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Abstract
In this research, we combine the Cesàro and backward difference operators of
different orders which results in introducing a matrix who has two different behaviors
and includes several matrices. We also investigate the Köthe duals and inclusion
relations of the associated sequence space of this new matrix. Moreover, we compute
the norm of this matrix on some well-known sequence spaces.
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1 Introduction
Let ω be the space of all real-valued sequences. The space �p consists all real sequences
u = (uk)∞k=0 ∈ ω such that

∑∞
k=0 |uk|p < ∞, which is a Banach space with the norm

‖u‖�p =

( ∞∑

k=0

|uk|p
)1/p

< ∞,

where 1 < p < ∞.
The matrix domain of an infinite matrix T in a sequence space X is defined as

XT = {x ∈ ω : Tx ∈ X}

which is also a sequence space. By using matrix domains of special triangle matrices in
classical spaces, many authors have introduced and studied new Banach spaces. For the
relevant literature, we refer to the papers [1–16] and the textbooks [17] and [18].

The Köthe dual (α-, β-, γ -duals) of a sequence space X are defined by

Xα =

{

a = (ak) ∈ ω :
∞∑

k=1

|akxk| < ∞ for all x = (xk) ∈ X

}

,

Xβ =

{

a = (ak) ∈ ω :

( n∑

k=1

akxk

)

∈ c for all x = (xk) ∈ X

}

,
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Xγ =

{

a = (ak) ∈ ω :

( n∑

k=1

akxk

)

∈ �∞ for all x = (xk) ∈ X

}

,

respectively.
Consider the Hausdorff matrix Hμ = (hjk)∞j,k=0, with entries of the form

hjk =

⎧
⎨

⎩

( j
k
) ∫ 1

0 θ k(1 – θ )j–k dμ(θ ), 0 ≤ k ≤ j,

0, k > j,

where μ is a probability measure on [0, 1]. The Hausdorff matrix contains some famous
classes of matrices. For positive integer n, by choosing dμ(θ ) = n(1 – θ )n–1 dθ the Cesàro
matrix Cn = (cn

jk) of order n is defined as follows:

cn
jk =

⎧
⎪⎨

⎪⎩

(n+j–k–1
j–k )

(n+j
j )

, 0 ≤ k ≤ j,

0, otherwise.
(1.1)

Hardy’s formula ([19], Theorem 216) states that the Hausdorff matrix is a bounded oper-
ator on �p if and only if

∫ 1
0 θ

–1
p dμ(θ ) < ∞ and

∥
∥Hμ

∥
∥

�p
=

∫ 1

0
θ

–1
p dμ(θ ), (1.2)

hence the Cesàro matrix has the norm

∥
∥Cn∥∥

�p
=

�(n + 1)�(1/p∗)
�(n + 1/p∗)

, (1.3)

where p∗ is the conjugate of p i.e. 1
p + 1

p∗ = 1. Note that C1 is the well-known Cesàro matrix
C with ‖C‖�p = p∗. The author has introduced the sequence spaces Cn

p and Cn∞ as the set
of all sequences whose Cn-transforms are in the spaces �p and �∞, respectively; that is,

Cn
p =

{

x = (xj) ∈ ω :
∞∑

j=0

∣
∣
∣
∣
∣

1
(n+j

j
)

j∑

k=0

(
n + j – k – 1

j – k

)

xk

∣
∣
∣
∣
∣

p

< ∞
}

(1.4)

and

Cn
∞ =

{

x = (xj) ∈ ω : sup
j

∣
∣
∣
∣
∣

1
(n+j

j
)

j∑

k=0

(
n + j – k – 1

j – k

)

xk

∣
∣
∣
∣
∣

< ∞
}

. (1.5)

Backward difference matrix. The backward difference matrix of order n, 	n = (δn
jk), is de-

fined by

δn
jk =

⎧
⎨

⎩

(–1)j–k( n
j–k

)
, k ≤ j ≤ k + n,

0, otherwise.
(1.6)
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This matrix has the inverse 	–n = (δ–n
jk ) which has the following entries:

δ–n
jk =

⎧
⎨

⎩

(n+j–k–1
j–k

)
, j ≥ k ≥ 0,

0, otherwise.
(1.7)

Motivation. The inverse of the backward difference matrix has some similarities in the
definition to the Cesàro matrix, hence composing of the Cesàro matrix and the back-
ward difference matrix results in two different cases: one acts like the backward and the
other acts like the inverse of the backward difference operator. In this study, we try to dis-
cover some results of these combinations covering both types of operators. Therefore, the
present study is a generalization of much research.

