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Abstract
Every non-convex pair (C,D) may not have proximal normal structure even in a Hilbert
space. In this article, we use cyclic relatively nonexpansive maps with respect to orbits
to show the presence of best proximity points in C ∪ D, where C ∪ D is a cyclic
T -regular set and (C,D) is a non-empty, non-convex proximal pair in a real Hilbert
space. Moreover, we show the presence of best proximity points and fixed points for
non-cyclic relatively nonexpansive maps with respect to orbits defined on C ∪ D,
where C and D are T -regular sets in a uniformly convex Banach space satisfying
T (C) ⊆ C, T (D) ⊆ D wherein the convergence of Kranoselskii’s iteration process is also
discussed.
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1 Introduction and preliminaries
Let (X,‖ · ‖) be a normed linear space and let C and D be non-empty subsets of X. A map
T : C ∪ D → X with T(C) ⊆ D, T(D) ⊆ C (or T(C) ⊆ C, T(D) ⊆ D) and ‖Tu – Tv‖ ≤
‖u – v‖, for u ∈ C, v ∈ D is known as a relatively nonexpansive map (see [1]). A relatively
nonexpansive map may not be continuous (see for an example [2]). If C ∩ D 	= φ, then
T : C ∩ D → C ∩ D is a nonexpansive map.

If Tw 	= w, then it is endeavoured to get a point w0 ∈ C and d(w0, Tw0) = dist(C, D), where
dist(C, D) := inf{d(w, z) : w ∈ C, z ∈ D}. A point w0 ∈ C ∪ D is known as a best proximity
point for T when d(w0, Tw0) = dist(C, D) holds true.

Eldred et al. [1] introduced proximal normal structure for a non-empty, convex pair
(C, D) of X and proved two interesting theorems (See Theorem 2.1 and Theorem 2.2 of
[1]). Every non-empty, convex pair of subsets (C, D) in a uniformly convex Banach space
has proximal normal structure (see [1, 3]). Every non-empty, non-convex pair of subsets
(C, D), even in a Hilbert space, a proximal normal structure may or may not exist (see [4]).

The notion of cyclic T-regular set was introduced by Rajesh et al. [4], which was an
extension of T-regular set introduced by Veeramani [5]. The notion of cyclic T-regular set
and T-regular set for relatively nonexpansive maps affirms the presence of best proximity
points and fixed points on a non-empty non-convex pair (see [4–6]). For any pair of subsets
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(C, D) of X, let

R(a, D) := sup
{‖a – b‖ : b ∈ D

}
, a ∈ C and

δ(C, D) := sup
{

R(a, D) : a ∈ C
}

.

Definition 1 A non-empty pair (K1, K2) of subsets in a normed linear space, X is known
as a proximal pair [1] if for every w1 ∈ K1, z1 ∈ K2, there exist w2 ∈ K1, z2 ∈ K2 so that
‖w1 – z2‖ = dist(K1, K2) = ‖w2 – z1‖ and proximal parallel pair [7] if

(i) for any (w1, z1) ∈ K1 × K2, there is unique (w2, z2) ∈ K1 × K2 so that
‖w1 – z2‖ = dist(K1, K2) = ‖w2 – z1‖ and

(ii) K2 = K1 + h, where h ∈ X .
The proximal parallel pair (K1, K2) is said to have the rectangle property [8] if and only

if ‖k1 + h – k′
1‖ = ‖k′

1 + h – k1‖, for k1, k′
1 ∈ K1, where K2 = K1 + h, h ∈ X.

Proposition 1 ([4, 8]) Let X be a strictly convex Banach space and (K1, K2) be a non-empty,
non-convex weakly compact proximal pair with dist(K1, K2) = dist(conv(K1), conv(K2)).
Then the pairs (K1, K2) and (conv(K1), conv(K2)) are proximal parallel pair in X.

Moreover, if (K1, K2) is convex and X is a real Hilbert space, then, for x, y ∈ K1, 〈x – y, h〉 =
0, where h ∈ X and K2 = K1 + h.

The notion of cyclic T-regular set was introduced by Rajesh et al. [4].

