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Abstract
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1 Introduction
Hussain et al. [1] gave the definition of parametric metric spaces. They also studied the
existence of fixed points for mappings under different contractions in such spaces. A gen-
eralization of parametric metric spaces, parametric b-metric spaces, was given by Hussain
et al. [2]. Another extension of parametric metric spaces to three dimensions, parametric
S-metric spaces, was introduced by Nihal et al. [3]. Also, Priyobarta et al. [4] introduced
the notion of parametric A-metric spaces. Branciari [5] introduced generalized metric
spaces. Suzuki [6] and others have pointed out that the topology of a generalized metric
space has some drawbacks as a generalized metric need not be continuous, need not have
a compatible topology, and in a generalized metric space, a convergent sequence may be
a non-Cauchy sequence. Also, a generalized metric is not Hausdrof,f and a limit with re-
spect yo it is not unique. Various forms of parametric metric spaces can be found in [7–18]
and references therein. Also, there many applications in the literature [19–25].

First, we recall the following definitions.

Definition 1.1 ([1]) Consider a set � �= φ. A function Pm : � × � × (0, +∞) → [0, +∞)
is called a parametric metric on � if

(i) Pm(ζ ,η, x) = 0 for all x > 0 implies ζ = η;
(ii) Pm(ζ ,η, x) = P(η, ζ , x) for all x > 0;
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(iii) Pm(ζ ,η, x) ≤P(ζ ,μ, x) + P(μ,η, x) for all ζ ,η,μ ∈ � and x > 0.
The pair (�,Pm) is said to be a parametric metric space.

Definition 1.2 ([5]) Consider a set � �= φ. A function d : � × � → [0, +∞) is called a
generalized metric on � if

(i) d(ζ ,η) = 0 implies ζ = η;
(ii) d(ζ ,η) = d(η, ζ );

(iii) d(ζ ,η) ≤ d(ζ ,μ) + d(μ,λ) + d(λ,η)
for all distinct μ,λ ∈ � – {ζ ,η}. The pair (�, d) is said to be a generalized metric space.

Now we introduce generalized parametric metric spaces.

Definition 1.3 Consider a set � �= φ. A function Pm : � × � × (0, +∞) → [0, +∞) is
called a generalized parametric metric on � if

(i) Pm(ζ ,η, x) = 0 for all x > 0 implies ζ = η;
(ii) Pm(ζ ,η, x) = Pm(η, ζ , x) for all x > 0;
(iii) Pm(ζ ,η, x) ≤Pm(ζ ,μ, x) + Pm(μ,λ, x) + Pm(λ,η, x) for all distinct

μ,λ ∈ � – {ζ ,η}.
The pair (�,Pm) is said to be a generalized parametric metric space.

Definition 1.4 Consider a sequence {ζn} in a generalized parametric metric space
(�,Pm).

1. {ζn} is called a convergent sequence converging to ζ ∈ � and expressed as
limn→∞ζn = ζ if limn→∞Pm(ζn, ζ , x) = 0 for all x > 0.

2. {ζn} is called a Cauchy sequence in � if limn→∞Pm(ζn, ζm, x) = 0 for all x > 0.
3. (�,Pm) is said to be complete if every Cauchy sequence in it is convergent.

Definition 1.5 Let C be a self-mapping in a generalized parametric metric space (�,Pm).
If for every sequence {ζn} in � satisfying ζn → ζ as n → ∞, C(ζn) → C(ζ ), then we say
that C is a continuous mapping at ζ in �.

Following the definition of α-admissibility introduced in [26] and [27], we give the cor-
responding definition for generalized parametric metric space.

Definition 1.6 Suppose that � �= φ, and let α : � × � × (0, +∞) → [0, +∞). A mapping
C : � → � is called an α-admissible mapping if α(ζ ,η, x) ≥ 1 gives α(Cζ , Cη, x) ≥ 1 for all
ζ ,η ∈ � and x > 0.

Definition 1.7 Let (�,Pm) be a generalized parametric metric space, and let α : �×�×
(0, +∞) → [0, +∞). Then � is called an α-regular generalized parametric metric space if
for any sequence {ζn} in � such that ζn → ζ and α(ζn, ζn+1, x) ≥ 1, there is a subsequence
{ζnk } of {ζn} such that α(ζnk , ζ , x) ≥ 1 for all k ∈N and x > 0.

Proposition 1.8 Let {ζn} be a Cauchy sequence in a generalized parametric metric space
(�,Pm) and limn→∞Pm(ζn, a, x) = 0 for all a ∈ �. Then limn→∞Pm(ζn, b, x) = Pm(a, b, x)
for all b ∈ � and x > 0. Particularly, sequence {ζn} does not converge to b if b �= a.

We denote by F(C) the set of fixed points of mapping C.
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2 Main results
(α,ψ)-rational type contractive mappings were used by Salimi et al. [28] and Hamid et al.
[29], to prove some fixed point theorems. Here we present their concept in generalized
parametric metric spaces. The mapping ψ is defined as before.

Let 	 be a collection of mappings ψ : [0, +∞) → [0, +∞) such that
(i) ψ is strictly increasing and upper semicontinuous;

(ii) for all t > 0, {ψn(t)}n∈N converges to 0 as n → ∞;
(iii) ψ(t) < t for all t > 0.

