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Abstract
In this paper, we establish new inequalities in the setting of 2-metric spaces and
provide their geometric interpretations. Some of our results are extensions of those
obtained by Dragomir and Goşa (J. Indones. Math. Soc. 11(1):33–38, 2005) in the
setting of metric spaces.
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1 Introduction and preliminaries
We start this section by recalling an interesting metric-type inequality due to Dragomir
and Goşa [7]. Let us first fix some notations. We denote by N the set of positive natural
numbers, that is, N = {1, 2, . . . }. For n ∈N, let

�n =

{
(p1, p2, . . . , pn) ∈R

n : pi ≥ 0 (i = 1, 2, . . . , n),
n∑

i=1

pi = 1

}
.

Theorem 1.1 (Dragomir–Goşa [7]) Let (X, d) be a metric space. Then, for all n ∈ N, n ≥ 2,
(p1, p2, . . . , pn) ∈ �n, and {xi}n

i=1 ⊂ X,

n–1∑
i=1

n∑
j=i+1

pipjd(xi, xj) ≤ inf
x∈X

n∑
i=1

pid(xi, x). (1.1)

Moreover, the inequality is optimal in the sense that the multiplicative coefficient C = 1 on
the right-hand side of (1.1) (in front of inf) cannot be replaced by a smaller real number.

In the particular case where pi = 1
n (i = 1, 2, . . . , n), (1.1) reduces to

n–1∑
i=1

n∑
j=i+1

d(xi, xj) ≤ n inf
x∈X

n∑
i=1

d(xi, x).

This inequality can be interpreted as follows. Let P be a polygon in a metric space with
n vertices, and let x be an arbitrary point in the space. Then the sum of all edges and
diagonals of P is less than n times the sum of the distances from x to the vertices of P.
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In the same reference [7] the authors provided some interesting applications of inequal-
ity (1.1) to normed linear spaces and pre-Hilbert spaces. For more results on metric in-
equalities, we refer to [1, 6, 12] and the references therein.

In this paper, we derive new inequalities in 2-metric spaces and 2-normed linear spaces.
In particular, we obtain an extension of Theorem 1.1 to the setting of 2-metric spaces and
provide a geometric interpretation of the obtained inequality.

Before stating and proving our results, let us recall briefly some basic notions related to
2-metric spaces and 2-normed linear spaces.

In 1963, Gähler [10] introduced the notion of 2-metric spaces as follows. Let X be a
nonempty set, and let D : X ×X ×X → R. We say that D is a 2-metric on X if the following
conditions are satisfied:

(D1) for all x, y ∈ X with x �= y, there exists z = z(x, y) ∈ X such that

D(x, y, z) �= 0;

(D2) D(x, y, z) = 0 when at least two elements of {x, y, z} ⊂ X are equal;
(D3) for all x, y, z ∈ X ,

D(x, y, z) = D(x, z, y) = D(y, z, x);

(D4) for all x, y, z, u ∈ X ,

D(x, y, z) ≤ D(u, y, z) + D(x, u, z) + D(x, y, u).

In this case, the pair (X, D) is called a 2-metric space.
Let us mention some remarks following from properties (D1)–(D4).
• Given x, y, z ∈ X , we denote by σ (x, y, z) any permutation of the elements x, y, and z.

By (D3) we deduce that

D(x, y, z) = D
(
σ (x, y, z)

)
, x, y, z ∈ X.

• Let x, y, z ∈ X . By (D3) and (D4), for all u ∈ X , we have

D(x, y, z)

≤ D(u, y, z) + D(x, u, z) + D(x, y, u)

≤ D(x, y, z) + D(u, x, z) + D(u, y, x) + D(x, u, z) + D(x, y, u)

= D(x, y, z) + 2D(u, x, z) + 2D(u, y, x),

which yields

D(u, x, z) + D(u, y, x) ≥ 0.

Taking u = y in this inequality and using (D2), we obtain

D(x, y, z) ≥ 0, x, y, z ∈ X.
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Example 1.1 (see [10]) Let D : RN ×R
N ×R

N →R, N ∈N, N ≥ 2, be the mapping defined
by

D(A1, A2, A3) =
1
2
‖−−→

A1A2 × −−→
A1A3‖2, A1, A2, A3 ∈ R

N , (1.2)

where × denotes the cross product in R
N , and ‖ · ‖2 denotes the Euclidean norm in R

N .
Then D is a 2-metric on X = R

N . Note that D(A1, A2, A3) is equal to the area of the triangle
spanned by A1, A2, and A3.