Definition 2 ([4]) Let (K1, K2) be a non-empty, non-convex proximal pair in a normed
linear space X. Let T : K1 ∪ K2 → X be a map with T(K1) ⊆ K2 and T(K2) ⊆ K1. The set
K1 ∪ K1 is known as a cyclic T-regular set if

(i) u+Tu′
2 ∈ K1, for u ∈ K1, u′ ∈ K2 so that ‖u – u′‖ = dist(K1, K2) and

(ii) v+Tv′
2 ∈ K1, for v ∈ K2, v′ ∈ K1 so that ‖v – v′‖ = dist(K1, K2).

In the above definition, if K1 = K2, then it reduces to being T-regular as defined by Veera-
mani [5].

Definition 3 ([5]) Let X be a normed linear space, K ⊆ X, and T : K → K . The set K is
said to be a T-regular set if u+Tu

2 ∈ K , for u ∈ K .

Let L and M be non-empty subsets and let T : L ∪ M → X with T(L) ⊆ M, T(M) ⊆ L
(or T(L) ⊆ L, T(M) ⊆ M). Let a0 ∈ L (or M). (i) If T(L) ⊆ M, T(M) ⊆ L, then O(a0) :=
{a0, Ta0, . . . , Tna0, . . . }, T2na0 ∈ L (or M) and T2n+1a0 ∈ M (or L), n = 0, 1, 2, . . . ; (ii) If
T(L) ⊆ L, T(M) ⊆ M, then O(a0) := {a0, Ta0, . . . , Tna0, . . . }, O(a0) ⊆ L (or M), n = 0, 1, 2, . . . .

Definition 4 ([9]) Let X be a Banach space and let L and M be non-empty subsets
of X. A map T : L ∪ M → X with T(L) ⊆ L, T(M) ⊆ M is said to be a non-cyclic rela-
tively nonexpansive map with respect to orbits provided that for every a ∈ L, b ∈ M if
‖a – b‖ = dist(L, M) then ‖Ta – Tb‖ = dist(L, M), otherwise ‖Ta – Tb‖ ≤ R(a, O(b)) and
‖Ta – Tb‖ ≤ R(b, O(a)).

If L = M, then it reduces to being nonexpansive with respect to orbits given by Harandi
et al. [10]. Motivating by the definitions of Gabeleh et al. [9] and Harandi et al. [10], Shanjit
et al. [11] introduced the following definition.
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Definition 5 ([11]) Let X be a Banach space and let L and M be non-empty subsets
of X. A map T : L ∪ M → X with T(L) ⊆ M and T(M) ⊆ L is said to be a cyclic rel-
atively nonexpansive map with respect to orbits provided that for every a ∈ L, b ∈ M
if ‖a – b‖ = dist(L, M), then ‖Ta – Tb‖ = dist(L, M), otherwise ‖Ta – Tb‖ ≤ R(a, O(b)),
‖Tb – Ta‖ ≤ R(b, O(a)).

Remark 1 Let (L, M) be a non-empty, convex proximal pair in a Banach space X and T :
L ∪ M → L ∪ M be a relatively nonexpansive map.

(i) If T(L) ⊆ M and T(M) ⊆ L, then T is a relatively nonexpansive map with respect to
orbits and L ∪ M is a cyclic T-regular set.

(ii) If T(L) ⊆ L and T(M) ⊆ M, then T is a relatively nonexpansive map with respect to
orbits and L and M are T-regular sets.

2 Main results
We prove the following proposition.

Proposition 2 Let (L, M) be a non-empty, non-convex weakly compact proximal pair in a
real Hilbert space satisfying dist(conv(L), conv(M)) = dist(L, M). Then (L, M) has the rect-
angle property.

Proof From Proposition 1, the pairs (conv(L), conv(M)) and (L, M) are proximal parallel
pair in X. Let s1, s2 ∈ L. Then we have s1 + h, s2 + h ∈ M, where h ∈ X. Now,

‖s1 + h – s2‖2 = ‖s1 – s2‖2 + ‖h‖2 + 2 Re〈s1 – s2, h〉.

Since (s1, s1 + h), (s2, s2 + h) ∈ (conv(L), conv(M)), from Proposition 1, s1 – s2 is orthogonal
to h that is, 〈s1 – s2, h〉 = 0. Hence, ‖s1 + h – s2‖ = ‖s2 + h – s1‖ for every s1, s2 ∈ L. This shows
that the pair (L, M) has the rectangle property. �

Lemma 1 Let X be a strictly convex Banach space and let (L, M) be a non-empty, non-
convex weakly compact proximal pair satisfying

dist
(
conv(L), conv(M)

)
= dist(L, M).

