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Abstract
In this paper, we found a common fixed point for several multivalued mappings on
proximinal sets in regular modular metric space. Also, we introduced the notions of
conjoint F-proximinal contraction as well as conjoint F-proximinal contraction of
Hardy–Rogers-type for several multivalued mappings. Furthermore, we enhanced our
results by giving an application in integral equations.
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1 Introduction
In 2010, the notion of modular metric space was introduced by Chistyakov [3]. In 2012,
Wardowski characterized the idea of F-contraction which generalized the Banach contrac-
tion principle in various manners and he utilized the new concept of contraction to find
the fixed point theorem [15]. Also, Mongkolkeha et al. proved the existence of common
fixed points for a generalized weak contractive mapping in modular spaces. Moreover,
they proved the existence of some fixed point theorems without the �2-condition [11].

Furthermore, in 2013, Sgroi et al. achieved a multivalued version of Wardowski’s result
[14].

In 2014, Abdou et al. studied the existence of fixed points for contractive-type multival-
ued maps in the setting of modular metric spaces [1].

In 2015, Rahimpoor et al. generalized and extended results of Mongkolkeha et al. [11] by
proving some coincidence and common fixed point theorems for a contractive mapping
in modular metric spaces [13].

Also, in 2016, Dilip Jain et al. presented multivalued F-contraction in the case of modular
metric space with specific assumptions [7]. These results were an extension of Nadler,
Wardowski, and Sgroi to the case of modular metric spaces [12, 14, 15].

In 2018, Khan et al. presented a common fixed point theorem for a pair of multivalued
F-�-proximinal mappings satisfying Ciric–Wardowski-type contraction in partial metric
spaces. Also, they introduced an example and application to system of integral equations
[10].
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Khan et al. [9] introduced the RK-iterative process in the setting of modular function
spaces. Also, they studied fixed points of ρ-nonexpansive mappings in modular function
spaces using �2 condition.

Moreover, Feng used the concept of w-compatible mappings to establish some new com-
mon coupled fixed point theorems for two hybrid pairs of mappings satisfying a symmetric
type contractive condition in a partial metric space [6].

Benavides [2] revised some fixed point results for multivalued nonexpansive mappings
in Banach and modular spaces. In addition, they found some new results depending either
on the Opial modulus or on the Partington modulus in modular spaces.

On the other hand, in 2020, Faried et al., introduced the concepts of conjoint F-
contraction and conjoint F-contraction of Hardy–Rogers-type in the case of two multi-
valued mappings in regular modular metric space [5].

In this work, we generalize these concepts to the case of several multivalued F-
proximinal mappings in regular modular metric space. Also, we establish a common fixed
point theorems for several multivalued F-proximinal mappings in regular modular metric
space. Finally, we give an application from our main results which establish the existence
of the solution of integral equations.

2 Preliminaries
Throughout this paper, we use the following results.

Definition 2.1 ([7]) Let X be a nonempty set. A function ω : (0,∞) × X × X → [0,∞] is
said to be a metric modular on X if it satisfies, for all x, y, z ∈ X, the following conditions
(we will write ωλ(x, y) instead of ω(λ, x, y)):

(1) ωλ(x, y) = 0 for all λ > 0 if and only if x = y,
(2) ωλ(x, y) = ωλ(y, x) for all λ > 0,
(3) ωλ+μ(x, y) ≤ ωλ(x, z) + ωμ(z, y) for all λ,μ > 0.

If instead of (3), we have the condition
(4) ωλ+μ(x, y) ≤ λ

λ+μ
ωλ(x, z) + μ

λ+μ
ωμ(z, y) for all λ,μ > 0 and x, y, z ∈ X ,

then ω is called convex metric modular on X .
Also, if instead of (1), we have the condition

(5) ωλ(x, x) = 0 for all λ > 0, then ω is said to be a metric pseudomodular on X .

Definition 2.2 ([1]) Let ω be a pseudomodular on X. Fix x0 ∈ X, the two sets
Xω(x0) = {x ∈ X : limλ→∞ ωλ(x, x0) = 0} and X∗

ω(x0) = {x ∈ X : ∃λ = λ(x) > 0 such that
ωλ(x, x0) < ∞} are said to be modular spaces generated by x0.

