
sup
l=l0

( l0∑

j=0

‖Z – Y‖�ζj

)tl

<
ρ

22�+2η
. (4)

Therefore, one has

l0∑

l=0

(∑l
j=0 ‖Z – Y‖�ζj

ζl

)tl

<
ρ

2�+3ηd
. (5)

By using inequalities (1)–(5), one has

d(Z, Y ) = υ
(
sl(Z – Y )

)∞
l=0

=
3l0–1∑

l=0

(∑l
j=0 sj(Z – Y )�ζj

ζl

)tl

+
∞∑

l=3l0

(∑l
j=0 sj(Z – Y )�ζj

ζl

)tl
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≤
3l0∑

l=0

(∑l
j=0 ‖Z – Y‖�ζj

ζl

)tl

+
∞∑

l=l0

(∑l+2l0
j=0 sj(Z – Y )�ζj

∑l+2l0
j=0 �ζj

)tl+2l0

≤
3l0∑

l=0

(∑l
j=0 ‖Z – Y‖�ζj

ζl

)tl

+
∞∑

l=l0

(∑l+2l0
j=0 sj(Z – Y )�ζj

ζl

)tl

≤ 3
l0∑

l=0

(∑l
j=0 ‖Z – Y‖�ζj

ζl

)tl

+
∞∑

l=l0

(∑2l0–1
j=0 sj(Z – Y )�ζj +

∑l+2l0
j=2l0 sj(Z – Y )�ζj

ζl

)tl

≤ 3
l0∑

l=0

(∑l
j=0 ‖Z – Y‖�ζj

ζl

)tl

+ 2�–1

[ ∞∑

l=l0

(∑2l0–1
j=0 sj(Z – Y )�ζj

ζl

)tl

+
∞∑

l=l0

(∑l+2l0
j=2l0 sj(Z – Y )�ζj

ζl

)tl
]

≤ 3
l0∑

l=0

(∑l
j=0 ‖Z – Y‖�ζj

ζl

)tl

+ 2�–1

[ ∞∑

l=l0

(∑2l0–1
j=0 ‖Z – Y‖�ζj

ζl

)tl

+
∞∑

l=l0

(∑l
j=0 sj+2l0 (Z – Y )�ζj+2l0

ζl

)tl
]

≤ 3
l0∑

l=0

(∑l
j=0 ‖Z – Y‖�ζj

ζl

)tl

+ 2�–1 ∞
sup
l=l0

(2l0–1∑

j=0

‖Z – Y‖�ζj

)tl ∞∑

l=l0

(ζl)–tl + 2�–1
∞∑

l=l0

(∑l
j=0 sj(Z)�ζj

ζl

)tl

< ρ.

Conversely, we give a counterexample as I4 ∈ B
s
(�(ζ ,t))υ (P ,Q), where (�ζj) = (0, 0, 0, 0, 1,

1, . . . ) and t = (1, 1, 1, . . . ), but t0 > 1 is not verified. This confirms the proof. �

6.2 Pre-quasi Banach and closed ideal
Theorem 6.2 Suppose that setups (f1) and (f2) are satisfied, then (Bs

(�(ζ ,t))υ ,) is a pre-
quasi Banach ideal, where ψ(X) = υ((sl(X))∞l=0).

Proof As (�(ζ , t))υ is a pre-modular pss, hence from Theorem 2.13,  is a pre-quasi norm
on B

s
(�(ζ ,t))υ . Suppose that (Xb)b∈N is a Cauchy sequence in B

s
(�(ζ ,t))υ (P ,Q). As B(P ,Q) ⊇

B
s
(�(ζ ,t))υ (P ,Q), one has

(Xa – Xb) =
∞∑

l=0

(∑l
j=0 sj(Xa – Xb)�ζj

ζl

)tl

≥ ‖Xa – Xb‖t0 ,

so (Xb)b∈N is a Cauchy sequence in B(P ,Q). Since B(P ,Q) is a Banach space, there is
X ∈ B(P ,Q) with limb→∞ ‖Xb –X‖ = 0. Since (sl(Xb))∞l=0 ∈ (�(ζ , t))υ for all b ∈ N, therefore,
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from Definition 2.10 parts (ii), (iii), and (v), one can see

(X) =
∞∑

l=0

(∑l
j=0 sj(X)�ζj

ζl

)tl

≤ 2�–1
∞∑

l=0

(∑l
j=0 s[ j

2 ](X – Xb)�ζj

ζl

)tl

+ 2�–1
∞∑

l=0

(∑l
j=0 s[ j

2 ](Xb)�ζj

ζl

)tl

≤ 2�–1
∞∑

l=0

‖X – Xb‖tl + 2�–1D0

∞∑

l=0

(∑l
j=0 sj(Xb)�ζj

ζl

)tl

< ∞.

Hence (sl(X))∞l=0 ∈ (�(ζ , t))υ , so X ∈ B
s
(�(ζ ,t))υ (P ,Q). �

Theorem 6.3 Suppose that P , Q are normed spaces, conditions (f1) and (f2) are satisfied,
then (Bs

(�(ζ ,t))υ ,) is a pre-quasi closed ideal, where (X) = υ((sl(X))∞l=0).