2 Composition of the Cesàro and backward difference matrices
Suppose that n, m are two non-negative integers and 1 < p < ∞. Let us define the matrix
Sn,m = (sn,m

jk ) by

Sn,m = Cn	m, (2.1)

where Cn and 	m are the Cesàro and backward difference matrices of order n and m,
defined by Eqs. (1.1) and (1.6), respectively.

Note that S1,0 = C, Sn,0 = Cn, S0,1 = 	 and S0,m = 	m. The sequence space associated with
this matrix, �p(Sn,m), includes the following spaces:

�p(S1,0) := Cp,
�p(Sn,0) := Cn

p ,
�p(S0,1) := bvp,
�p(S0,m) := �p(	m),
�p(S1,m) := Cp(	m);

these have been investigated in [7, 20–26], respectively.
With regard to the cases n ≥ m or n ≤ m we encounter two different types of matrix

Sn,m, which we define by �n,m and �n,m, respectively. They are

Sn,m := �n,m, n ≥ m ≥ 0,

and

Sn,m := �n,m, 0 ≤ n ≤ m.

We can represent the matrices �n,m = (φn,m
jk ) and �n,m = (ψn,m

jk ) by their entries as follows:

φ
n,m
jk =

⎧
⎪⎨

⎪⎩

(n–m+j–k–1
j–k )

(n+j
j )

, 0 ≤ k ≤ j,

0, otherwise,
(2.2)

and

ψ
n,m
jk =

⎧
⎪⎨

⎪⎩

(–1)j–k(m–n
j–k )

(n+j
j )

, 0 ≤ k ≤ j,

0, otherwise.
(2.3)
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Lemma 2.1 The matrices �n,m and �n,m are invertible and their inverse (�n,m)–1 =
((φn,m)–1

jk ) and (�n,m)–1 = ((ψn,m)–1
jk ) are defined by

(
φn,m)–1

jk =

⎧
⎨

⎩

(–1)j–k(n–m
j–k

)(n+k
k

)
, k ≤ j ≤ n – m + k,

0, otherwise,

and

(
ψn,m)–1

jk =

⎧
⎨

⎩

(m–n+j–k–1
j–k

)(n+k
k

)
, j ≥ k ≥ 0,

0, otherwise.

Proof Since Sn,m = Cn	m we have (Sn,m)–1 = 	–mC–n or

(
Sn,m)–1

jk =
∑

i

δ–m
ji δn

ik

(
n + k

k

)

= δn–m
jk

(
n + k

k

)

.

Now, by the definition of the backward difference operator, Eqs. (1.6) and (1.7)

(
φn,m)–1

jk = (–1)j–k
(

n – m
j – k

)(
n + k

k

)

and

(
ψn,m)–1

jk =
(

m – n + j – k – 1
j – k

)(
n + k

k

)

. �

Theorem 2.2 Let n and m be two non-negative integers and x ∈ �p. We have the following
inequalities:

∥
∥Sn,mx

∥
∥

�p
≤ �(n + 1)�(1/p∗)

�(n + 1/p∗)
∥
∥	mx

∥
∥

�p
.

In particular, we have the following.
For m = 0

∥
∥Cnx

∥
∥

�p
≤ �(n + 1)�(1/p∗)

�(n + 1/p∗)
‖x‖�p .

For n = 1 and m = 0 we have Hardy’s inequality,

‖Cx‖�p ≤ p
p – 1

‖x‖�p .