The spaces Xω(x0) and X∗
ω(x0) are metric spaces with the metrics dω(x, y) = inf{λ >

0,ωλ(x, y) < λ} and d∗
ω(x, y) = inf{λ > 0,ωλ(x, y) < 1}, respectively. For each x, y ∈ X and

λ > 0, [1] defined ωλ+ (x, y) := limε→0+ ωλ+ε(x,y) and ωλ– (x, y) := limε→0+ ωλ–ε(x,y).

Remark 2.3 ([3])
(1) A metric modular ω on X is nonincreasing with respect to λ > 0. In fact, for any

x, y ∈ X and 0 < μ < λ, we have ωλ(x, y) ≤ ωλ–μ(x, x) + ωμ(x, y) = ωμ(x, y).
(2) ωλ+ (x, y) ≤ ωλ(x, y) ≤ ωλ– (x, y).
(3) If a metric modular ω on X possesses a finite value for each x, y ∈ X and

ωλ(x, y) = ωμ(x, y) for all λ,ω > 0, then d(x, y) = ωλ(x, y) is a metric on X .
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The following indexed objects ω are simple examples of (pseudo) modulars on a set X.
Let λ > 0 and x, y ∈ X, we have

Example 2.4 ([3])

ωa
λ(x, y) = ∞ if x �= y,

= 0 if x = y,

and if (X, d) is a (pseudo)metric space with (pseudo) metric d, then we also have the fol-
lowing.

Example 2.5 ([3])

ωb
λ(x, y) =

d(x, y)
ϕ(λ)

for all x, y ∈ X, λ > 0 where ϕ : (0,∞) → (0,∞) is any nondecreasing function.

Example 2.6 ([3])

ωc
λ(x, y) = ∞ if λ ≤ d(x, y),

= 0 if λ > d(x, y).

Example 2.7 ([3])

ωd
λ(x, y) = ∞ if λ < d(x, y),

= 0 if λ ≥ d(x, y).

Example 2.8 ([3]) Let (M, d) be a metric space and X = MN be the set of all sequences
x : N→ M. Define ωλ(x, y) by

ωλ(x, y) = sup
n∈N

(
d(x(n), y(n))

λ

) 1
n

, λ > 0, x, y ∈ X.

In general, if limn→∞ ωλ(xn, x) = 0 for some λ > 0, then we may not have limn→∞ ωλ(xn,
x) = 0 for all λ > 0. So, Chistyakov [3, 4] presented the following definition.

Definition 2.9 ([7]; Regular metric modular) A modular metric ω on X is said to be reg-
ular if the following condition is satisfied:

x = y if and only if ωλ(x, y) = 0 for some λ > 0.

This condition plays a significant role to ensure the existence of fixed point in modular
metric space.

Definition 2.10 ([1]) Let ω be a metric modular on X then



Faried et al. Journal of Inequalities and Applications        (2021) 2021:129 Page 4 of 10

(1) The sequence {xn}n∈N in X is said to be ω-convergent if and only if there exists x ∈ X
such that ω1(xn, x) → 0 as n → ∞.

(2) The sequence {xn}n∈N in X is said to be ω-Cauchy if ω1(xm, xn) → 0 as m, n → ∞.
(3) A subset D of X is said to be ω-complete if any ω-Cauchy sequence in D is a

convergent sequence and its limit is in D.
(4) A subset D of X is said to be ω-closed if ω-limits of all ω-convergent sequences of D

always belong to D.
(5) A subset D of X is said to be ω-bounded if we have

δω(D) = sup{ω1(x, y) : x, y ∈ D} < +∞.
(6) A subset D of X is said to be ω-compact if for any {xn}n∈N in D there exists a

subsequence {xnk } and x ∈ D such that ω1(xnk , x) → 0.
(7) ω is said to satisfy the Fatou property if and only if for any sequence {xn}n∈N in X

ω-convergent to x, we have ω1(x, y) ≤ lim infn→∞ ω1(xn, y) for any y ∈ X .

Definition 2.11 ([7]; �2-condition) Let (X,ω) be a modular metric space and {xn}n∈N be
a sequence in X. The metric modular ω is said to satisfy the �2-condition if limn→∞ ωλ(xn,
x) = 0 for some λ > 0, then limn→∞ ωλ(xn, x) = 0 for all λ > 0.