Let T : L ∪ M → X be a cyclic relatively nonexpansive map with respect to orbits so that
L ∪ M is a cyclic T-regular set.

Additionally, it is assumed that (L, M) is a minimal proximal pair. Then L ⊆ conv(T(M))
and M ⊆ conv(T(L)).

Proof Let E = conv(T(M)) ∩ L and F = conv(T(L)) ∩ M. Then E ⊆ L and F ⊆ M are non-
convex weakly compact subsets of X. Suppose (u, v) ∈ (L, M) so that ‖u – v‖ = dist(L, M).
Then (Tv, Tu) ∈ T(M) × T(L), which implies (Tv, Tu) ∈ (E, F). Since ‖u – v‖ = dist(L, M),
it follows that ‖Tv – Tu‖ = dist(L, M). Hence dist(E, F) = dist(L, M). To claim that the pair
(E, F) is a proximal, it suffices to prove that, for every u ∈ E, we have v ∈ F so that

dist(L, M) = ‖u – v‖.
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Let u ∈ E = conv(T(M)) ∩ L. Then u =
∑∞

i=1 αiTvi, where vi ∈ M, αi ≥ 0 and
∑∞

i=1 αi = 1.
Since (L, M) is a proximal pair, we have v′

i ∈ L so that

dist(L, M) =
∥∥v′

i – vi
∥∥, i = 1, 2, . . . , n.

Then u′ =
∑∞

i=1 αiTv′
i ∈ conv(T(L)) so that ‖u – u′‖ = dist(L, M) and u′ ∈ F . Hence, (E, F) is

a proximal parallel pair (and hence proximal parallel pair). Let (u1, v1) ∈ E × F . Then we
have (v′

1, u′
1) ∈ E × F so that

∥∥u1 – u′
1
∥∥ = dist(L, M) =

∥∥v′
1 – v1

∥∥.

As u1 ∈ conv(T(M)) and Tu′
1 ∈ conv(T(M)), which implies u1+Tu′

1
2 ∈ conv(T(M)). Again,

u1+Tu′
1

2 ∈ L. This shows that u1+Tu′
1

2 ∈ E, where ‖u1 – u′
1‖ = dist(L, M). Similarly, v1+Tv′

1
2 ∈ F ,

where ‖v1 – v′
1‖ = dist(L, M). This shows that E ∪ F is a cyclic T-regular set and (L, M) :=

(E, F). Hence, L ⊆ conv(T(M)) and M ⊆ conv(T(L)). �

Lemma 2 Let X be a strictly convex Banach space and let (L, M) be a non-empty, non-
convex weakly compact proximal pair in X with

dist
(
conv(L), conv(M)

)
= dist(L, M).

Let T : L ∪ M → X be a relatively nonexpansive map with respect to orbits with T(L) ⊆ L,
T(M) ⊆ M and let L and M be cyclic T-regular sets.

Additionally, it is assumed that (L, M) is a minimal proximal pair. Then L ⊆ conv(T(L))
and M ∈ conv(T(M)).

Proof Let E = conv(T(L)) ∩ L and F = conv(T(M)) ∩ M. Then E ⊆ L and F ⊆ M are non-
empty, non-convex weakly compact subsets. Suppose u ∈ L and v ∈ M so that ‖u – v‖ =
dist(L, M). Then (Tu, Tv) ∈ T(L) × T(M), which implies (Tu, Tv) ∈ E × F . Since ‖u – v‖ =
dist(L, M), it follows that ‖Tv – Tu‖ = dist(L, M). Hence dist(E, F) = dist(L, M). Also, (E, F)
is a proximal parallel pair with T(E) ⊆ E, T(F) ⊆ F and E and F are T-regular sets. This
proves that (L, M) := (E, F). Hence L ⊆ conv(T(L)) and M ∈ conv(T(M)). �

Theorem 1 Let X be a real Hilbert space and let (C, D) be a non-empty, non-convex weakly
compact proximal pair of subsets with

dist
(
conv(C), conv(D)

)
= dist(C, D).