Definition 2.1 Let (�,Pm) be a generalized parametric metric space, and let α : � ×
� × (0, +∞) → [0, +∞). A mapping let C : � → � is called an (α,ψ)-rational contractive
mapping of type-I if for all ζ ,η ∈ � and ψ ∈ 	 ,

α(ζ ,η, x)Pm(Cζ , Cη, x) ≤ ψ
(∏

(ζ ,η, x)
)

, x > 0, (2.1)

where

∏
(ζ ,η, x) = max

{
Pm(ζ ,η, x),Pm(ζ , Cζ , x),Pm(η, Cη, x),

Pm(ζ , Cζ , x)Pm(η, Cη, x)
1 + Pm(ζ ,η, x)

,
Pm(ζ , Cζ , x)Pm(η, Cη, x)

1 + Pm(Cζ , Cη, x)

}
.

Next, we prove a theorem that generalizes the results in [28, 29].

Theorem 2.2 Let (�,Pm) be a complete generalized parametric metric space, and let α :
� × � × (0, +∞) → [0, +∞). Let C : � → � be an α-admissible mapping satisfying

(i) there exists ζ0 ∈ � satisfying α(ζ0, Cζ0, x) ≥ 1 and α(ζ0, C2ζ0, x) ≥ 1;
(ii) C is an (α,ψ)-rational contractive mapping of type-I.

(iii) C is continuous, or � is α-regular.
Then there is a fixed point ζ ∗ ∈ � of C, and {Cnζ0} converges to ζ ∗. Further, if for all ζ ,η ∈
F(C) and x > 0, we have α(ζ ,η, x) ≥ 1, then the fixed point of C in � is unique.

Proof Let ζ0 ∈ � satisfy α(ζ0, Cζ0, x) ≥ 1 and α(ζ0, C2ζ0, x) ≥ 1. Let us construct the se-
quence {ζn} in � by ζn = Cnζ0 = Cζn–1 for n ∈ N. If ζn0 = ζn0+1 for some n0 ∈ N, then ζn0 is
a fixed point of C. Thus suppose that ζn �= ζn+1 for all n ∈N.

As C is α-admissible, α(ζ0, Cζ0, x) = α(ζ0, ζ1, x) ≥ 1 ⇒ α(Cζ0, Cζ1, x) = α(ζ1, ζ2, x) ≥ 1,
and thus α(Cζ1, Cζ2, x) = α(ζ2, ζ3, x) ≥ 1, . . . . So by induction we have α(ζn, ζn+1, x) ≥ 1 for
all n ≥ 0.

Similarly, for α(ζ0, C2ζ0, x) ≥ 1, we have α(ζ0, ζ2, x) = α(ζ0, C2ζ0, x) ≥ 1, α(Cζ0, Cζ2, x) =
α(ζ1, ζ3, x) ≥ 1. By induction we get α(ζn, ζn+2, x) ≥ 1 for all n ≥ 0. By (2.1) with ζ = ζn and
η = ζn+1 we get

Pm(ζn+1, ζn+2, x) ≤ Pm(Cζn, Cζn+1, x)

≤ α(ζn, ζn+1, x)Pm(Cζn, Cζn+1, x)

≤ ψ
(∏

(ζn, ζn+1, x)
)

,
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where

∏
(ζn, ζn+1, x) = max

{
Pm(ζn, ζn+1, x),Pm(ζn, Cζn, x),Pm(ζn+1, Cζn+1, x),

Pm(ζn, Cζn, x)Pm(ζn+1, Cζn+1, x)
1 + Pm(ζn, ζn+1, x)

,
Pm(ζn, Cζn, x)P(ζn+1, Cζn+1, x)

1 + Pm(Cζn, Cζn+1, x)

}

= max

{
Pm(ζn, ζn+1, x),Pm(ζn, ζn+1, x),Pm(ζn+1, ζn+2, x),

Pm(ζn, ζn+1, x)Pm(ζn+1, ζn+2, x)
1 + Pm(ζn, ζn+1, x)

,
Pm(ζn, ζn+1, x)Pm(ζn+1, ζn+2, x)

1 + Pm(ζn+1, ζn+2, x)

}

= max
{
Pm(ζn, ζn+1, x),Pm(ζn+1, ζn+2, x)

}
. (2.2)

Let
∏

(ζn, ζn+1, x) = Pm(ζn+1, ζn+2, x). Then

Pm(ζn+1, ζn+2, x) ≤ ψ
(∏

(ζn, ζn+1, x)
)

= ψ
(
Pm(ζn+1, ζn+2, x)

)

≤ Pm(ζn+1, ζn+2, x), (2.3)

which is impossible. Hence
∏

(ζn, ζn+1, x) = Pm(ζn, ζn+1, x) for all n ∈N, and

Pm(ζn+1, ζn+2, x) ≤ ψ
(∏

(ζn, ζn+1, x)
)

= ψ(Pm(ζn, ζn+1, x). (2.4)