Definition 2.12 ([7]; �M-condition) Let (X,ω) be a modular metric space and {xn}n∈N
be a sequence in X. The metric modular ω is said to satisfy the �M-condition if
limn→∞ ωp(xn+p, xn) = 0 or (n ∈N, p > 0) then limn→∞ ωλ(xn+p, xn) = 0 for some λ > 0.

3 Multivalued F-contraction on modular metric space
Throughout this paper, let CB(D) denote the set of all nonempty closed and bounded sub-
sets of D, C(D) denotes the set of all nonempty closed subsets of D, and CPr(D) denotes
the set of all closed proximinal subsets of D.

Let A, B ∈ CPr(D), we define the proximinal Hausdorff metric modular as follows:
Hω1 (A, B) := max{supa∈A ω1(a, B), supb∈B ω1(b, A)} where ω1(a, B) := infb∈B ω1(a, b).

Definition 3.1 ([7]) Let F : R+ →R be a function satisfying the following conditions:
(F1) F is strictly increasing on R

+.
(F2) For every sequence {sn} in R

+, we have limn→∞ sn = 0 if and only if limn→∞ F(sn) =
–∞.

(F3) There exists a number k ∈ (0, 1) such that lims→0+ skF(s) = 0.
The family of all functions F satisfying the conditions (F1)–(F3) is denoted by F .

Definition 3.2 ([7]; F-contraction) Let D be a nonempty ω-bounded subset of a modular
metric space (X,ω). For a fixed F ∈ F a multivalued mapping T : D → CB(D) is called F-
contraction on X if ∃τ ∈ R

+ such that for any x, y ∈ D with y ∈ Tx there exists z ∈ Ty such
that ω1(y, z) > 0 and the following inequality holds:

τ + F
(
ω1(y, z)

) ≤ F
(
M(x, y)

)
, (3.1)

where M(x, y) = max{ω1(x, y),ω1(x, Tx),ω1(y, Ty),ω1(y, Tx)}.

Definition 3.3 ([7]; F-contraction of Hardy–Rogers-type) Let D be a nonempty ω-
bounded subset of a modular metric space (X,ω). A multivalued mapping T : D → CB(D)
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is called an F-contraction of Hardy–Rogers-type if there exist F ∈F and τ ∈ R
+ such that

2τ + F
(
Hω(Tx, Ty)

) ≤ F
(
αω1(x, y) + βω1(x, Tx) + γω1(y, Ty) + Lω1(y, Tx)

)
. (3.2)

Definition 3.4 ([8]; Proximinal) Let E be a closed bounded subset of a Banach space X.
The set E is called proximinal in X if for all x ∈ X there is some e ∈ E such that ‖x – e‖ =
inf{‖x – y‖ : y ∈ E}.

We will rewrite the following lemmas in the case of CPr(X).

Lemma 3.5 ([1]) Let (X,ω) be a modular metric space and D be a nonempty subset of Xω .
Let A, B ∈ CPr(D) then for each ε > 0 and a ∈ A there exists b ∈ B such that

ω1(a, b) ≤ H1(A, B) + ε.

Moreover, if B is ω-compact and ω satisfies the Fatou property, then for any a ∈ A there
exists b ∈ B such that

ω1(a, b) ≤ H1(A, B).

Lemma 3.6 ([1]) Let D be a nonempty subset of a modular metric space (X,ω). As-
sume that ω satisfies �2-condition and let An be a sequence of sets in CPr(D) such that
limn→∞ Hω1 (An, A0) = 0 where A0 ∈ CPr(D). If xn ∈ An and limn→∞ xn = x0 then x0 ∈ A0.

4 Main results
Now, we are ready to give our main results.

Definition 4.1 Let D be a nonempty ω-bounded subset of a modular metric space (X,ω).
For fixed F ∈F , we say that multivalued mappings Ti, Ti+1 : D → CPr(D) form a conjoint
F-proximinal contraction on X for i = 1, 2, . . . , k. If for 0 < q < 1 and all x, y ∈ D such that
Hω1 (Tix, Ti+1y) > 0 the following inequality holds:

0 < inf
{

F
(
MTi ,Ti+1 (x, y)

)
– F

(
Hω1 (Tix, Ti+1y)

)}
(4.1)

and MTi ,Ti+1 (x, y) = q(max{ω1(x, y),ω1(y, Tix),ω1(Tix, x),ω1(Ti+1y, y)}).