Let T : C ∪ D → X be a cyclic relatively nonexpansive map with respect orbits. Suppose
C ∪ D is a cyclic T-regular set. Then we have u ∈ C ∪ D so that ‖u – Tu‖ = dist(C, D).

Proof Let F be the collection of all non-empty, non-convex weakly closed proximal pair
of subsets (L, M) in (C, D), with dist(C, D) = dist(L, M) and L ∪ M is a cyclic T-regular set.
F is non-empty as (C0, D0) ∈F .

By Zorn’s lemma, partially ordered set F has a minimal pair under set inclusion order,
say (L, M). Therefore, from Lemma 1, we see that

L ⊆ conv(T(M) and M ⊆ conv
(
T(L)

)
.
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If δ(L, M) = dist(C, D), we get our result and the theorem is complete. Suppose δ(L, M) >
dist(C, D). Then Tu 	= u + h and T(u + h) 	= u for every u ∈ L. Fix u0 ∈ L. Since X is a real
Hilbert space and L ∪ M is a cyclic T-regular set, we have β ∈]0, 1[ so that R(w, M) ≤
βδ(L, M), R(w′, L) ≤ βδ(L, M), where w = u0+T(u0+h)

2 ∈ L and w′ = u0+h+Tu0
2 ∈ M. Define

P =
{

u ∈ L : R(u, M) ≤ βδ(L, M)
}

and Q =
{

v ∈ M : R(v, L) ≤ βδ(L, M)
}

.

Then (P, Q) is a non-empty, non-convex weakly compact proximal parallel pair with
dist(P, Q) = dist(C, D). From Proposition 2, the pair (P, Q) has the rectangle property and,
for u ∈ P,

R(Tu, L) = sup
{‖Tu – w‖ : w ∈ L

}

≤ sup
{‖Tu – w‖ : w ∈ conv

(
T(M)

)}

= sup
{‖Tu – Tv‖ : Tv ∈ T(M)

}

≤ sup
{

R
(
u, O(v)

)
: v ∈ M

} ≤ R(u, M) ≤ βδ(L, M).

This shows that T(P) ⊆ Q. Similarly, for v ∈ Q,

R(Tv, M) = sup
{‖Tv – z‖ : z ∈ M

}

≤ sup
{‖Tv – z‖ : z ∈ conv

(
T(L)

)}

= sup
{‖Tv – Tu‖ : Tu ∈ T(L)

}

≤ sup
{

R
(
v, O(u)

)
: u ∈ L

} ≤ R(v, L) ≤ βδ(L, M). (1)

This shows that T(Q) ⊆ P. Since (P, Q) is a proximal parallel pair, for every (u, v) ∈ P × Q
we have (v′, u′) ∈ P×Q so that ‖u–u′‖ = ‖v–v′‖ = dist(C, D) and (Tu′, Tv′) ∈ P×Q. Clearly,
u+Tu′

2 ∈ L and v+Tv′
2 ∈ M. Now,

R
(

u + Tu′

2
, M

)
= sup

{∥∥∥∥
u + Tu′

2
– y

∥∥∥∥ : y ∈ M
}

≤ 1
2

sup
{‖u – y‖ : y ∈ M

}
+

1
2

sup
{∥∥Tu′ – y

∥∥ : y ∈ M
}

=
1
2

R(u, M) +
1
2

R
(
Tu′, M

) ≤ βδ(L, M)
[
by Eq. (1)

]
,

which means u+Tu′
2 ∈ P. Similarly, v+Tv′

2 ∈ Q. This shows that P ∪ Q is a cyclic T-regular
set. Therefore, (P, Q) ∈ F . But δ(L, M) = supu∈P R(u, M) ≤ βδ(L, M) < δ(L, M), which is a
contradiction. Hence, L and M are singleton sets. Therefore, we have u ∈ C ∪ D so that
‖u – Tu‖ = dist(C, D). �

Example 1 Let X = (R2,‖ · ‖) be a Euclidean space. Let

L =
{

(–1, –c) : c ∈Q∩
[

–
1
2

,
1
2

]}
and M =

{
(1, –d) : d ∈Q∩

[
–

1
2

,
1
2

]}
,
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where Q := the set of rational numbers. Then (L, M) is a non-empty, non-convex proximal
parallel pair with dist(L, M) = dist(conv(L), conv(M)) = 2 and M = L + h, h = (2, 0). Also,
(L, M) has the rectangle property.