Proof As (�(ζ , t))υ is a pre-modular pss, hence from Theorem 2.13,  is a pre-quasi norm
on B

s
(�(ζ ,t))υ . Assume Xb ∈ B

s
(�(ζ ,t))υ (P ,Q) for each b ∈ N and limb→∞ (Xb – X) = 0. As

B(P ,Q) ⊇ B
s
(�(ζ ,t))υ (P ,Q), we have

(X – Xb) =
∞∑

l=0

(∑l
j=0 sj(X – Xb)�ζj

ζl

)tl

≥ ‖X – Xb‖t0 ,

hence (Xb)b∈N is a convergent sequence in B(P ,Q). Since (sl(Xb))∞l=0 ∈ (�(ζ , t))υ for every
b ∈ N, by using Definition 2.10 parts (ii), (iii), and (v), one can see

(X) =
∞∑

l=0

(∑l
j=0 sj(X)�ζj

ζl

)tl

≤ 2�–1
∞∑

l=0

(∑l
j=0 s[ j

2 ](X – Xb)�ζj

ζl

)tl

+ 2�–1
∞∑

l=0

(∑l
j=0 s[ j

2 ](Xb)�ζj

ζl

)tl

≤ 2�–1
∞∑

l=0

‖X – Xb‖tl + 2�–1D0

∞∑

l=0

(∑l
j=0 sj(Xb)�ζj

ζl

)tl

< ∞.

We get (sl(X))∞l=0 ∈ (�(ζ , t))υ , so X ∈ B
s
(�(ζ ,t))υ (P ,Q). �

6.3 Minimum pre-quasi ideal
Theorem 6.4 For any infinite dimensional Banach spaces P , Q and if conditions (f1) and

(f2) are satisfied with 1 < t(1)
l < t(2)

l and �ζ
(2)
l

ζ
(2)
l

≤ �ζ
(1)
l

ζ
(1)
l

for all l ∈ N, we have

B
s
(�((ζ (1)

l ),(t(1)
l )))υ

(P ,Q) �B
s
(�((ζ (2)

l ),(t(2)
l )))υ

(P ,Q) �B(P ,Q).

Proof Suppose Z ∈ B
s
(�((ζ (1)

l ),(t(1)
l )))υ

(P ,Q), then (sl(Z)) ∈ (�((ζ (1)
l ), (t(1)

l )))υ . One has

∞∑

l=0

(∑l
z=0 sz(Z)�ζ

(2)
z

ζ
(2)
l

)t(2)
l

<
∞∑

l=0

(∑l
z=0 sz(Z)�ζ

(1)
z

ζ
(1)
l

)t(1)
l

< ∞,
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then Z ∈ B
s
(�((ζ (2)

l ),(t(2)
l )))υ

(P ,Q). Afterwards, if we choose (sl(Z))∞l=0 such that
∑l

z=0 sz(Z)�ζ
(1)
z = ζ

(1)
l

t(1)
l
√

l+1
, we have Z ∈ B(P ,Q) such that

∞∑

l=0

(∑l
z=0 sz(Z)�ζ

(1)
z

ζ
(1)
l

)t(1)
l

=
∞∑

l=0

1
l + 1

= ∞

and

∞∑

l=0

(∑l
z=0 sz(Z)�ζ

(2)
z

ζ
(2)
l

)t(2)
l ≤

∞∑

l=0

(∑l
z=0 sz(Z)�ζ

(1)
z

ζ
(1)
l

)t(2)
l

=
∞∑

l=0

(
1

l + 1

) t(2)
l

t(1)
l < ∞.

So Z /∈ B
s
(�((ζ (1)

l ),(t(1)
l )))υ

(P ,Q) and Z ∈ B
s
(�((ζ (2)

l ),(t(2)
l )))υ

(P ,Q). Clearly, Bs
(�((ζ (2)

l ),(t(2)
l )))υ

(P ,Q) ⊂

B(P ,Q). Next, if we take (sl(Z))∞l=0 such that
∑l

z=0 sz(Z)�ζ
(2)
z = ζ

(2)
l

t(2)
l
√

l+1
, we have Z ∈ B(P ,Q)

so that Z /∈ B
s
(�((ζ (2)

l ),(t(2)
l )))υ

(P ,Q). This confirms the proof. �

Theorem 6.5 For any infinite dimensional Banach spaces P , Q, if setups (f1) and (f2) are
satisfied, then B

α
(�(ζ ,t))υ is minimum.

Proof Assume that the set-ups are confirmed. So (Bα
�(ζ ,t),), where (Z) =

∑∞
l=0(

∑l
j=0 αj(X)�ζj

ζl
)tl is a pre-quasi Banach ideal. Let Bα

�(ζ ,t)(P ,Q) = B(P ,Q), hence there
is η > 0 such that (Z) ≤ η‖Z‖ for each Z ∈ B(P ,Q). Then, by Dvoretzky’s theorem [30]
with b ∈ N, one has quotient spaces P/Yb and subspaces Mb of Q which can be mapped
onto �b

2 by isomorphisms Vb and Xb with ‖Vb‖‖V –1
b ‖ ≤ 2 and ‖Xb‖‖X–1

b ‖ ≤ 2. If Ib is the
identity mapping on �b

2, Tb is the quotient mapping from P onto P/Yb, and Jb is the nat-
ural embedding mapping from Mb into Q. Assume mz to be the Bernstein numbers [31],
hence

1 = mz(Ib) = mz
(
XbX–1

b IbVbV –1
b

)

≤ ‖Xb‖mz
(
X–1

b IbVb
)∥
∥V –1

b
∥
∥ = ‖Xb‖mz

(
JbX–1

b IbVb
)∥
∥V –1

b
∥
∥

≤ ‖Xb‖dz
(
JbX–1

b IbVb
)∥
∥V –1

b
∥
∥ = ‖Xb‖dz

(
JbX–1

b IbVbTb
)∥
∥V –1

b
∥
∥

≤ ‖Xb‖αz
(
JbX–1

b IbVbTb
)∥
∥V –1

b
∥
∥

for 0 ≤ l ≤ b. We have

ζl ≤
l∑

z=0

‖Xb‖
∥
∥V –1

b
∥
∥αz

(
JbX–1

b IbVbTb
)
�ζz ⇒

1 ≤ (‖Xb‖
∥
∥V –1

b
∥
∥
)tl

(∑l
z=0 αz(JbX–1

b IbVbTb)�ζz

ζl

)tl

.