In the same reference [10], Gähler introduced the notion of 2-normed linear spaces as
follows. Let X be a linear space over R of dimension 1 < L ≤ ∞. Let ‖·, ·‖ : X × X → R be a
given mapping. We say that ‖·, ·‖ is a 2-norm on X if the following conditions are satisfied
for all x, y, z ∈ X and λ ∈R:

(N1) ‖x, y‖ = 0 if and only if x and y are linearly dependent;
(N2) ‖x, y‖ = ‖y, x‖;
(N3) ‖λx, y‖ = |λ|‖x, y‖;
(N4) ‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖.

In this case, the pair (X,‖·, ·‖) is said to be a 2-normed space.
We now give some remarks following from (N1)–(N4):
• By (N2) and (N3), for all x, y ∈ X and λ,μ ∈R, we have

‖λx,μy‖ = |λ||μ|‖x, y‖ = ‖μx,λy‖.

• If ‖·, ·‖ is a 2-norm on X , then the mapping D : X × X × X →R defined by

D(x, y, z) = ‖x – z, y – z‖, x, y, z ∈ X, (1.3)

is a 2-metric on X . Note that if L = 1, then condition (D1) is not satisfied by D. Namely,
by (N1), if X = span{a}, a ∈ X , then for all x, y, z ∈ X , there exist λ,μ,γ ∈R such that

D(x, y, z) = D(λa,μa,γ a) =
∥∥(λ – γ )a, (μ – γ )a

∥∥ =
∣∣(λ – γ )(μ – γ )

∣∣‖a, a‖ = 0.

• From the above remark and the positivity of D we deduce that

‖x, y‖ ≥ 0, x, y ∈ X.

• Let x, y, z ∈ X and λ1,λ2 ∈R. By (N2) and (N4) we have

‖λ1x + λ2y, z‖ = ‖z,λ1x + λ2y‖
≤ ‖z,λ1x‖ + ‖z,λ2y‖
= |λ1|‖x, z‖ + |λ2|‖y, z‖.

Hence by induction we deduce that if xi, z ∈ X and λi ∈R, i = 1, 2, . . . , m, then

‖λ1x1 + λ2x2 + · · · + λmxm, z‖ ≤
m∑

i=1

|λi|‖xi, z‖. (1.4)
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For more details about 2-metric spaces and 2-normed linear spaces, see, for example,
[2–5, 8, 9, 11, 13–17] and the references therein.

2 Results and proofs
In this section, we state and prove our main results and provide some interesting conse-
quences.

Theorem 2.1 Let (X, D) be a 2-metric space. Then, for all n ∈ N, n ≥ 3, (p1, p2, . . . , pn) ∈
�n, and {xi}n

i=1 ⊂ X,

n–2∑
i=1

n–1∑
j=i+1

n∑
k=j+1

pipjpkD(xi, xj, xk) ≤ inf
x∈X

n–1∑
i=1

n∑
j=i+1

pipjD(x, xi, xj). (2.1)

Moreover, the inequality is optimal in the sense that the multiplicative coefficient C = 1 on
the right-hand side of (2.1) (in front of inf) cannot be replaced by a smaller real number.

Proof Let n ∈N, n ≥ 3, (p1, p2, . . . , pn) ∈ �n, and {xi}n
i=1 ⊂ X. Let x be an arbitrary element

of X. For all i, j, k ∈ {1, 2, . . . , n}, we have

D(xi, xj, xk) ≤ D(x, xj, xk) + D(xi, x, xk) + D(xi, xj, x).

Multiplying this inequality by pipjpk and taking the sum from 1 to n, we obtain

n∑
i=1

n∑
j=1

n∑
k=1

pipjpkD(xi, xj, xk) ≤ A + B + C, (2.2)

where

A =
n∑

i=1

n∑
j=1

n∑
k=1

pipjpkD(x, xj, xk), B =
n∑

i=1

n∑
j=1

n∑
k=1

pipjpkD(xi, x, xk)

and

C =
n∑

i=1

n∑
j=1

n∑
k=1

pipjpkD(xi, xj, x).