Let T : L ∪ M → L ∪ M by

Tu = T(u1, u2) =
(

u1, –
u2

2

)
+ (2, 0), u ∈ L and

Tv = T(v1, v2) =
(

v1, –
v2

3

)
– (2, 0), v ∈ M.

Clearly, L ∪ M is a cyclic T-regular set. The map T is not a relatively nonexpansive map
but a relatively nonexpansive map with respect to orbits. Then, from Theorem 1, we have
((–1, 0), (1, 0)) ∈ L × M so that ‖(–1, 0) – T(–1, 0)‖ = dist(L, M) = ‖(1, 0) – T(1, 0)‖.

If the non-empty pair (C, D) is convex, then from Theorem 1, we obtain the following
corollary.

Corollary 1 ([11]) Let X be a uniformly convex Banach space and let (C, D) be a non-
empty, convex weakly compact proximal pair of subsets in X having the rectangle property.
Let T : C ∪ D → X be a cyclic relatively nonexpansive map with respect to orbits. Then we
have u ∈ C ∪ D so that ‖u – Tu‖ = dist(C, D).

The following theorem proves that a relatively nonexpansive map with respect to orbits
T defined on C ∪ D has fixed points in C and D.

Theorem 2 Let X be a uniformly convex Banach space and let (C, D) be a non-empty,
non-convex weakly compact proximal pair in X with

dist
(
conv(C), conv(D)

)
= dist(C, D).

Let T : C ∪ D → X be a relatively nonexpansive map with respect to orbits with T(C) ⊆ C,
T(D) ⊆ D. Suppose C and D are T-regular sets. Then we have (Tu, Tv) = (u, v) ∈ C × D so
that ‖u – v‖ = dist(C, D).

Proof Let F be the collection of all non-empty, non-convex weakly closed proximal pair
of subsets (L, M) in (C, D), satisfying dist(L, M) = dist(C, D), T(L) ⊆ L, T(M) ⊆ M and let L
and M be T-regular sets. F is non-empty as (C0, D0) ∈ F . By Zorn’s lemma, the partially
ordered set F has the minimal pair under set inclusion order, say (L, M). Therefore, from
Lemma 2, we see

L ⊆ conv
(
T(L)

)
and M ⊆ conv

(
T(M)

)
.

If δ(L, M) = dist(C, D), we get our result and the theorem is complete. Suppose

δ(L, M) > dist(C, D).

Fix u0 ∈ L. Since X is a uniformly convex space and L and M are T-regular sets, we have
β ∈]0, 1[ so that R(w, M) ≤ βδ(L, M) and R(w′, L) ≤ βδ(L, M), where w = u0+Tu0

2 ∈ L and
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w′ = w + h. Define

P =
{

u ∈ L : R(u, M) ≤ βδ(L, M)
}

and Q =
{

v ∈ M : R(v, M) ≤ βδ(L, M)
}

.

Then (P, Q) is a non-convex weakly compact proximal pair (and hence proximal parallel
pair). Since L ⊆ conv(T(L)), M ⊆ conv(T(M)) and, for u ∈ P,

R(Tu, M) = sup
{‖Tu – w‖ : w ∈ M

}

≤ sup
{‖Tu – w‖ : w ∈ conv

(
T(M)

)}

= sup
{‖Tu – Tv‖ : Tv ∈ T(M)

}

≤ sup
{

R
(
u, O(v)

)
: v ∈ M, O(v) ⊆ M

}

≤ R(u, M) ≤ βδ(L, M). (2)

This shows that T(P) ⊆ P. Similarly, for v ∈ Q,

R(Tv, L) = sup
{‖Tv – z‖ : z ∈ L

}

≤ sup
{‖Tv – z‖ : z ∈ conv

(
T(L)

)}

= sup
{‖Tv – Tu‖ : Tu ∈ T(L)

}

≤ sup
{

R
(
v, O(u)

)
: u ∈ L, O(u) ⊆ L

}

≤ R(v, L) ≤ βδ(L, M).