Hence, for some � ≥ 1, one has

b + 1 ≤ �‖Xb‖
∥
∥V –1

b
∥
∥

b∑

l=0

(∑l
z=0 αz(JbX–1

b IbVbTb)�ζz

ζl

)tl

⇒
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b + 1 ≤ �‖Xb‖
∥
∥V –1

b
∥
∥

(
JbX–1

b IbVbTb
) ≤ �η‖Xb‖

∥
∥V –1

b
∥
∥
∥
∥JbX–1

b IbVbTb
∥
∥

≤ �η‖Xb‖
∥
∥V –1

b
∥
∥
∥
∥JbX–1

b
∥
∥‖Ib‖‖VbTb‖

= �η‖Xb‖
∥
∥V –1

b
∥
∥
∥
∥X–1

b
∥
∥‖Ib‖‖Vb‖ ≤ 4�η.

We have an inconsistency as b is arbitrary. Then P and Q both cannot be infinite dimen-
sional when B

α
�(ζ ,t)(P ,Q) = B(P ,Q). This completes the proof. �

Theorem 6.6 For any infinite dimensional Banach spaces P , Q and if setups (f1) and (f2)
are satisfied, then B

d
�(ζ ,t) is minimum.

6.4 Simple Banach pre-quasi ideal
Theorem 6.7 Presume that P and Q are infinite dimensional Banach spaces. Let setups

(f1) and (f2) be satisfied with 1 < t(1)
l < t(2)

l and �ζ
(2)
l

ζ
(2)
l

≤ �ζ
(1)
l

ζ
(1)
l

for all l ∈ N, then

B
(
B

s
(�((ζ (2)

l ),(t(2)
l )))υ

(P ,Q),Bs
(�((ζ (1)

l ),(t(1)
l )))υ

(P ,Q)
)

= A
(
B

s
(�((ζ (2)

l ),(t(2)
l )))υ

(P ,Q),Bs
(�((ζ (1)

l ),(t(1)
l )))υ

(P ,Q)
)
.

Proof For X ∈ B(Bs
(�((ζ (2)

l ),(t(2)
l )))υ

(P ,Q),Bs
(�((ζ (1)

l ),(t(1)
l )))υ

(P ,Q)) and X /∈ A(Bs
(�((r(2)

l ),(t(2)
l )))υ

(P ,

Q),Bs
(�((ζ (1)

l ),(t(1)
l )))υ

(P ,Q)). From Lemma 2.1, one has Y ∈ B(Bs
(�((ζ (2)

l ),(t(2)
l )))υ

(P ,Q)) and Z ∈
B(Bs

(�((ζ (1)
l ),(t(1)

l )))υ
(P ,Q)) with ZXYIb = Ib. Therefore, for each b ∈ N, we have

‖Ib‖Bs
(�((ζ (1)

l ),(t(1)
l )))υ

(P ,Q) =
∞∑

l=0

(∑l
j=0 sj(Ib)�ζ

(1)
j

ζ
(1)
l

)t(1)
l

≤ ‖ZXY‖‖Ib‖Bs
(�((ζ (2)

l ),(t(2)
l )))υ

(P ,Q)

≤
∞∑

l=0

(∑l
j=0 sj(Ib)�ζ

(2)
j

ζ
(2)
l

)t(2)
l

.

This defies Theorem 6.4. Then X ∈ A(Bs
(�((ζ (2)

l ),(t(2)
l )))υ

(P ,Q),Bs
(�((ζ (1)

l ),(t(1)
l )))υ

(P ,Q)), which

confirms the proof. �

Corollary 6.8 For any infinite dimensional Banach spaces P and Q, if setups (f1) and (f2)

are satisfied with 1 < t(1)
l < t(2)

l and �ζ
(2)
l

ζ
(2)
l

≤ �ζ
(1)
l

ζ
(1)
l

for all l ∈ N, then

B
(
B

s
(�((ζ (2)

l ),(t(2)
l )))υ

(P ,Q),Bs
(�((ζ (1)

l ),(t(1)
l )))υ

(P ,Q)
)

= K
(
B

s
(�((ζ (2)

l ),(t(2)
l )))υ

(P ,Q),Bs
(�((ζ (1)

l ),(t(1)
l )))υ

(P ,Q)
)
.

Proof Clearly, as A⊂K. �

Theorem 6.9 Assume that setups (f1) and (f2) are satisfied, then B
s
(�(ζ ,t))υ is simple.
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Proof Let the closed ideal K(Bs
(�(ζ ,t))υ (P ,Q)) include a mapping X /∈ A(Bs

(�(ζ ,t))υ (P ,Q)).
From Lemma 2.1, one has Y , Z ∈ B(Bs

(�(ζ ,t))υ (P ,Q)) with ZXYIb = Ib. This gives that
IBs

(�(ζ ,t))υ (P ,Q) ∈ K(Bs
(�(ζ ,t))υ (P ,Q)). Accordingly, B(Bs

(�(ζ ,t))υ (P ,Q)) = K(Bs
(�(ζ ,t))υ (P ,Q)).

Hence B
s
(�(ζ ,t))υ is a simple Banach space. �

6.5 Eigenvalues of s-type mappings
Notation 6.10

(
B

s
V
)ρ :=

{(
B

s
V
)ρ(P ,Q);P and Q are Banach spaces

}
, where

(
B

s
V
)ρ(P ,Q)

:=
{

X ∈ B(P ,Q) : (
(
ρl(X)

)∞
n=0 ∈ V and

∥
∥X – ρl(X)I

∥
∥ is not invertible for all l ∈ N

}
.

Theorem 6.11 For any infinite dimensional Banach spaces P and Q, suppose that setups
(f1) and (f2) are satisfied, then

(
B

s
(�(ζ ,t))υ

)ρ(P ,Q) = B
s
(�(ζ ,t))υ (P ,Q).