Theorem 4.2 Let D be a nonempty ω-bounded and ω-complete subset of a modular met-
ric space (X,ω). Assume that ω is a regular modular satisfying �M and �2-conditions.
If Ti, Ti+1 : D → CPr(D) form continuous conjoint F-proximinal contractions for each
i = 1, 2, . . . , k then they have a unique common fixed point for each i = 1, 2, . . . , k. In other
words, there exists u ∈ D such that u ∈ T1u, u ∈ T2u, . . . and u ∈ Tku.

Proof Since T1 and T2 form a continuous conjoint F-proximinal contraction, there exists
a unique common fixed point u1 between T1 and T2 or u1 ∈ T1u1 and u1 ∈ T2u1. Similarly,
T2 and T3 form a continuous conjoint F-proximinal contraction; then there exists a unique
common fixed point u2 between T2 and T3 or u2 ∈ T2u2 and u2 ∈ T3u2.

Now we will show that u1 = u2.
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Assume contrarily that u1 �= u2 and we have

0 < inf
{

F
(
MT1,T2 (u1, u2)

)
– F

(
Hω1 (T1u1, T2u2)

)}
.

Or

F
(
Hω1 (T1u1, T2u2)

)
+ τ ≤ F

(
MT1,T2 (u1, u2)

)
, for some τ > 0,

i.e.

Hω1 (T1u1, T2u2) < MT1,T2 (u1, u2)

= q
(
max

{
ω1(u1, u2),ω1(u2, T1u1),ω1(T1u1, u1),ω1(T2u2, u2)

})
= q

(
max

{
ω1(u1, u2),ω1(u2, Tu1)

})
.

Since ω1(u1, u2) ≤ Hω1 (T1u1, T2u2),

ω1(u1, u2) < q
(
max

{
ω1(u1, u2),ω1(u2, T1u1)

})
. (4.2)

Since u1 ∈ T1u1 then ω1(u2, T1u1) ≤ ω1(u1, u2), i.e.

max
{
ω1(u1, u2),ω1(u2, T1u1)

}
= ω1(u1, u2). (4.3)

Then from Eqs. (4.2) and (4.3), we get

ω1(u1, u2) < qω1(u1, u2).

Then u1 = u2, which gives a contradiction with u1 �= u2 or ω1(u1, u2) �= 0. So u1 = u2 = u
such that u is a unique common fixed point for T1, T2 and T3 or u ∈ T1u, u ∈ T2u and
u ∈ T3u.

By repeating this procedure for T2, T3 and T4 we can deduce that there exists a unique
common fixed point v ∈ D for T2, T3 and T4 such that v ∈ T2v, v ∈ T3v and v ∈ T4v. u is
unique for T1, T2 and T3 and v is unique for T2, T3 and T4. Now

ω1(u, v) ≤ Hω1 (T2u, T3v)

< MT1,T2 (u, v)

= q
(
max

{
ω1(u, v),ω1(v, T2u),ω1(T2u, u),ω1(T3v, v)

})
= q

(
max

{
ω1(u, v),ω1(v, T2u)

})
.

Since u ∈ T2u we have ω1(v, T2u) ≤ ω1(u, v).
Then

ω1(u, v) < qω1(u, v),

which gives a contradiction. Therefore, ω1(u, v) = 0 and u = v.
We conclude that there exists a unique common fixed point for T1, T2, T3 and T4. Finally,

we see that u is a common fixed point for T1, T2, . . . , and Tk . �



Faried et al. Journal of Inequalities and Applications        (2021) 2021:129 Page 7 of 10

Definition 4.3 Let D be a nonempty bounded subset of a modular metric space (X,ω).
The multivalued mappings Ti, Ti+1: D → CPr(D) are called conjoint F-proximinal con-
traction of Hardy–Rogers-type on X if there exists F ∈ F , and

0 < inf
{

Fαω1(x, y) + βω1(x, Tix) + γω1(y, Ti+1y)

+ Lω1(y, Tix)) – F
(
Hω1 (Tix, Ti+1y)

)} (4.4)

for all x, y ∈ D with Hω1 (Tix, Ti+1y) > 0, where α,β ,γ , L ≥ 0, α + β + γ = 1, γ < 1, β + L < 1
and α + L < 1 for each i = 1, 2, . . . , k.