This shows that T(Q) ⊆ Q. Let u ∈ P, then Tu ∈ P. Since L is a T-regular set, u+Tu
2 ∈ L.

Now,

R
(

u + Tu
2

, M
)

= sup

{∥∥∥∥
u + Tu

2
– y

∥∥∥∥ : y ∈ M
}

≤ 1
2

R(u, M) +
1
2

R(Tu, M) ≤ βδ(L, M)
[
from Eq. (2)

]
.

This shows that u+Tu
2 ∈ P. Similarly, v+Tv

2 ∈ Q, v ∈ Q. Hence, P and Q are T-regular sets.
Therefore, (P, Q) ∈ F . This forces that β = 1. Thus, δ(L, M) = dist(L, M). Since M = L + h,
we have L = {u} and M = {u + h} for some u ∈ C. Therefore, we have (Tu, Tv) = (u, v) ∈
C × D so that ‖u – v‖ = dist(C, D). �

If the non-empty pair (C, D) is convex, then from Theorem 2, we obtain the following
corollary.

Corollary 2 ([9]) Let X be a uniformly convex Banach space, and let (C, D) be a non-empty,
convex weakly compact proximal pair of subsets in X. Let T : C ∪ D → X be a relatively
nonexpansive map with respect to orbits with T(C) ⊆ C, T(D) ⊆ D. Then we have (Tu, Tv) =
(u, v) ∈ C × D so that ‖u – v‖ = dist(C, D).

In the year 2020, Kim et al. introduced a modified Kranoselskii–Mann interactive
method and gave some interesting results (see [12]). Next, we show the convergence of
Kranoselskii’s iteration process (see [1, 13]) for a non-convex proximal pair.
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Theorem 3 Let (L, M) be a non-empty, non-convex weakly compact proximal pair with
dist(conv(L), conv(M)) = dist(L, M) in a uniformly convex Banach space X . Let T : L∪M →
X be a relatively nonexpansive map with respect to orbits satisfying T(L) ⊆ L, T(M) ⊆ M.
Further, assume that L and M are T-regular sets. Let an initial point s0 ∈ L and define a
sequence

sn+1 =
sn + Tsn

2
, n = 0, 1, 2, . . .

Then limn→+∞ ‖sn – Tsn‖ = 0. Moreover, if T is continuous and T(L) is contained in a com-
pact set, then limn→+∞ sn = s and Ts = s.

Proof Suppose dist(L, M) > 0. Since dist(conv(L), conv(M)) = dist(L, M), by Proposition 1,
the pairs (L, M) and (conv(L), conv(M)) are proximal parallel pairs in X. From Theorem 2,
there exist s ∈ L, t ∈ M so that Ts = s, Tt = t and ‖s – t‖ = dist(L, M). L and M being T-
regular sets, the sequence {sn} ⊆ L. Now,

‖sn+1 – t‖ =
∥∥∥∥

sn + Tsn

2
–

t + Tt
2

∥∥∥∥

≤ 1
2
(‖sn – t‖ + ‖Tsn – Tt‖) ≤ 1

2
(‖sn – t‖ + R

(
sn, O(t)

))

= ‖sn – t‖ [
since Tt = t, O(t) = {t}, where t ∈ M

]
.

Hence, {‖sn – t‖} is non-increasing and limn→+∞ ‖sn – t‖ = k.
Suppose limn→+∞ ‖sn – Tsn‖ 	= 0. Then there exists a subsequence {sni} of {sn} such that

‖sni – Tsni‖ ≥ ε > 0 for i = 1, 2, . . . . Choose θ ∈]0, 1[ and ε1 so that ε
θ

> k and 0 < ε1 <
min{ kδ(θ )

1–δ(θ ) , ε
θ

– k}.
Since X is uniformly convex, δ(ε1) > 0 for ε1 > 0 is a strictly increasing function. Hence,

0 < δ(θ ) < ε
k+ε1

. So, it is possible to choose ε1 > 0 so small that

(
1 – δ

(
ε

k + ε1

))
(k + ε1) < k.