By property of ψ we have

Pm(ζn+1, ζn+2, x) ≤Pm(ζn, ζn+1, x) (2.5)

for every n ∈N. By (2.4) and (2.5) we have Pm(ζn+1, ζn+2, x) ≤ ψnPm(ζ0, ζ1, x) for all n ∈N.
By property of ψ we have

lim
n→∞Pm(ζn+1, ζn+2, x) = 0. (2.6)

Consider now (2.1) with ζ = ζn–1 and η = ζn+1. We have

Pm(ζn, ζn+2, x) = Pm(Cζn–1, Cζn+1, x)

≤ α(ζn–1, ζn+1, x)Pm(Cζn–1, Cζn+1, x)

≤ ψ
(∏

(ζn–1, ζn+1, x)
)

, (2.7)

where

∏
(ζn–1, ζn+1, x)

= max

{
Pm(ζn–1, ζn+1, x),Pm(ζn–1, Cζn–1, x),Pm(ζn+1, Cζn+1, x),



Stephen et al. Journal of Inequalities and Applications        (2021) 2021:125 Page 5 of 15

Pm(ζn–1, Cζn–1, x)Pm(ζn+1, Cζn+1, x)
1 + Pm(ζn–1, ζn+1, x)

,
P , m(ζn–1, Cζn–1, x)Pm(ζn+1, Cζn+1, x)

1 + Pm(Cζn–1, Tζn+1, x)

}

= max

{
Pm(ζn–1, ζn+1, x),Pm(ζn–1, ζn, x),Pm(ζn+1, ζn+2, x),

Pm(ζn–1, ζn, x)Pm(ζn+1, ζn+2, x)
1 + Pm(ζn–1, ζn+1, x)

,
Pm(ζn–1, ζn, x)Pm(ζn+1, ζn+2, x)

1 + Pm(ζn, ζn+2, x)

}
. (2.8)

By (2.5), Pm(ζn+1, ζn+2, x) < Pm(ζn–1, ζn, x). Define an = Pm(ζn, ζn+2, x) and bn = Pm(ζn,
ζn+1, x). Then

∏
(ζn–1, ζn+1, x) = max

{
an–1, bn–1,

bn–1bn+1

1 + an–1
,

bn–1bn+1

1 + an

}
.

If
∏

(ζn–1, ζn+1, x) = bn–1 or bn–1bn+1
1+an–1

or bn–1bn+1
1+an

, then in (2.8) taking lim sup as n → +∞,
by (2.7) and the upper semicontinuity of ψ we have

0 ≤ lim sup
n→∞

an

≤ lim sup
n→∞

ψ
(∏

(ζn–1, ζn+1, x)
)

= ψ
(

lim sup
n→∞

∏
(ζn–1, ζn+1, x)

)

= ψ(0) = 0,

and hence

lim
n→∞ an = lim

n→∞ P(ζn, ζn+2, x) = 0.

If
∏

(ζn–1, ζn+1, x) = an–1, then by (2.8) we have

an ≤ ψ(an–1) < an–1

by property of ψ . Also, {an} being a positive decreasing sequence, it converges to some
t ≥ 0. Let t > 0. Then

t = lim sup
n→∞

an = lim sup
n→∞

ψ(an–1) = ψ
(

lim sup
n→∞

an–1

)
= ψ(t) < t,

a contradiction, and hence

lim
n→∞ an = lim

n→∞Pm(ζn, ζn+2, x) = 0. (2.9)

For n �= m, we will show that ζn �= ζm. Conversely, let ζn = ζm for some m, n ∈N, n �= m. Since
Pm(ζp, ζp+1, x) > 0 for each p ∈ N, let m > n + 1. Taking ζ = ζn = ζm and η = ζn+1 = ζm+1 in
(2.1) yields

Pm(ζn, ζn+1, x) = Pm(ζn, Cζn, x) = Pm(ζm, Cζm, x)

= Pm(Cζm–1, Cζm, x)
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≤ α(ζm–1, ζm, x)Pm(Cζm–1, Cζm, x)

≤ ψ
(∏

(ζm–1, ζm, x)
)

, (2.10)

where

∏
(ζm–1, ζm, x)

= max

{
Pm(ζm–1, ζm, x),Pm(ζm–1, Cζm–1, x),Pm(ζm, Cζm, x),

Pm(ζm–1, Cζm–1, x)Pm(ζm, Cζm, x)
1 + Pm(ζm–1, ζm, x)

,
Pm(ζm–1, Cζm–1, x)Pm(ζm, Cζm, x)

1 + Pm(Cζm–1, Cζm, x)

}

= max

{
Pm(ζm–1, ζm, x),Pm(ζm–1, ζm, x),Pm(ζm, ζm+1, x),

Pm(ζm–1, ζm, x)Pm(ζm, ζm+1, x)
1 + Pm(ζm–1, ζm, x)

,
Pm(ζm–1, ζm, x)Pm(ζm, ζm+1, x)

1 + Pm(ζm, ζm+1, x)

}

= max
{
Pm(ζm–1, ζm, x),Pm(ζm, ζm+1, x)

}
. (2.11)

If
∏

(ζm–1, ζm, x) = Pm(ζm–1, ζm, x), then (2.10) implies

Pm(ζn, ζn+1, x) ≤ ψ
(
Pm(ζm–1, ζm, x)