Sine
∑n

i=1 pi = 1, by the symmetry of D we deduce that

A = B = C =
n∑

i=1

n∑
j=1

pipjD(x, xi, xj). (2.3)

On the other hand, by (D2)–(D3) we have

n∑
i=1

n∑
j=1

pipjD(x, xi, xj) =
∑
i<j

pipjD(x, xi, xj) +
∑
j<i

pipjD(x, xi, xj)

= 2
∑
i<j

pipjD(x, xi, xj),
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that is,

n∑
i=1

n∑
j=1

pipjD(x, xi, xj) = 2
n–1∑
i=1

n∑
j=i+1

pipjD(x, xi, xj). (2.4)

Similarly, we have

n∑
i=1

n∑
j=1

n∑
k=1

pipjpkD(xi, xj, xk)

=
∑
i<j<k

pipjpkD(xi, xj, xk) +
∑
i<k<j

pipjpkD(xi, xj, xk) +
∑
j<i<k

pipjpkD(xi, xj, xk)

+
∑
j<k<i

pipjpkD(xi, xj, xk) +
∑
k<i<j

pipjpkD(xi, xj, xk) +
∑
k<j<i

pipjpkD(xi, xj, xk)

= 6
∑
i<j<k

pipjpkD(xi, xj, xk),

that is,

n∑
i=1

n∑
j=1

n∑
k=1

pipjpkD(xi, xj, xk) = 6
n–2∑
i=1

n–1∑
j=i+1

n∑
k=j+1

pipjpkD(xi, xj, xk). (2.5)

Hence, using (2.2), (2.3), (2.4), and (2.5), we obtain

n–2∑
i=1

n–1∑
j=i+1

n∑
k=j+1

pipjpkD(xi, xj, xk) ≤
n–1∑
i=1

n∑
j=i+1

pipjD(x, xi, xj).

Since this inequality holds for all x ∈ X, we deduce (2.1).
Suppose now that there exists a constant C > 0 such that

n–2∑
i=1

n–1∑
j=i+1

n∑
k=j+1

pipjpkD(xi, xj, xk) ≤ C inf
x∈X

n–1∑
i=1

n∑
j=i+1

pipjD(x, xi, xj) (2.6)

for all n ∈N, n ≥ 3, (p1, p2, . . . , pn) ∈ �n, and {xi}n
i=1 ⊂ X. Taking n = 3 in (2.6), we obtain

p1p2p3D(x1, x2, x3) ≤ C
[
p1p2D(x, x1, x2) + p1p3D(x, x1, x3) + p2p3D(x, x2, x3)

]
for all (p1, p2, p3) ∈ �3, {xi}3

i=1 ⊂ X, and x ∈ X. In particular, for x = x1 and (p1, p2, p3) =
(2ε – 1, 1 – ε, 1 – ε), 1

2 < ε < 1, by (D2) we obtain

(2ε – 1)(1 – ε)2D(x1, x2, x3) ≤ C(1 – ε)2D(x1, x2, x3),

which yields

2ε – 1 ≤ C,
1
2

< ε < 1.

Passing to the limit as ε → 1–, we get that C ≥ 1, which proves the sharpness of (2.1). �
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Corollary 2.1 Let (X, D) be a 2-metric space. Then, for all n ∈N, n ≥ 3, and {xi}n
i=1 ⊂ X,

n–2∑
i=1

n–1∑
j=i+1

n∑
k=j+1

D(xi, xj, xk) ≤ n inf
x∈X

n–1∑
i=1

n∑
j=i+1

D(x, xi, xj). (2.7)

Proof By (2.1) with

pi =
1
n

, i ∈ {1, 2, . . . , n},

(2.7) follows. �

Corollary 2.1 has the following geometric interpretation.

Corollary 2.2 Let n ∈ N, n ≥ 3, and let A1, A2, . . . , An, A be n + 1 points of RN , N ≥ 2.
Then the sum of the areas of all triangles with vertices belonging to the set of points {Ai :
i = 1, 2, . . . , n} is less than n times the sum of the areas of all triangles such that one of the
vertices is the point A and the other vertices belong to the set of points {Ai : i = 1, 2, . . . , n}.