Proof Let X ∈ (Bs
(�(ζ ,t))υ )ρ(P ,Q), hence (ρl(X))∞l=0 ∈ (�(ζ , t))υ and ‖X – ρl(X)I‖ = 0 for all

l ∈ N. We have X = ρl(X)I with l ∈ N, so sl(X) = sl(ρl(X)I) = |ρl(X)| with l ∈ N. Therefore,
(sl(X))∞l=0 ∈ (�(ζ , t))υ , so X ∈ B

s
(�(ζ ,t))υ (P ,Q).

Secondly, let X ∈ B
s
(�(ζ ,t))υ (P ,Q). Therefore, (sl(X))∞l=0 ∈ (�(ζ , t))υ . Hence, we have

∞∑

l=0

(∑l
z=0 sz(X)�ζz

ζl

)tl

≥
∞∑

l=0

[
sl(X)

]tl .

So liml→∞ sl(X) = 0. Assume that ‖X – sl(X)I‖–1 exists for every l ∈ N. Therefore, ‖X –
sl(X)I‖–1 exists and is bounded for every l ∈ N. So, liml→∞ ‖X – sl(X)I‖–1 = ‖X‖–1 exists
and is bounded. From the pre-quasi operator ideal of (Bs

(�(ζ ,t))υ ,), we obtain

I = XX–1 ∈ B
s
(�(ζ ,t))υ (P ,Q) ⇒ (

sl(I)
)∞

l=0 ∈ �(ζ , t) ⇒ lim
l→∞

sl(I) = 0.

We have a contradiction since liml→∞ sl(I) = 1. Therefore, ‖X – sl(X)I‖ = 0 for every l ∈ N.
This gives X ∈ (Bs

(�(ζ ,t))υ )ρ(P ,Q). This provides the proof. �

7 Kannan contraction mapping
Theorem 7.1 The function υ(f ) = [

∑∞
l=0( |∑l

z=0 fz�ζz|
ζl

)tl ]
1
� for every f ∈ �(ζ , t) satisfies the

Fatou property if setups (f1) and (f2) are satisfied.

Proof Assume that the set-ups are verified and {gb} ⊆ (�(ζ , t))υ with limb→∞ υ(gb – g) = 0.
As the space (�(ζ , t))υ is a pre-quasi closed space, then g ∈ (�(ζ , t))υ . Hence, for all f ∈
(�(ζ , t))υ , we have

υ(f – g) =

[ ∞∑

l=0

( |∑l
z=0(fz – gz)�ζz|

ζl

)tl
] 1

�
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≤
[ ∞∑

l=0

( |∑l
z=0(fz – gb

z )�ζz|
ζl

)tl
] 1

�

+

[ ∞∑

l=0

( |∑l
z=0(gb

z – gz)�ζz|
ζl

)tl
] 1

�

≤ sup
j

inf
b≥j

υ
(
f – gb). �

Theorem 7.2 The function υ(f ) =
∑∞

l=0( |∑l
z=0 fz�ζz|

ζl
)tl does not verify the Fatou property for

every f ∈ �(ζ , t) if setups (f1) and (f2) are satisfied.

Proof Assume that set-ups are verified and {gb} ⊆ (�(ζ , t))υ with limb→∞ υ(gb – g) = 0.
As the space (�(ζ , t))υ is a pre-quasi closed space, then g ∈ (�(ζ , t))υ . Hence, for all f ∈
(�(ζ , t))υ , we have

υ(f – g) =
∞∑

l=0

( |∑l
z=0(fz – gz)�ζz|

ζl

)tl

≤ 2�–1

[ ∞∑

l=0

( |∑l
z=0(fz – gb

z )�ζz|
ζl

)tl

+
∞∑

l=0

( |∑l
z=0(gb

z – gz)�ζz|
ζl

)tl
]

≤ 2�–1 sup
j

inf
b≥j

υ
(
f – gb).

Therefore, υ does not verify the Fatou property. �

Now, we study the sufficient settings on (�(ζ , t))υ constructed with definite pre-quasi
norm so that there is one and only one fixed point of the Kannan pre-quasi norm contrac-
tion mapping.

Theorem 7.3 If setups (f1) and (f2) are satisfied and W : (�(ζ , t))υ → (�(ζ , t))υ is a Kan-
nan υ-contraction mapping, where υ(f ) = [

∑∞
l=0( |∑l

z=0 fz�ζz|
ζl

)tl ]
1
� , for every f ∈ �(ζ , t), so W

has a unique fixed point.

Proof Assume that the conditions are verified. For all f ∈ �(ζ , t), then W pf ∈ �(ζ , t). Since
W is a Kannan υ-contraction mapping, we have

υ
(
W p+1f – W pf

) ≤ λ
(
υ
(
W p+1f – W pf

)
+ υ

(
W pf – W p–1f

)) ⇒

υ
(
W p+1f – W pf

) ≤ λ

1 – λ
υ
(
W pf – W p–1f

)

≤
(

λ

1 – λ

)2

υ
(
W p–1f – W p–2f

) ≤ · · · ≤
(

λ

1 – λ

)p

υ(Wf – f ).

Therefore, for every p, q ∈ N with q > p, we have

υ
(
W pf – W qf

) ≤ λ
(
υ
(
W pf – W p–1f

)
+ υ

(
W qf – W q–1f

))

≤ λ

((
λ

1 – λ

)p–1

+
(

λ

1 – λ

)q–1)

υ(Wf – f ).