)

≤ ψm–n(Pm(ζn, ζn+1, x)
)
. (2.12)

If, on the other hand,
∏

(ζm–1, ζm, x) = Pm(ζm, ζm+1, x), then from (2.10) we have

Pm(ζn, ζn+1, x) ≤ ψ
(
Pm(ζm, ζm+1, x)

)

≤ ψm–n+1(Pm(ζn, ζn+1, x)
)
. (2.13)

By property of ψ , from (2.12) and (2.13) we have

Pm(ζn, ζn+1, x) < Pm(ζn, ζn+1, x),

which is true.
To prove that {ζn} is a Cauchy sequence, let k ≥ 3, k ∈ N, as the proof for k = 1, 2 is

already done.
Case 1: Let k = 2m + 1 and m ≥ 1. Then by (iii) of Definition 1.3

Pm(ζn, ζn+k , x) = Pm(ζn, ζn+2m+1, x)

≤ Pm(ζn, ζn+1, x) + Pm(ζn+1, ζn+2, x) + · · · + Pm(ζn+2m, ζn+2m+1, x)

≤
n+2m∑
p=n

ψp(Pm(ζ0, ζ1, x)
)

≤
+∞∑
p=n

ψp(Pm(ζ0, ζ1, x)
) → 0 as n → ∞. (2.14)
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Case 2: Let k = 2m and m ≥ 2. Then by (iii) of Definition 1.3

Pm(ζn, ζn+k , x) = Pm(ζn, ζn+2m, x)

≤ Pm(ζn, ζn+2, x) + Pm(ζn+2, ζn+3, x) + · · · + Pm(ζn+2m–1, ζn+2m, x)

≤ Pm(ζn, ζn+2, x) +
n+2m–1∑
p=n+2

ψp(Pm(ζ0, ζ1, x)
)

≤ Pm(ζn, ζn+2, x) +
+∞∑
p=n

ψp(Pm(ζ0, ζ1, x)
) → 0 as n → ∞. (2.15)

Since limn→∞ an = 0 because of (2.9), in both cases above, we have limn→∞ Pm(ζn, ζn+k ,
x) = 0 for all k ≥ 3. This shows that {ζn} is a Cauchy sequence in (�, d). By the completeness
of (�, d) we have ζ ∗ ∈ � satisfying

lim
n→∞Pm

(
ζn, ζ ∗, x

)
= 0. (2.16)

Since C is a continuous function, from (2.16) we get

lim
n→∞Pm

(
Cζn, Cζ ∗, x

)
= lim

n→∞Pm
(
ζn+1, Cζ ∗, x

)
= 0.

By Proposition 1.8, ζ ∗ = Cζ ∗, and hence C has a fixed point ζ ∗.
Next, considering regular �, there exists a subsequence {ζnk } of {ζn} satisfying α(ζnk –1,

ζ ∗, x) ≥ 1 for all k ∈N. From (2.1) with ζ = ζnk and η = ζ ∗ we have

Pm
(
ζnk +1, Cζ ∗, x

)
= Pm

(
Cζnk , Cζ ∗, x

)

≤ α
(
ζnk , ζ ∗, x

)
Pm

(
Cζnk , Cζ ∗, x

)

≤ ψ
(∏(

ζnk , ζ ∗, x
))

, (2.17)

where

∏(
ζnk , ζ ∗, x

)
(2.18)

= max

{
Pm

(
ζnk , ζ ∗, x

)
,Pm(ζnk , Cζnk , x),Pm

(
ζ ∗, Cζ ∗, x

)
,

Pm(ζnk , Cζnk , x)Pm(ζ ∗, Cζ ∗, x)
1 + Pm(ζnk , ζ ∗, x)

,
Pm(ζnk , Cζnk , x)Pm(ζ ∗, Cζ ∗, x)

1 + Pm(Cζnk , Cζ ∗, x)

}

= max

{
Pm

(
ζnk , ζ ∗, x

)
,Pm(ζnk , ζnk +1, x),Pm

(
ζ ∗, Tζ ∗, x

)

Pm(ζnk , Cζnk +1, x)Pm(ζ ∗, Cζ ∗, x)
1 + Pm(ζnk , ζ ∗, x)

,
Pm(ζnk , ζnk +1, x)Pm(ζ ∗, Cζ ∗, x)

1 + Pm(ζnk +1, Cζ ∗, x)

}
. (2.19)

Taking the limit as k → ∞ in (2.19), we get
∏

(ζnk , ζ ∗, x) = P(ζ ∗, Cζ ∗, x). Taking the limit
as k → ∞ in inequality (2.17), we get

Pm
(
ζ ∗, Cζ ∗, x

) ≤ ψ
(
Pm

(
ζ ∗, Cζ ∗, x

)) ≤Pm
(
ζ ∗, Cζ ∗, x

)
,

which implies ζ ∗ = Cζ ∗, that is, C has a fixed point ζ ∗.
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Suppose ζ ∗ and η∗ are two fixed points of C and ζ ∗ �= η∗. Then α(ζ ∗,η∗, x) ≥ 1. Taking
ζ = ζ ∗ and η = η∗ in (2.1), we get