Proof By the definition of the matrix Sn,m we have

∥
∥Sn,mx

∥
∥

�p
=

∥
∥Cn	mx

∥
∥

�p
≤ ∥

∥Cn∥∥
�p

∥
∥	mx

∥
∥

�p
=

�(n + 1)�(1/p∗)
�(n + 1/p∗)

∥
∥	mx

∥
∥

�p
. �

The following inclusions are the straightforward results of the above theorem.



Roopaei and Hazarika Journal of Inequalities and Applications        (2021) 2021:116 Page 5 of 14

Corollary 2.3 Let n and m are two non-negative integers and x ∈ �p. Then

�p
(
	m) ⊂ �p

(
Sn,m)

. (2.4)

In particular,
�p(	m) ⊂ Cp(	m),
�p ⊂ Cn

p .

Theorem 2.4 The spaces �p(Sn,m) and �∞(Sn,m) are linearly isomorphic to �p and �∞, re-
spectively. In particular, we have the following.

The spaces Cn
p and Cn∞ are linearly isomorphic to �p and �∞, respectively ([7],

Theorem 2.4).
The spaces �p(	n) and �∞(	n) are linearly isomorphic to �p and �∞, respectively.

Proof Let us define the map T : �p(Sn,m) → �p with T(u) = Sn,mu for any u ∈ �p(Sn,m). It
is clear that T is linear and one-to-one. Also, since Sn,m is invertible, T is onto. Now,
since ‖u‖�p(Sn,m) = ‖Sn,mu‖�p holds, we find that T preserves the norms. This completes
the proof. �

Theorem 2.5 The inclusion �p(Sn,m) ⊂ �q(Sn,m) strictly holds, where 1 < p < q < ∞. In par-
ticular, we have the following.

The inclusion Cn
p ⊂ Cn

q strictly holds.
The inclusion �p(	n) ⊂ �q(	n) strictly holds.

Proof Let u ∈ �p(Sn,m). Then we have Sn,mu ∈ �p. Since the inclusion �p ⊂ �q holds for
1 < p < q < ∞, we have Sn,mu ∈ �q. This implies that u ∈ �q(Sn,m). Hence, we conclude that
the inclusion �p(Sn,m) ⊂ �q(Sn,m) holds.

Now, we show that the inclusion is strict. Since the inclusion �p ⊂ �q is strict, we
can choose v ∈ �q\�p. Define the sequence u = (Sn,m)–1v, which means Sn,mu = v and
so Sn,mu ∈ �q\�p. Hence, we conclude that u ∈ �q(Sn,m)\�p(Sn,m) and so the inclusion
�p(Sn,m) ⊂ �q(Sn,m) is strict. �

Theorem 2.6 The inclusion �p(Sn,m) ⊂ �∞(Sn,m) strictly holds. In particular, we have the
following.

The inclusion Cn
p ⊂ Cn∞ strictly holds.

The inclusion �p(	n) ⊂ �∞(	n) strictly holds.

Proof Let u ∈ �p(Sn,m). Then we have Sn,mu ∈ �p. Since the inclusion �p ⊂ �∞ holds for
1 < p < ∞, we have Sn,mu ∈ �∞. This implies that u ∈ �∞(Sn,m). Hence, we conclude that
the inclusion �p(Sn,m) ⊂ �∞(Sn,m) holds.

Now, we show that the inclusion is strict. Consider the sequence v = (vj) = (–1)j and let
u = (Sn,m)–1v. We deduce that Sn,mu = ((–1)j) ∈ �∞\�p, we obtain u ∈ �∞(Sn,m)\�p(Sn,m).
Consequently, the inclusion �p(Sn,m) ⊂ �∞(Sn,m) is strict. �

Lemma 2.7 (Theorem 20.3, [27]) Let 1 < p < ∞ and α > β ≥ 0. The Cesàro matrix of order
α, Cα , has a factorization of the form

Cα = Rα,βCβ = CβRα,β , (2.5)
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where Rα,β is a bounded operator on �p and

∥
∥Rα,β∥

∥
�p

=
�(α + 1)�(β + 1/p∗)
�(β + 1)�(α + 1/p∗)

.