Hence, {W pf } is a Cauchy sequence in (�(ζ , t))υ . Since the space (�(ζ , t))υ is pre-quasi
Banach space, there is g ∈ (�(ζ , t))υ so that limp→∞ W pf = g . To show that Wg = g , as υ
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has the Fatou property, we get

υ(Wg – g) ≤ sup
i

inf
p≥i

υ
(
W p+1f – W pf

) ≤ sup
i

inf
p≥i

(
λ

1 – λ

)p

υ(Wf – f ) = 0,

so Wg = g . Then g is a fixed point of W . To prove that the fixed point is unique, assume
that we have two different fixed points b, g ∈ (�(ζ , t))υ of W . Therefore, one can see

υ(b – g) ≤ υ(Wb – Wg) ≤ ξ
(
υ(Wb – b) + υ(Wg – g)

)
= 0.

Hence, b = g . �

Corollary 7.4 Suppose that setups (f1) and (f2) are satisfied and W : (�(ζ , t))υ →
(�(ζ , t))υ is a Kannan υ-contraction mapping, where υ(f ) = [

∑∞
l=0( |∑l

z=0 fz�ζz|
ζl

)tl ]
1
� , for ev-

ery f ∈ �(ζ , t), then W has a unique fixed point b with υ(W pf – b) ≤ λ( λ
1–λ

)p–1υ(Wf – f ).

Proof Assume that the set-ups are verified. By Theorem 7.3, there is a unique fixed point
b of W . Therefore, one can see

υ
(
W pf – b

)
= υ

(
W pf – Wb

)

≤ λ
(
υ
(
W pf – W p–1f

)
+ υ(Wb – b)

)
= λ

(
λ

1 – λ

)p–1

υ(Wf – f ). �

Theorem 7.5 If setups (f1) and (f2) are satisfied and W : (�(ζ , t))υ → (�(ζ , t))υ , where
υ(f ) =

∑∞
l=0( |∑l

z=0 fz�ζz|
ζl

)tl , for every f ∈ �(ζ , t). The point g ∈ (�(ζ , t))υ is the only fixed
point of W if the following conditions are verified:

(a) W is a Kannan υ-contraction mapping;
(b) W is υ-sequentially continuous at g ∈ (�(ζ , t))υ ;
(c) We have v ∈ (�(ζ , t))υ such that the sequence of iterates {W pv} has a subsequence

{W pi v} converging to g .

Proof If the settings are satisfied, let g be not a fixed point of W , then Wg = g . By set-ups
(b) and (c), one can see

lim
pi→∞υ

(
W pi f – g

)
= 0 and lim

pi→∞υ
(
W pi+1f – Wg

)
= 0.

Since the operator W is a Kannan υ-contraction, we have

0 < υ(Wg – g)

= υ
((

Wg – W pi+1f
)

+
(
W pi f – g

)
+

(
W pi+1f – W pi f

))

≤ 22�–2υ
(
W pi+1v – Wg

)
+ 22�–2υ

(
W pi v – g

)
+ 2�–1λ

(
λ

1 – λ

)pi–1

υ(Wf – f ).

Since pi → ∞, we get a contradiction. Hence, g is a fixed point of W . To show that the
fixed point g is unique, suppose that we have two different fixed points g, b ∈ (�(ζ , t))υ
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of W . Therefore, we have

υ(g – b) ≤ υ(Wg – Wb) ≤ λ
(
υ(Wg – g) + υ(Wb – b)

)
= 0.

So, g = b. �

Example 7.6 Let W : (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ → (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ , where

υ(f ) =
√

∑∞
l=0( |∑l

z=0
z+2
z+1 fz|

∑l
z=0

z+2
z+1

)
2l+3
l+2 , for all f ∈ �((

∑l
z=0

z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0) and

W (f ) =

⎧
⎨

⎩

f
4 , υ(f ) ∈ [0, 1),
f
5 , υ(f ) ∈ [1,∞).

Since for all f , g ∈ (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ with υ(f ),υ(g) ∈ [0, 1), we have

υ(Wf – Wg) = υ

(
f
4

–
g
4

)

≤ 1
4√27

(

υ

(
3f
4

)

+ υ

(
3g
4

))

=
1

4√27
(
υ(Wf – f ) + υ(Wg – g)

)
.

For all f , g ∈ (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ with υ(f ),υ(g) ∈ [1,∞), we have

υ(Wf – Wg) = υ

(
f
5

–
g
5

)

≤ 1
4√64

(

υ

(
4f
5

)

+ υ

(
4g
5

))

=
1

4√64
(
υ(Wf – f ) + υ(Wg – g)

)
.

For all f , g ∈ (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ with υ(f ) ∈ [0, 1) and υ(g) ∈ [1,∞), we have

υ(Wf – Wg) = υ

(
f
4

–
g
5

)

≤ 1
4√27

υ

(
3f
4

)

+
1

4√64
υ

(
4g
5

)

≤ 1
4√27

(

υ

(
3f
4

)

+ υ

(
4g
5

))

=
1

4√27
(
υ(Wf – f ) + υ(Wg – g)

)
.

Therefore, the mapping W is a Kannan υ-contraction mapping. Since υ satisfies the Fatou
property, by Theorem 7.3, the mapping W has a unique fixed point θ ∈ (�((

∑l
z=0

z+2
z+1 )∞l=0,

( 2l+3
l+2 )∞l=0))υ .
Let {f (n)} ⊆ (�((

∑l
z=0

z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ be such that limn→∞ υ(f (n) – f (0)) = 0, where
f (0) ∈ (�((

∑l
z=0

z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ with υ(f (0)) = 1. Since the pre-quasi norm υ is continu-
ous, we have

lim
n→∞υ

(
Wf (n) – Wf (0)) = lim

n→∞υ

(
f (n)

4
–

f (0)

5

)

= υ

(
f (0)

20

)

> 0.