Pm
(
ζ ∗,η∗, x

)
= Pm

(
Cζ ∗, Cη∗, x

)

≤ α
(
ζ ∗,η∗, x

)
Pm

(
Tζ ∗, Cη∗, x

)

≤ ψ
(∏(

ζ ∗,η∗, x
))

,

where

∏(
ζ ∗,η∗, x

)
= max

{
Pm

(
ζ ∗,η∗, x

)
,Pm

(
ζ ∗, Cζ ∗, x

)
,Pm

(
η∗, Cη∗, x

)
,

Pm(ζ ∗, Cζ ∗, x)Pm(η∗, Cη∗, x)
1 + Pm(ζ ∗, ζ ∗, x)

,
Pm(ζ ∗, Cζ ∗, x)Pm(η∗, Cη∗, x)

1 + Pm(Cζ ∗, Cη∗, x)

}

= Pm
(
ζ ∗,η∗, x

)
. (2.20)

Hence we get Pm(ζ ∗,η∗, x) ≤ ψ(Pm(ζ ∗,η∗, x)) < Pm(ζ ∗,η∗, x), which is possible only if
Pm(ζ ∗,η∗, x) = 0, that is, ζ ∗ = η∗. So, a fixed point of C is unique. �

Definition 2.3 Let (�,Pm) be a generalized parametric metric space, and let C : � →
� and α : � × � × (0, +∞) → [0, +∞). We say that C is an (α,ψ)-rational contractive
mapping of type-II if for all ζ ,η ∈ � and ψ ∈ 	 ,

α(ζ ,η, x)P(Cζ , Cη, x) ≤ ψ
(∏

(ζ ,η, x)
)

, (2.21)

where

∏
(ζ ,η, x) = max

{
Pm(ζ ,η, x),Pm(ζ , Cζ , x),Pm(η, Cη, x),

Pm(ζ , Cζ , x)Pm(η, Cη, x)
1 + Pm(ζ ,η, x) + Pm(ζ , Cη, x) + Pm(η, Cζ , x)

,

Pm(ζ , Cη, x)Pm(ζ ,η, x)
1 + Pm(ζ , Cζ , x) + Pm(η, Cζ , x) + Pm(η, Cη, x)

}
.

Theorem 2.4 Let (�,Pm) be a generalized parametric metric space, and let C : � → �

and α : � × � × (0, +∞) → [0, +∞). Let C be an α-admissible mapping satisfying
(i) there exists ζ0 ∈ � satisfying α(ζ0, Cζ0, x) ≥ 1 and α(ζ0, C2ζ0, x) ≥ 1;

(ii) C is (α,ψ)-rational contractive mapping of type-II;
(iii) C is continuous, or � is α-regular.

Then there is a fixed point ζ ∗ ∈ � of C, and {Cnζ0} converges to ζ ∗. Further, if α(ζ ,η, x) ≥ 1
for all ζ ,η ∈ F(C), then C has a unique fixed point in �.

Proof Following the proof of Theorem 2.2, we can complete the proof. �

Example 2.5 Consider � = [0, +∞) and

Pm(ζ ,η, x) =

⎧⎨
⎩

x(ζ + η)2, ζ �= η,

0, ζ = η,
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for all ζ ,η ∈ � and x > 0. Define C : � → � by

Cζ =

⎧⎪⎪⎨
⎪⎪⎩

1
8ζ 2, ζ ∈ [0, 1),
1
8ζ , ζ ∈ [1, 2),
1

32 , ζ ∈ [2,∞).

Also, define ψ(t) = t
2 and α(ζ ,η, x) = 1 for ζ ,η ∈ � and x > 0. Clearly, (�,Pm) is a complete

generalized parametric metric space.
Considering the following:

(i) Let ζ ,η ∈ [0, 1). Then

α(ζ ,η, x)Pm(Cζ , Cη, x) = x
(

1
8
ζ 2 +

1
8
η2

)2

=
1

64
x
(
ζ 2 + η2)2

≤ 1
2
{

x(ζ + η)2} = ψ
(
Pm(ζ ,η, x)

)

≤ ψ
(∏

(ζ ,η, x)
)

.

(ii) Let ζ ,η ∈ [1, 2) with ζ ≤ η. Then

α(ζ ,η, x)Pm(Cζ , Cη, x) = x
(

1
8
ζ +

1
8
η

)2

=
1

64
x(ζ + η)2

≤ 1
2

x(ζ + η)2 = ψ
(
Pm(ζ ,η, x)

)

≤ ψ
(∏

(ζ ,η, x)
)

.

(iii) Let ζ ,η ∈ [2, +∞) with ζ ≤ η. Then

α(ζ ,η, x)Pm(Cζ , Cη, x) = x
(

1
32

+
1

32

)
=

1
16

x ≤ 1
8

x

=
1
2

{
1
4

(1 + 1)2
}

=
1
2
Pm(ζ ,η, x)

≤ 1
2

(∏
(ζ ,η, x)

)
= ψ

(∏
(ζ ,η, x)

)
.