Proof The result follows immediately from Corollary 2.1 by taking X = R
N and D, the

2-metric defined by (1.2). �

Corollary 2.3 Let (X, D) be a 2-metric space, n ∈ N, n ≥ 3, (p1, p2, . . . , pn) ∈ �n, and
{xi}n

i=1 ⊂ X. Let x ∈ X be such that

D(x, xi, xj) ≤ r, i, j ∈ {1, 2, . . . , n}, (2.8)

for some r > 0. Then

n–2∑
i=1

n–1∑
j=i+1

n∑
k=j+1

pipjpkD(xi, xj, xk) ≤
( n–1∑

i=1

n∑
j=i+1

pipj

)
r. (2.9)

Proof By (2.1) we have

n–2∑
i=1

n–1∑
j=i+1

n∑
k=j+1

pipjpkD(xi, xj, xk) ≤
n–1∑
i=1

n∑
j=i+1

pipjD(x, xi, xj). (2.10)

On the other hand, using (2.8), we obtain

n–1∑
i=1

n∑
j=i+1

pipjD(x, xi, xj) ≤ r
n–1∑
i=1

n∑
j=i+1

pipj. (2.11)

Combining (2.10) with (2.11), (2.9) follows. �

Corollary 2.4 Let X be a linear space over R of dimension 1 < L ≤ ∞, and let ‖·, ·‖ be a
2-norm on X. Then, for all n ∈N, n ≥ 3, (p1, p2, . . . , pn) ∈ �n, and {xi}n

i=1 ⊂ X,

n–2∑
i=1

n–1∑
j=i+1

n∑
k=j+1

pipjpk‖xi – xk , xj – xk‖ ≤ inf
x∈X

n–1∑
i=1

n∑
j=i+1

pipj‖x – xj, xi – xj‖. (2.12)
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Moreover, the inequality is optimal in the sense that the multiplicative coefficient C = 1 on
the right-hand side of (2.12) (in front of inf) cannot be replaced by a smaller real number.

Proof Consider the 2-metric D on X defined by (1.3). Then (2.12) follows by (2.1). �

Theorem 2.2 Let X be a linear space over R of dimension 1 < L ≤ ∞, and let ‖·, ·‖ be a
2-norm on X. Then, for all n ∈N, n ≥ 3, (p1, p2, . . . , pn) ∈ �n, and {xi}n

i=1 ⊂ X,

1
6

n∑
i=1

n∑
j=1

pipj‖xp – xi, xj – xi‖ ≤ ρn ≤
n–1∑
i=1

n∑
j=i+1

pipj‖xp – xj, xi – xj‖, (2.13)

where

ρn =
n–2∑
i=1

n–1∑
j=i+1

n∑
k=j+1

pipjpk‖xi – xk , xj – xk‖, xp =
n∑

i=1

pixi.

Proof Using (2.12) with x = xp, we obtain

ρn ≤
n–1∑
i=1

n∑
j=i+1

pipj‖xp – xj, xi – xj‖. (2.14)

By (2.5) we have

ρn =
1
6

n∑
i=1

n∑
j=1

n∑
k=1

pipjpk‖xi – xk , xj – xk‖. (2.15)

On the other hand, using (N2), we obtain

n∑
i=1

n∑
j=1

n∑
k=1

pipjpk‖xi – xk , xj – xk‖ =
n∑

k=1

n∑
i=1

pkpi

n∑
j=1

∥∥pj(xj – xk), xi – xk
∥∥. (2.16)

Next, by (1.4) we have that

n∑
j=1

∥∥pj(xj – xk), xi – xk
∥∥ ≥

∥∥∥∥∥
n∑

j=1

pj(xj – xk), xi – xk

∥∥∥∥∥
= ‖xp – xk , xi – xk‖. (2.17)

Hence it follows from (2.15), (2.16), and (2.17) that

ρn ≥ 1
6

n∑
k=1

n∑
i=1

pkpi‖xp – xk , xi – xk‖ =
1
6

n∑
i=1

n∑
j=1

pipj‖xp – xi, xj – xi‖. (2.18)

Finally, (2.13) follows from (2.14) and (2.18). �

For our next result, we need some notations.
Given three points A, B, C ∈R

N , N ≥ 2, we denote by 
(A, B, C) the area of the triangle
with vertices A, B, and C.
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Let n ∈N, n ≥ 3. For n points A1, A2, . . . , An ∈R
N , let

S(A1, A2, . . . , An) =
n∑

i=1


(Ai, Ai+1, Ai+2), An+1 = A1, An+2 = A2.