Hence W is not υ-sequentially continuous at f (0). So, the mapping W is not continuous
at f (0).
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If υ(f ) =
∑∞

l=0( |∑l
z=0

z+2
z+1 fz|

∑l
z=0

z+2
z+1

)
2l+3
l+2 for all f ∈ �((

∑l
z=0

z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0). Since for all f , g ∈
(�((

∑l
z=0

z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ with υ(f ),υ(g) ∈ [0, 1), we have

υ(Wf – Wg) = υ

(
f
4

–
g
4

)

≤ 2√
27

(

υ

(
3f
4

)

+ υ

(
3g
4

))

=
2√
27

(
υ(Wf – f ) + υ(Wg – g)

)
.

For all f , g ∈ (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ with υ(f ),υ(g) ∈ [1,∞), we have

υ(Wf – Wg) = υ

(
f
5

–
g
5

)

≤ 1
4

(

υ

(
4f
5

)

+ υ

(
4g
5

))

=
1
4
(
υ(Wf – f ) + υ(Wg – g)

)
.

For all f , g ∈ (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ with υ(f ) ∈ [0, 1) and υ(g) ∈ [1,∞), we have

υ(Wf – Wg) = υ

(
f
4

–
g
5

)

≤ 2√
27

υ

(
3f
4

)

+
1
4
υ

(
4g
5

)

≤ 2√
27

(

υ

(
3f
4

)

+ υ

(
4g
5

))

=
2√
27

(
υ(Wf – f ) + υ(Wg – g)

)
.

Therefore, the mapping W is a Kannan υ-contraction mapping and

W p(f ) =

⎧
⎨

⎩

f
4p , υ(f ) ∈ [0, 1),
f

5p , υ(f ) ∈ [1,∞).

It is clear that W is υ-sequentially continuous at θ ∈ (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ
and {W pf } has a subsequence {W pi f } converging to θ . By Theorem 7.5, the point θ ∈
(�((

∑l
z=0

z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ is the only fixed point of W .

Example 7.7 Let W : (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ → (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ , where

υ(f ) =
∑∞

l=0( |∑l
z=0

z+2
z+1 fz|

∑l
z=0

z+2
z+1

)
2l+3
l+2 , for all f ∈ �((

∑l
z=0

z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0) and

W (f ) =

⎧
⎪⎪⎨

⎪⎪⎩

1
4 (e1 + f ), f0 ∈ (–∞, 1

3 ),
1
3 e1, f0 = 1

3 ,
1
4 e1, f0 ∈ ( 1

3 ,∞).

Since for all f , g ∈ (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ with f0, g0 ∈ (–∞, 1
3 ), we have

υ(Wf – Wg) = υ

(
1
4

(f0 – g0, f1 – g1, f2 – g2, . . .)
)

≤ 2√
27

(

υ

(
3f
4

)

+ υ

(
3g
4

))

≤ 2√
27

(
υ(Wf – f ) + υ(Wg – g)

)
.
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For all f , g ∈ (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ with f0, g0 ∈ ( 1
3 ,∞), then for any ε > 0 we have

υ(Wf – Wg) = 0 ≤ ε
(
υ(Wf – f ) + υ(Wg – g)

)
.

For all f , g ∈ (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ with f0 ∈ (–∞, 1
3 ) and g0 ∈ ( 1

3 ,∞), we have

υ(Wf – Wg) = υ

(
f
4

)

≤ 1√
27

υ

(
3f
4

)

=
1√
27

υ(Wf – f ) ≤ 1√
27

(
υ(Wf – f ) + υ(Wg – g)

)
.

Therefore, the mapping W is a Kannan υ-contraction mapping. It is clear that W is υ-
sequentially continuous at 1

3 e1 ∈ (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ and there is f ∈
(�((

∑l
z=0

z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ with f0 ∈ (–∞, 1
3 ) such that the sequence of iterates {W pf } =

{∑p
n=1

1
4n e1 + 1

4p f } has a subsequence {W pi f } = {∑pi
n=1

1
4n e1 + 1

4pi f } converging to 1
3 e1. By

Theorem 7.5, the mapping W has one fixed point 1
3 e1 ∈ (�((

∑l
z=0

z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ . Note
that W is not continuous at 1

3 e1 ∈ (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ .

If υ(f ) =
√

∑∞
l=0( |∑l

z=0
z+2
z+1 fz|

∑l
z=0

z+2
z+1

)
2l+3
l+2 for all f ∈ �((

∑l
z=0

z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0). Since for all f , g ∈
(�((

∑l
z=0

z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ with f0, g0 ∈ (–∞, 1
3 ), we have

υ(Wf – Wg) = υ

(
1
4

(f0 – g0, f1 – g1, f2 – g2, . . .)
)

≤ 1
4√27

(

υ

(
3f
4

)

+ υ

(
3g
4

))

≤ 1
4√27

(
υ(Wf – f ) + υ(Wg – g)

)
.

For all f , g ∈ (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ with f0, g0 ∈ ( 1
3 ,∞), then for any ε > 0 we have

υ(Wf – Wg) = 0 ≤ ε
(
υ(Wf – f ) + υ(Wg – g)

)
.

For all f , g ∈ (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))υ with f0 ∈ (–∞, 1
3 ) and g0 ∈ ( 1

3 ,∞), we have

υ(Wf – Wg) = υ

(
f
4

)

≤ 1
4√27

υ

(
3f
4

)

=
1

4√27
υ(Wf – f )

≤ 1
4√27

(
υ(Wf – f ) + υ(Wg – g)

)
.

Therefore, the mapping W is a Kannan υ-contraction mapping. Since υ satisfies the Fatou
property, by Theorem 7.3, the mapping W has a unique fixed point 1

3 e1 ∈ (�((
∑l

z=0
z+2
z+1 )∞l=0,

( 2l+3
l+2 )∞l=0))υ .

We study the existence of a fixed point of the Kannan pre-quasi norm contraction map-
ping in the pre-quasi Banach operator ideal constructed by (�(ζ , t))υ and s-numbers.