Theorem 4.4 Let D be a nonempty ω-bounded and ω-complete subset of a modular metric
space (X,ω). Assume that ω is a regular modular satisfying �M- and �2-conditions and
Ti, Ti+1 : D → CPr(D) are continuous conjoint F-proximinal contractions of Hardy–Rogers-
type on X for each i = 1, 2, . . . , k. Consequently, they have a common fixed point u → D such
that u → T1u, u → T2u, . . . and u → Tku.

Proof Since T1 and T2 be continuous conjoint F-proximinal contraction of Hardy–
Rogers-type on X, there exists u1 → D such that u1 → T1u1, u1 → T2u1. Also, let T2 and
T3 be continuous conjoint F-proximinal contraction of Hardy–Rogers-type on X; then
there exists u2 → D such that u2 → T2u2, u2 → T3u2.

Now we will show that u1 = u2.
Since T1 and T2 are continuous conjoint F-proximinal contraction of Hardy–Rogers-

type on X,

0 < inf
{

F
(
αω1(u1, u2) + βω1(u1, T1u1) + γω1(u2, T2u2)

+ Lω1(u2, T1u1)
)

– F
(
Hω1 (T1u1, T2u2)

)}
.

Or

F
(
Hω1 (T1u1, T2u2)

)
+ τ ≤ F

(
αω1(u1, u2) + βω1(u1, T1u1) + γω1(u2, T2u2)

+ Lω1(u2, T1u1)
)

for some τ > 0, i.e.,

Hω1 (T1u1, T2u2) < αω1(u1, u2) + βω1(u1, T1u1) + γω1(u2, T2u2) + Lω1(u2, T1u1).

Or

ω1(u1, u2) < αω1(u1, u2) + βω1(u1, T1u1) + γω1(u2, T2u2) + Lω1(u2, T1u1).

Since u1 ∈ T1u1, u1 ∈ T2u1, u2 ∈ T2u2 and u2 ∈ T3u2

ω1(u1, u2) < αω1(u1, u2) + Lω1(u2, T1u1)

≤ αω1(u1, u2) + Lω1(u2, u1)

= (α + L)ω1(u2, u1),

which gives a contradiction since α + L < 1.
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Hence, u1 = u2 = u.
Therefore, there exists u ∈ D such that u is a common fixed point for T1, T2 and T3.
By repeating this procedure for T2, T3 and T4 we deduce that v is a common fixed point

for T2, T3 and T4.
Now we will show that u = v. Assume contrarily that u �= v; hence for u ∈ T2u and v ∈ T3v

we have

ω1(u, v) < Hω1(T2u, T3v)

< αω1(u, v) + βω1(u, T2u) + γω1(v, T3v) + Lω1(v, T2u)

≤ αω1(u, v) + Lω1(u, v)

≤ (α + L)ω1(u, v).

Since α + L < 1 we have ω1(u, v) = 0 and u = v. Therefore, u is a common fixed point for
T1, T2, T3 and T4. Finally, we get a common fixed point for T1, T2, . . . , and Tk . �

5 Application to integral equations
In this section, we give an application of Theorem 4.2 to Volterra-type integral equations.
Let (C[0, a],‖ · ‖τ ) be a Banach space where C[0, a] is the set of all continuous functions
on [0, a]. Consider the integrals

ui(t) =
∫ t

0
Ki

(
t, s, u(s)

)
ds + fi(t) (5.1)

for all t ∈ [0, a] and i = 1, 2, . . . , k. We take ui ∈ C[0, a] with the norm

‖ui‖τ = max
t∈[0,a]

∣∣ui(t)e–τ t∣∣

for arbitrary τ > 0 and the metric

ωλ(ui, ui+1) =
1
λ

‖ui – ui+1‖τ =
1
λ

max
t∈[0,a]

∣∣(ui(t) – ui+1(t)
)
e–τ t∣∣

for all ui, ui+1 ∈ C[0, a].
Now we will prove the following theorem to ensure the existence of the solution of the

system of integral equations.

Theorem 5.1 Consider Ki : [0, a] × [0, a] ×R →R, fi : [0, a] →R to be continuous and
Ti : C[0, a] → CPr(C[0, a]) as

Tiui(t) =
(∫ t

0
Ki

(
t, s, ui(s)

)
ds + fi(t)

)
e– n

i t (5.2)

for every n ∈N∪ {0} and i = 1, 2, . . . , k. If there exists τ > 1, such that

sup
n,m∈N∪{0}

{∣∣Ki
(
t, s, ui(s)

)
e– n

i t – Ki+1
(
t, s, ui+1(s)

)
e– m

i+1 t∣∣ +
∣∣fi(t)e– n

i t – fi+1(t)e– m
i+1 t∣∣}e–τ t

≤ τe–τ
∣∣MTi ,Ti+1

(
ui(t), ui+1(t)

)∣∣ (5.3)
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for some t ∈ [0,a], for every n, m ∈N∪ {0}, ui ∈ C[0, a] and i = 1, 2, . . . , k, then the system of
integral equations (5.2) has a solution.