(iv) Let ζ ∈ [0, 1) and η ∈ [1, 2) (clearly, ζ ≤ η). Then

α(ζ ,η, x)Pm(Cζ , Cη, x) = x
(

1
8
ζ 2 +

1
8
η

)2

≤ x
(

1
8
ζ 2 +

1
8
η2

)2

=
1

64
x
(
ζ 2 + η2)2

≤ 1
2
{

x(ζ + η)2} = ψ
(
Pm(ζ ,η, x)

)

≤ 1
2

(∏
(ζ ,η, x)

)
= ψ

(∏
(ζ ,η, x)

)
.
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(v) Let ζ ∈ [0, 1) and η ∈ [2, +∞) (clearly, ζ ≤ η). Then

α(ζ ,η, x)Pm(Cζ , Cη, x) = x
(

1
8
ζ 2 +

1
32

)2

≤ x
(

1
8
ζ +

1
8
η

)2

=
1

64
x(ζ + η)2

≤ 1
2

x(ζ + η)2 =
1
2
(
Pm(ζ ,η, x)

)

≤ 1
2

(∏
(ζ ,η, x)

)
= ψ

(∏
(ζ ,η, x)

)
.

(vi) Let ζ ∈ [0, 1) and η ∈ [2, +∞) (clearly, ζ ≤ η). Then

α(ζ ,η, x)Pm(Cζ , Cη, x) = x
(

1
8
ζ +

1
32

)2

≤ x
(

1
8
ζ +

1
8
η

)2

=
1

64
x(ζ + η)2

≤ 1
2

x(ζ + η)2 =
1
2
(
Pm(ζ ,η, x)

)

≤ 1
2

(∏
(ζ ,η, x)

)
= ψ

(∏
(ζ ,η, x)

)
.

Therefore

α(ζ ,η, x)Pm(Cζ , Cη, x) ≤ ψ
(∏

(ζ ,η, x)
)

for all ζ ,η ∈ � with ζ ≤ η and all x > 0. Hence all the conditions of Theorem 2.2 hold, and
C has a unique fixed point.

3 Consequences
Here we derive various results in the literature as corollaries for generalized parametric
metric spaces. In particular, we deduce the results of Aydi et al. [30] and Karapinar [31].
Now we give the following definitions.

Definition 3.1 Let (�,Pm) be a generalized parametric metric space, and let C : � → �

and α : � × � × (0, +∞) → [0, +∞). We call C a generalized (α,ψ)- contractive mapping
of type I if for all ζ ,η ∈ � and ψ ∈ 	 ,

α(ζ ,η, x)Pm(Cζ , Cη, x) ≤ ψ
(∏

(ζ ,η, x)
)

, x > 0, (3.1)

where

∏
(ζ ,η, x) = max

{
Pm(ζ ,η, x),Pm(ζ , Cζ , x),Pm(η, Cη, x)

}
. (3.2)

Definition 3.2 Let (�,Pm) be a generalized parametric metric space, and let C : � → �

and α : �×�× (0, +∞) → [0, +∞) be mappings. We call C a generalized (α,ψ)- contrac-
tive mapping of type-II if for all ζ ,η ∈ � and ψ ∈ 	 ,

α(ζ ,η, x)Pm(Cζ , Cη, x) ≤ ψ
(
N(ζ ,η, x)

)
, x > 0, (3.3)
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where

N(ζ ,η, x) = max

{
Pm(ζ ,η, x),

Pm(ζ , Cζ , x),Pm(η, Cη, x)
2

}
. (3.4)

Now we state following theorem as a consequence of our Theorem 2.2, which extends
the main results of Aydi et al. [30] (Theorems 15 and 17) and Karapinar [31] to the more
general setting of generalized parametric metric spaces.

Theorem 3.3 Let (�,Pm) be a generalized parametric metric space, and let C : � → �

and α : � × � × (0, +∞) → [0, +∞). Let C be an α-admissible mapping satisfying
(i) there exists ζ0 ∈ � satisfying α(ζ0, Cζ0, x) ≥ 1 and α(ζ0, C2ζ0, x) ≥ 1;

(ii) C is a generalized (α,ψ)-contractive mapping of type I ;
(iii) C is continuous, or � is α-regular.

Then there exists μ in � satisfying Cμ = μ.

Theorem 3.4 (see [30], Theorems 16 and 18) Let (�,Pm) be a generalized parametric
metric space, and let C : � → � and α : � × � × (0, +∞) → [0, +∞). Let C be an α-
admissible mapping satisfying

(i) there exists ζ0 ∈ � satisfying α(ζ0, Cζ0, x) ≥ 1 and α(ζ0, C2ζ0, x) ≥ 1;
(ii) C is a generalized (α,ψ)-contractive mapping of type II ;

(iii) C is continuous or � is α-regular.
Then there exists μ in � satisfying Cμ = μ.

Replace the continuity condition by “if {xn} is a sequence in � such that α(xn, xn+1) ≥ 1
for all n and xn → x ∈ � as n → ∞, then there exists a subsequence {xn(k)} of {xn} such
that α(xnk , x) ≥ 1, for all k”. Then Theorem 3.3 remains true.