Theorem 7.8 The pre-quasi norm (W ) = [
∑∞

l=0( |∑l
z=0 sz(W )�ζz|

ζl
)tl ]

1
� for each W ∈

S(�(ζ ,t))υ (Z, M) does not verify the Fatou property if setups (f1) and (f2) are satisfied.
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Proof Suppose that the conditions are verified and {Wp}p∈N ⊆ S(�(ζ ,t))υ (Z, M) with
limp→∞ (Wp – W ) = 0. As the space S(�(ζ ,t))υ is a pre-quasi closed ideal, hence W ∈
S(�(ζ ,t))υ (Z, M). Then, for all V ∈ S(�(ζ ,t))υ (Z, M), one has

(V – W ) =

[ ∞∑

l=0

( |∑l
z=0 sz(V – W )�ζz|

ζl

)tl
] 1

�

≤
[ ∞∑

l=0

( |∑l
z=0 s[ z

2 ](V – Wi)�ζz|
ζl

)tl
] 1

�

+

[ ∞∑

l=0

( |∑l
z=0 s[ z

2 ](W – Wi)�ζz|
ζl

)tl
] 1

�

≤ 2
1
� sup

p
inf
i≥p

[ ∞∑

l=0

( |∑l
z=0 sz(V – Wi)�ζz|

ζl

)tl
] 1

�

.

Therefore,  does not verify the Fatou property. �

Theorem 7.9 If setups (f1) and (f2) are satisfied and G : S(�(ζ ,t))υ (Z, M) → S(�(ζ ,t))υ (Z, M),
where (W ) = [

∑∞
l=0( |∑l

z=0 sz(W )�ζz|
ζl

)tl ]
1
� for all W ∈ S(�(ζ ,t))υ (Z, M). The point A ∈

S(�(ζ ,t))υ (Z, M) is the unique fixed point of G if the following settings are verified:
(a) G is a Kannan -contraction mapping;
(b) G is -sequentially continuous at a point A ∈ S(�(ζ ,t))υ (Z, M);
(c) We have B ∈ S(�(ζ ,t))υ (Z, M) such that the sequence of iterates {GpB} has a

subsequence {Gpi B} converging to A.

Proof Suppose that the settings are satisfied. If A is not a fixed point of G, then GA = A.
From conditions (b) and (c), one has

lim
pi→∞

(
Gpi B – A

)
= 0 and lim

pi→∞
(
Gpi+1B – GA

)
= 0.

As G is a Kannan -contraction mapping, we have

0 < (GA – A) = 
((

GA – Gpi+1B
)

+
(
Gpi B – A

)
+

(
Gpi+1B – Gpi B

))

≤ 2
1
� 

(
Gpi+1B – GA

)
+ 2

2
� 

(
Gpi B – A

)
+ 2

2
� λ

(
λ

1 – λ

)pi–1

(GB – B).

Since pi → ∞, one has a contradiction. Hence, A is a fixed point of G. To prove that
the fixed point A is unique, assume that we have two different fixed points A, D ∈
S(�(ζ ,t))υ (Z, M) of G. Therefore, we have

(A – D) ≤ (GA – GD) ≤ λ
(
(GA – A) + (GD – D)

)
= 0.

So, A = D. �

Example 7.10 Let Z and M be Banach spaces,

G : S(�((
∑l

z=0
z+1
z+2 )∞l=0,( 2l+3

l+2 )∞l=0))υ (Z, M) → S(�((
∑l

z=0
z+1
z+2 )∞l=0,( 2l+3

l+2 )∞l=0))υ (Z, M),
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where

(W ) =

√
√
√
√

∞∑

l=0

( |∑l
z=0

z+1
z+2 sz|

∑l
z=0

z+1
z+2

) 2l+3
l+2

,

for every W ∈ S(�((
∑l

z=0
z+1
z+2 )∞l=0,( 2l+3

l+2 )∞l=0))υ (Z, M) and

G(W ) =

⎧
⎨

⎩

W
6 , (W ) ∈ [0, 1),

W
7 , (W ) ∈ [1,∞).

Since for all W1, W2 ∈ S(�((
∑l

z=0
z+1
z+2 )∞l=0,( 2l+3

l+2 )∞l=0))υ with (W1),(W2) ∈ [0, 1), we have

(GW1 – GW2) = 

(
W1

6
–

W2

6

)

≤
√

2
4√125

(



(
5W1

6

)

+ 

(
5W2

6

))

=
√

2
4√125

(
(GW1 – W1) + (GW2 – W2)

)
.

For all W1, W2 ∈ S(�((
∑l

z=0
z+1
z+2 )∞l=0,( 2l+3

l+2 )∞l=0))υ with (W1),(W2) ∈ [1,∞), we have

(GW1 – GW2) = 

(
W1

7
–

W2

7

)

≤
√

2
4√216

(



(
6W1

7

)

+ 

(
6W2

7

))

=
√

2
4√216

(
(GW1 – W1) + (GW2 – W2)

)
.

For all W1, W2 ∈ S(�((
∑l

z=0
z+1
z+2 )∞l=0,( 2l+3

l+2 )∞l=0))υ with (W1) ∈ [0, 1) and (W2) ∈ [1,∞), we have

(GW1 – GW2) = 

(
W1

6
–

W2

7

)

≤
√

2
4√125



(
5W1

6

)

+
√

2
4√216



(
6W2

7

)

≤
√

2
4√125

(
(GW1 – W1) + (GW2 – W2)

)
.

Therefore, the mapping W is a Kannan -contraction mapping and

Gp(W ) =

⎧
⎨

⎩

W
6p , (W ) ∈ [0, 1),
W
7p , (W ) ∈ [1,∞).