Proof Choosing x∗ and y∗ to be among the best approximations of Ti+1ui+1(t) and Tiui(t),
we have

H
(
Tiui(t), Ti+1ui+1(t)

)
= max

{
sup

x∈Tiui(t)
ω1

(
x, Ti+1ui+1(t)

)
, sup

y∈Ti+1ui+1(t)
ω1

(
y, Tiui(t)

)}

= max
{

sup
x∈Tiui(t)

ω1
(
x, x∗), sup

y∈Ti+1ui+1(t)
ω1

(
y, y∗)}

≤ sup
x∈Tiui(t),y∈Ti+1ui+1(t)

ω1(x, y)

but supx∈Tiui(t),y∈Ti+1ui+1(t) ω1(x, y) ≤ supn,m∈N∪{0}{
∫ t

0 |Ki(t, s, ui(s))e– n
i t – Ki+1(t, s, ui+1(s)) ×

e– m
i+1 t|ds + |fi(t)e– n

i t – fi+1(t)e– m
i+1 t|ds}e–τ t so

H
(
Tiui(t), Ti+1ui+1(t)

) ≤ τe–τ

∫ t

0

∣∣MTi ,Ti+1

(
ui(t), ui+1(t)

)∣∣e–τ seτ s ds

≤ ∥∥MTi ,Ti+1

(
ui(t), ui+1(t)

)∥∥
τ
τe–τ

∫ t

0
eτ s ds

=
∥∥MTi ,Ti+1

(
ui(t), ui+1(t)

)∥∥
τ
τe–τ eτ t

τ

=
∥∥MTi ,Ti+1

(
ui(t), ui+1(t)

)∥∥
τ
e–τ eτ t

for any t ∈ [0, a], for every n, m ∈N∪{0}, ui ∈ C[0, a] and i = 1, 2, . . . , k. Dividing by eτ t , we
get

H
(
Tiui(t), Ti+1ui+1(t)

)
e–τ t ≤ e–τ

∥∥MTi ,Ti+1

(
ui(t), ui+1(t)

)∥∥
τ
.

So,

∥∥H
(
Tiui(t), Ti+1ui+1(t)

)∥∥
τ
≤ e–τ

∥∥MTi ,Ti+1

(
ui(t), ui+1(t)

)∥∥
τ
.

This implies that

τ + ln
∥∥H

(
Tiui(t), Ti+1ui+1(t)

)∥∥
τ
≤ ∥∥MTi ,Ti+1

(
ui(t), ui+1(t)

)∥∥
τ
.

So, all the conditions of Theorem 4.2 are satisfied if F(α) = lnα. Hence there exists r ∈
C[0, a] such that

r(t) ∈ T1r(t) =
{(∫ t

0
K1

(
t, s, r(s)

)
ds + f1(t)

)
e–nt

}
,

r(t) ∈ T2r(t) =
{(∫ t

0
K2

(
t, s, r(s)

)
ds + f2(t)

)
e– n

2 t
}

, . . . , and

r(t) ∈ Tkr(t) =
{(∫ t

0
Kk

(
t, s, r(s)

)
ds + fk(t)

)
e– n

k t
}

.
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Finally, there exist Ki, fi, n1, n2, . . . , nk ∈ N ∪ {0} such that r(t) is a solution of the system
of integral equations given in (5.2) for i = 1, 2, . . . , k. �

6 Conclusion
In this paper we presented the new concepts of conjoint F-contraction and conjoint F-
contraction of Hardy–Rogers-type to the case of several multivalued F-proximinal map-
pings in regular modular metric space. Also, we used these concepts to found a common
fixed point theorems for several multivalued F-proximinal mappings in regular modular
metric space. The solution of integral equations was obtained by employing the condi-
tion of conjoint F-contraction for several multivalued F-proximinal mappings in regular
modular metric space.
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