Corollary 3.5 Let (�,Pm) be a generalized parametric metric space, and let C : � → �

and α : � × � × (0, +∞) → [0, +∞). Let ψ ∈ 	 be a function such that

Pm(Cζ , Cη, x) ≤ ψ
(∏

(ζ ,η, x)
)

, x > 0,

for all ζ ,η ∈ �. Then there exists a unique fixed point in C.

Proof Take α(ζ ,η, x) = 1 in the proof of Theorem 2.2.
By taking ψ(s) = λs, in Corollary 3.5, we have �

Corollary 3.6 Let (�,Pm) be a generalized parametric metric space, and let C : � → �

and α : � × � × (0, +∞) → [0, +∞). Let ψ ∈ 	 be a function such that

Pm(Cζ , Cη, x) ≤ λ
∏

(ζ ,η, x)

for all ζ ,η ∈ � and x > 0. Then there exists a unique fixed point for C.

Definition 3.7 Define a partially ordered set (�,
) and a mapping C : � → �. We say
that with respect to 
, C is nondecreasing if ζ ,η ∈ � with ζ 
 η implies Cζ 
 Cη. A
sequence ζn ∈ � is called nondecreasing with respect to 
 if ζn 
 ζn+1 for all n.
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Definition 3.8 Let (�,Pm) be a generalized parametric metric space, let C : � → �,
and let (�,
) be a partially ordered set. We say that (�,
,Pm) is regular if for every
nondecreasing sequence ζn ∈ � such that ζn converges to ζ ∈ � as n → ∞, there exists a
subsequence ζnk of ζn satisfying ζnk 
 ζ for all k.

Corollary 3.9 Let (�,Pm) be a generalized parametric metric space, and let C : � → �

and α : � × � × (0, +∞) → [0, +∞). Let (�,
) be a partially ordered set and suppose
(�,Pm) is complete. Let C be a nondecreasing mapping with respect to 
. Let ψ ∈ 	 be a
function satisfying

Pm(Cζ , Cη, x) ≤ ψ
(∏

(ζ ,η, x)
)

, x > 0,

for all ζ ,η ∈ � with ζ 
 η. Also assume that the following conditions are satisfied.
(i) there exists ζ0 ∈ � satisfying ζ0 
 Cζ0 and ζ0 
 C2ζ0;

(ii) C is continuous, or (�,
,Pm) is regular.
Then there exists a fixed point for C.

Proof Let α : � × � × (0, +∞) → [0, +∞) be defined by α(ζ ,η, x) = 1 for x > 0 if ζ 
 η or
ζ � η and α(ζ ,η, x) = 0 otherwise. As the conditions of Theorem 2.2 are satisfied, a fixed
point of C exists. �

4 Generalised fuzzy metric space
Here we establish relations of a generalized parametric metric space and a generalized
fuzzy metric space.

Definition 4.1 ([32]) Let ∗ : [0, 1] × [0, 1] → [0, 1] be a binary operation that is commu-
tative and associative. ∗ is called a continuous t-norm if

(i) ∗ is continuous;
(ii) for all p ∈ [0, 1], p ∗ 1 = p;

(iii) If p ≤ r, q ≤ s, then p ∗ q ≤ r ∗ s, where p, q, r, s ∈ [0, 1].

Definition 4.2 ([2]) Let � be an arbitrary set, let ∗ be a continuous t-norm, and let
∏

be
a fuzzy set on �2 × (0, +∞). The triple (�,

∏
,∗) is called a fuzzy metric space if

(i)
∏

(ζ ,η, t) > 0;
(ii)

∏
(ζ ,η, t) = 1 for all t > 0 if and only if ζ = η;

(iii)
∏

(ζ ,η, t) =
∏

(η, ζ , t);
(iv)

∏
(ζ ,η, t) ∗ ∏

(η, ξ , u) ≤ ∏
(ζ , ξ , t + u);

(v)
∏

(ζ ,η, .) : (0, +∞) → [0, 1] is continuous.
for all ζ ,η, ξ ∈ � and t, u > 0;

∏
(ζ ,η, t) expresses the rate of nearness of ζ and η with

respect to t.

Definition 4.3 Let � be a nonempty set, let ∗ be a continuous t-norm, and let � be a
fuzzy set on �×�× (0, +∞). Then the triple (�,�,∗) is called a generalized fuzzy metric
space if it satisfies

(i) �(ζ ,η, t) > 0;
(ii) �(ζ ,η, t) = 1 if and only if ζ = η;

(iii) �(ζ ,η, t) = �(η, ζ , t);
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(iv) �(ζ ,μ, u) ∗ �(μ,λ, v) ∗ �(λ,η, t) ≤ �(ζ , ζ , u + v + t);
(v) �(ζ ,η, .) : (0, +∞) → (0, 1] is left continuous

for all ζ ,η ∈ �, distinct μ,λ ∈ � – {ζ ,η}, and t, u, v > 0.

Definition 4.4 Let (�,�,∗) be a generalized fuzzy metric space. Then
(i) a sequence {ζn} converges to ζ ∈ � if and only if limn→∞�(ζn, ζ , t) = 1 for all t > 0.