It is clear that G is -sequentially continuous at the zero operator � ∈
S(�((

∑l
z=0

z+1
z+2 )∞l=0,( 2l+3

l+2 )∞l=0))υ and {GpW } has a subsequence {Gpi W } converging to �. By The-
orem 7.9, the zero operator � ∈ S(�((

∑l
z=0

z+1
z+2 )∞l=0,( 2l+3

l+2 )∞l=0))υ is the only fixed point of G.
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Let {W (n)} ⊆ S(�((
∑l

z=0
z+1
z+2 )∞l=0,( 2l+3

l+2 )∞l=0))υ be such that limn→∞ (W (n) – W (0)) = 0, where
W (0) ∈ S(�((

∑l
z=0

z+1
z+2 )∞l=0,( 2l+3

l+2 )∞l=0))υ with (W (0)) = 1. Since the pre-quasi norm  is continu-
ous, we have

lim
n→∞

(
GW (n) – GW (0)) = lim

n→∞

(
W (0)

6
–

W (0)

7

)

= 

(
W (0)

42

)

> 0.

Hence G is not -sequentially continuous at W (0). So, the mapping G is not continuous
at W (0).

8 Application to the existence of solutions of nonlinear difference equations
Summable equations like (6) were studied by Salimi et al. [32], Agarwal et al. [33], and
Hussain et al. [34]. In this section, we search for a solution to (6) in (�(ζ , t))υ , where set-
ups (f1) and (f2) are satisfied and υ(f ) = [

∑∞
l=0( |∑l

z=0 fz�ζz|
ζl

)tl ]
1
� for all f ∈ �(ζ , t). Consider

the summable equations

fz = pz +
∞∑

m=0

A(z, m)g(m, fm), (6)

and let W : (�(ζ , t))υ → (�(ζ , t))υ defined by

W (fz)z∈N =

(

pz +
∞∑

m=0

A(z, m)g(m, fm)

)

z∈N

. (7)

Theorem 8.1 Summable equation (6) has a solution in (�(ζ , t))υ , if A : N2 → R, g : N ×
R → R, p : N → R, suppose that there is a number λ such that supl λ

tl
� ∈ [0, 1

2 ), and for all
l ∈ N, we have

∣
∣
∣
∣
∣

l∑

z=0

(∑

m∈N

A(z, m)
[
g(m, fm) – g(m, rm)

]
)

�ζz

∣
∣
∣
∣
∣

≤ λ

[∣
∣
∣
∣
∣

l∑

z=0

(

pz – fz +
∞∑

m=0

A(z, m)g(m, fm)

)

�ζz

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

l∑

z=0

(

pz – rz +
∞∑

m=0

A(z, m)g(m, rm)

)

�ζz

∣
∣
∣
∣
∣

]

.

Proof Let the conditions be verified. Consider the mapping W : (�(ζ , t))υ → (�(ζ , t))υ
defined by equation (7). We have

υ(Wf – Wr) =

[ ∞∑

l=0

( |∑l
z=0(Wfz – Wrz)�ζz|

ζl

)tl
] 1

�

=

[ ∞∑

l=0

( |∑l
z=0(

∑
m∈N A(z, m)[g(m, fm) – g(m, rm)])�ζz|

ζl

)tl
] 1

�

≤ sup
l

λ
tl
�

[ ∞∑

l=0

( |∑l
z=0(pz – fz +

∑∞
m=0 A(z, m)g(m, fm))�ζz|

ζl

)tl
] 1

�
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+ sup
l

λ
tl
�

[ ∞∑

l=0

( |∑l
z=0(pz – rz +

∑∞
m=0 A(z, m)g(m, rm))�ζz|

ζl

)tl
] 1

�

= sup
l

λ
tl
�

(
υ(Wf – f ) + υ(Wr – r)

)
.

Then, from Theorem 7.3, we have a solution of equation (6) in (�(ζ , t))υ . �

Example 8.2 Given the sequence space (�((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0))φ , where

υ(f ) =

√
√
√
√

∞∑

l=0

( |∑l
z=0

z+2
z+1 fz|

∑l
z=0

z+2
z+1

) 2l+3
l+2

,

for all f ∈ �((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0). Consider the nonlinear difference equations:

fz = e–(3z+6) +
∞∑

m=0

(–1)z+m f p
z–2

f q
z–1 + m2 + 1

(8)

with p, q, f–2, f–1 > 0, and let W : �((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0) → �((
∑l

z=0
z+2
z+1 )∞l=0, ( 2l+3

l+2 )∞l=0) de-
fined by

W (fz)∞z=0 =

(

e–(3z+6) +
∞∑

m=0

(–1)z+m f p
z–2

f q
z–1 + m2 + 1

)∞

z=0

. (9)

Clearly, there is a number λ such that supl λ
2l+3
2l+4 ∈ [0, 1

2 ), and for all l ∈ N, we have

∣
∣
∣
∣
∣

l∑

z=0

( ∞∑

m=0

(–1)z f p
z–2

f q
z–1 + m2 + 1

(
(–1)m – (–1)m)

)
z + 2
z + 1

∣
∣
∣
∣
∣

≤ λ

∣
∣
∣
∣
∣

l∑

z=0

(

e–(3z+6) – fz +
∞∑

m=0

(–1)z+m f p
z–2

f q
z–1 + m2 + 1

)
z + 2
z + 1

∣
∣
∣
∣
∣

+ λ

∣
∣
∣
∣
∣

l∑

z=0

(

e–(3z+6) – rz +
∞∑

m=0

(–1)z+m rp
z–2

rq
z–1 + m2 + 1

)
z + 2
z + 1

∣
∣
∣
∣
∣
.

By Theorem 8.1, the nonlinear difference equation (8) has a solution in �((
∑l

z=0
z+2
z+1 )∞l=0,

( 2l+3
l+2 )∞l=0).
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