We introduce the set

�n =
{{A1, A2, . . . , An} ⊂ R

N : S(A1, A2, . . . , An) = 1
}

and the quantity

αn = inf
{A1,A2,...,An}∈�n

n–2∑
i=1

n–1∑
j=i+1

n∑
k=j+1


(Ai, Aj, Ak).

Theorem 2.3 For all n ∈ N, n ≥ 3, we have that αn ≥ n
18 .

Proof First, for all A, B, C ∈R
N , we have


(A, B, C) = D(A, B, C),

where D is the 2-metric defined by (1.2). On the other hand, given {A1, A2, . . . , An} ∈ �n,
for all j ∈ {1, 2, . . . , n}, by (D4), we have

D(Aj, Aj+1, Aj+2) ≤ D(P, Aj+1, Aj+2) + D(Aj, P, Aj+2) + D(Aj, Aj+1, P)

for all P ∈ {A1, A2, . . . , An}. Taking the sum over j from 1 to n, we get that

S(A1, A2, . . . , An) ≤
n∑

j=1

D(P, Aj+1, Aj+2) +
n∑

j=1

D(Aj, P, Aj+2) +
n∑

j=1

D(Aj, Aj+1, P),

that is,

1 ≤
n∑

j=1

D(P, Aj+1, Aj+2) +
n∑

j=1

D(Aj, P, Aj+2) +
n∑

j=1

D(Aj, Aj+1, P). (2.19)

Notice that

n∑
j=1

D(P, Aj+1, Aj+2) =
n+1∑
j=2

D(P, Aj, Aj+1)

=
n∑

j=1

D(P, Aj, Aj+1) – D(P, A1, A2) + D(P, An+1, An+2)

=
n∑

j=1

D(P, Aj, Aj+1) – D(P, A1, A2) + D(P, A1, A2)

=
n∑

j=1

D(P, Aj, Aj+1).
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Hence by (2.19) we obtain

1 ≤ 2
n∑

j=1

D(P, Aj, Aj+1) +
n∑

j=1

D(P, Aj, Aj+2). (2.20)

On the other hand, we have

n∑
j=1

D(P, Aj, Aj+1) ≤
n∑

j=1

n∑
k=1

D(P, Aj, Ak) (2.21)

and

n∑
j=1

D(P, Aj, Aj+2) ≤
n∑

j=1

n∑
k=1

D(P, Aj, Ak). (2.22)

Therefore, using (2.20), (2.21), and (2.22), we get that

1 ≤ 3
n∑

j=1

n∑
k=1

D(P, Aj, Ak).

Next, taking the sum over P ∈ {A1, A2, . . . , An}, we obtain

n ≤ 3
n∑

i=1

n∑
j=1

n∑
k=1

D(Ai, Aj, Ak). (2.23)

Notice that by (2.5) we have

n∑
i=1

n∑
j=1

n∑
k=1

D(Ai, Aj, Ak) = 6
n–2∑
i=1

n–1∑
j=i+1

n∑
k=j+1

D(Ai, Aj, Ak). (2.24)

Combining (2.23) with (2.24), we deduce that

n ≤ 18
n–2∑
i=1

n–1∑
j=i+1

n∑
k=j+1

D(Ai, Aj, Ak),

which yields the desired estimate. �

3 Conclusion
We obtained new inequalities in the setting of 2-metric spaces and 2-normed linear spaces.
Namely, we first derived an analogous version of Theorem 1.1 for 2-metric spaces (see
Theorem 2.1). Moreover, we provided a geometric interpretation of our obtained result
(see Corollary 2.2). We also presented some interesting consequences following from The-
orem 2.1. Next, we considered a problem related to the estimates of areas of triangles and
derived a new inequality (see Theorem 2.3).
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16. Todorcević, V.: Harmonic Quasiconformal Mappings and Hyperbolic Type Metric. Springer, Cham (2019)
17. White, A.: 2-Banach spaces. Math. Nachr. 42, 43–60 (1969)


	On some inequalities in 2-metric spaces
	Abstract
	Keywords

	Introduction and preliminaries
	Results and proofs
	Conclusion
	Acknowledgements
	Funding
	Abbreviations
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