As limn→+∞ ‖sni – t‖ = k, choose i, so that ‖sni – t‖ ≤ k + ε1. Since Tt = t, we have ‖Tsni –
Tt‖ ≤ R(sni , O(t)) = ‖sni – t‖ ≤ k + ε1. Now,

‖t – sni+1‖ =
∥∥∥∥

sni + Tsni

2
–

t + Tt
2

∥∥∥∥

≤
(

1 – δ

(
ε

k + ε1

))
(k + ε1).

By choosing ε1 > 0 so small, we get

(
1 – δ

(
ε

k + ε1

))
(k + ε1) < k.

This shows that limn→+∞ ‖sn – Tsn‖ = 0.
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Suppose T(L) is contained in a compact set. Then {sn} has a subsequence {sni} so that
limi→+∞ sni = s ∈ L. Thus, we have z ∈ M so that ‖s – z‖ = dist(L, M). Now,

‖sni+1 – Tz‖ =
∥∥∥∥

sni + Tsni

2
– Tz

∥∥∥∥

≤ ‖sni – Tz‖
2

+
‖Tsni – Tz‖

2
. (3)

Since T is continuous, from Eq. (3), when i → +∞, we have

‖s – Tz‖ ≤ ‖s – Tz‖
2

+
‖Ts – Tz‖

2
.

Since ‖s – z‖ = dist(L, M), it follows that ‖Ts – Tz‖ = dist(L, M). Therefore, ‖s – Tz‖ ≤
dist(L, M), which implies ‖s – Tz‖ = dist(L, M). By strict convexity of the norm, Tz = z,
which implies Ts = s, because s is the unique point of L nearest to z. �

Example 2 Let X = (R2,‖ · ‖) be a Euclidean space. Let

L =
{

(0, –a) : a ∈Q∩ [–1, 1]
}

and M =
{

(1, –b) : b ∈Q∩ [–1, 1]
}

,

where Q := the set of rational numbers. Then (L, M) is a non-empty, non-convex proximal
parallel pair with dist(L, M) = dist(conv(L), conv(M)) = 1 and M = L + h, h = (1, 0).

Let T : L → L by

Ts = T(s1, s2) =
(

s1, –
s2

2

)
, s ∈ L,

and T : M → M by

Tt = T(t1, t2) =
(

t1, –
t2

3

)
, t ∈ M.

Clearly, T(L) ⊆ L, T(M) ⊆ M and L and M are T-regular sets. The map T is not a rela-
tively nonexpansive map but a relatively nonexpansive map with respect to orbits. Then,
by Theorem 2, there exist (0, 0) ∈ L, (1, 0) ∈ M so that ‖(0, 0) – (1, 0)‖ = dist(L, M).

Let s0 = (u0, v0) ∈ L be an initial point. Then Ts0 = T(u0, v0) = (0, – v0
2 ). Now,

s1 = (u1, v1) =
(u0, v0) + T(u0, v0)

2
=

(0, v0) + (0, – v0
2 )

2
=

(
0,

v0

22

)
.

Similarly, s2 = (u2, v2) = (0, v0
24 ), s3 = (u3, v3) = (0, v0

26 ) and so on. In general, sn = (un, vn) =
(0, v0

22n ) and limn→+∞(un, vn) = (0, 0) and T(0, 0) = (0, 0). In a similar way, if s′
0 = (u′

0, v′
0) ∈ M

be an initial point, then limn→+∞(u′
n, v′

n) = (1, 0) and T(1, 0) = (1, 0).

From Theorem 3, if dist(L, M) = 0, L ∩ M is convex and T is a nonexpansive map, then
we have the next result.
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Corollary 3 ([13]) Let L be a non-empty, bounded closed convex subset in a uniformly
convex Banach space X and let T : L → L be a nonexpansive map. Let an initial point
s0 ∈ L and define a sequence

sn+1 =
sn + Tsn

2
, n = 1, 2, . . . .

Then limn→+∞ ‖sn – Tsn‖ = 0. Moreover, if T(L) is contained in a compact set, then
limn→+∞ sn = s and Ts = s.

3 Conclusion
Relatively nonexpansive maps with respect to orbits, cyclic T-regular sets and T-regular
sets are used to obtain our main results. The results, Theorem 1, Theorem 2 and Theo-
rem 3, that are obtained in this article are more generalized than the results obtained in
the literature. To converge Kranoselskii’s iteration process to a fixed point, the map T in
Theorem 3 should be continuous.
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