(ii) a sequence {ζn} in � is a Cauchy sequence if and only if for all ε ∈ (0, 1) and t > 0,
there exists n0 such that �(ζn, ζm, t) > 1 – ε for all m, n ≥ n0,

(iii) If every Cauchy sequence converges to some ζ ∈ �, then the generalized fuzzy
metric space is said to be complete.

Definition 4.5 Let (�,�,∗) be a generalized fuzzy metric space. The a generalized fuzzy
metric � is said to be rectangular if

1
�(ζ ,η, t)

– 1 ≤ 1
�(ζ ,μ, t)

– 1 +
1

�(μ,λ, t)
– 1 +

1
�(λ,η, t)

– 1

for all ζ ,η ∈ � and distinct μ,λ ∈ � – {ζ ,η} and t > 0.

Example 4.6 Let (�, d) be a generalized metric space, and let � : � × � × (0, +∞) →
(0, +∞) be such that

�(ζ ,η, t) =
t

t + d(ζ ,η)
.

Let p ∗ q = min{p, q}. Then (�,�,∗) is a generalized fuzzy metric space, and � is a rectan-
gular fuzzy metric.

Remark 4.7 Note that Pm(ζ ,η, t) = 1
�(ζ ,η,t) – 1 is a generalized parametric metric space,

where � is a rectangular fuzzy metric.

Definition 4.8 Let (�,�,∗) be a complete generalized fuzzy metric space, let � be a rect-
angular fuzzy metric on �, and let α : � × � × (0, +∞) → [0, +∞) and C : � → �. The
mapping C is said to be an (α,ψ)-rational contractive mapping of type I if there exists a
function ψ ∈ 	 satisfying

α(ζ ,η, t)�(Cζ , Cη, t) ≤ ψ
(∏

(ζ ,η, t)
)

, t > 0, (4.1)

where

∏
(ζ ,η, t) = max

{
1

�(ζ ,η, t)
– 1,

1
�(ζ , Cζ , t)

– 1,
1

�(η, Cη, t)
– 1,

( 1
�(ζ ,Cζ ,t) – 1)( 1

�(η,Cη,t) – 1)
1

�(ζ ,η,t)
,

( 1
�(ζ ,Cζ ,t) – 1)( 1

�(η,Cη,t) – 1)
1

�(Cζ ,Cη,t)

}

for all ζ ,η ∈ �.

Theorem 4.9 Let (�,�,∗) be a complete generalized fuzzy metric space, let � be a rect-
angular fuzzy metric on �. Suppose that mappings α : � × � × (0, +∞) → [0, +∞) and
C : � → � satisfy
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(i) C is α-admissible;
(ii) C is (α,ψ)-rational contractive mapping of type I;

(iii) there exists ζ0 ∈ X satisfying α(ζ0, Cζ0, t) ≥ 1 and α(ζ0, C2ζ0, t) ≥ 1;
(iv) C is continuous, or � is α-regular.

Then {Cnζ0} converges to a fixed point ζ ∗ ∈ � of C. Also, if for all ζ ,η ∈ F(C), we have
α(ζ ,η, t) ≥ 1, t > 0, then the fixed point of C in � is unique.

Definition 4.10 Let (�,�,∗) be a complete generalized fuzzy metric space, let � be a
triangular fuzzy metric on �, and let α : � × � × (0, +∞) → [0, +∞) and C : � → �. The
mapping C is said to be an (α,ψ)-rational contractive mapping of type II if there exists a
function ψ ∈ 	 such that

α(ζ ,η, t)�(Cζ , Cη, t) ≤ ψ
(∏

(ζ ,η, t)
)

t > 0, (4.2)

where

∏
(ζ ,η, t) = max

{
1

�(ζ ,η, t)
– 1,

1
�(ζ , Cζ , t)

– 1,
1

�(η, Cη, t)
– 1,

( 1
�(ζ ,Cζ ,t) – 1)( 1

�(η,Cη,t) – 1)
1

�(ζ ,η,t) + 1
�(ζ ,Cη,t) + 1

�(η,Cζ ,t) – 2
,

( 1
�(ζ ,Cη,t) – 1)( 1

�(ζ ,η,t) – 1)
1

�(ζ ,Cζ ,t) + 1
�(η,Cζ ,t) + 1

�(η,Cη,t) – 2

}
.

Theorem 4.11 Let (�,�,∗) be a complete generalized fuzzy metric space, let � be a tri-
angular fuzzy metric on �. Suppose that mappings α : � × � × (0, +∞) → [0, +∞) and
C : � → � satisfy

(i) C is α-admissible;
(ii) C is an (α,ψ)-rational contractive mapping of typeII;

(iii) there exists ζ0 ∈ � satisfying α(ζ0, Cζ0, t) ≥ 1 and α(ζ0, C2ζ0, t) ≥ 1;
(iv) C is continuous, or � is α-regular.

Then {Cnζ0} converges to a fixed point ζ ∗ ∈ � of C Also, if for all ζ ,η ∈ F(C), we have
α(ζ ,η, t) ≥ 1, t > 0, then the fixed point of C in � is unique.

Remark 4.12 We can obtain results similar to Corollary 3.9 for fuzzy partially ordered
generalized metric spaces.
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