Corollary 2.8 For α > β ≥ 0, the inclusion �p(Sβ ,m) ⊂ �∞(Sα,m) holds. In particular, for
m = 0, we have Cβ

p ⊂ Cα
p .

Proof By multiplying both sides of Eq. (2.5) in terms of 	m we obtain the equality

Sα,m = Rα,βSβ ,m.

Now, let x ∈ �p(Sβ ,m). Since

∥
∥Sα,mx

∥
∥

�p
≤ ∥

∥Rα,β∥
∥

�p

∥
∥Sβ ,mx

∥
∥

�p
,

hence x ∈ �p(Sα,m), which results in the inclusion. �

Corollary 2.9 Let α and β be two non-negative integers that α ≥ β . The backward differ-
ence matrix, 	α–β , is a bounded operator from �p into �p(Sα,β) and

∥
∥	α–β

∥
∥

�p ,�p(Sα,β ) = 1.

In particular, the backward difference matrix of order α, 	α , is a bounded operator from
�p into Cα

p and

∥
∥	α

∥
∥

�p ,Cα
p

= 1.

Proof According to the definition of matrix Sα,β it is not difficult to prove that Sα,α = Dα ,
where Dα = (dα

jk) is a diagonal matrix defined by

dα
jk =

⎧
⎨

⎩

1
(α+j

j )
, k = j,

0, otherwise.

Now, we have

∥
∥	α–β

∥
∥

�p ,�p(Sα,β ) = sup
x∈�p

‖	α–βx‖�p(Sα,β )

‖x‖�p
= sup

x∈�p

‖Sα,β	α–βx‖�p

‖x‖�p

=
∥
∥Sα,α∥

∥
�p

= sup
j

dα
jj = 1.

In particular, by letting β = 0, Sα,β = Cα , we have the desired result. �

Corollary 2.10 Let α and β be two non-negative integers such that α > β ≥ 0 and t + k = r.
The backward difference matrix, 	k , is a bounded operator from �p(Sβ ,r) into �p(Sα,t) and

∥
∥	k∥∥

�p(Sβ ,r),�p(Sα,t ) =
�(α + 1)�(β + 1/p∗)
�(β + 1)�(α + 1/p∗)

.
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In particular, the identity matrix, I , is a bounded operator from Cβ
p into Cα

p and

‖I‖Cβ
p ,Cα

p
=

�(α + 1)�(β + 1/p∗)
�(β + 1)�(α + 1/p∗)

.

Proof According to Theorem 2.4, �p(Sβ ,r) and �p are isomorphic spaces. Hence by applying
Lemma 2.7 we deduce that

∥
∥	k∥∥

�p(Sβ ,r),�p(Sα,t ) = sup
x∈�p(Sβ ,r)

‖	kx‖�p(Sα,t )

‖x‖�p(Sβ ,r)
= sup

x∈�p(Sβ ,r)

‖Sα,t	kx‖�p

‖Sβ ,rx‖�p

= sup
Sβ ,rx∈�p

‖Rα,βSβ ,rx‖�p

‖Sβ ,rx‖�p
= sup

y∈�p

‖Rα,βy‖�p

‖y‖�p

=
∥
∥Rα,β∥

∥
�p

=
�(α + 1)�(β + 1/p∗)
�(β + 1)�(α + 1/p∗)

.

Now, by letting k = r = t = 0 we find the desired result. �

3 Two special cases
The sequence spaces �p(Sn,m) and �∞(Sn,m) are introduced as the set of all sequences whose
Sn,m-transforms are in the spaces �p and �∞, respectively; that is,

�p
(
Sn,m)

=

{

u = (uj) ∈ ω :
∞∑

j=0

∣
∣
∣
∣
∣

j∑

k=0

sn,m
jk uk

∣
∣
∣
∣
∣

p

< ∞
}

and

�∞
(
Sn,m)

=

{

u = (uj) ∈ ω : sup
j

∣
∣
∣
∣
∣

j∑

k=0

sn,m
jk uk

∣
∣
∣
∣
∣

< ∞
}

.

Now, regarding the double reaction of the matrix Sn,m there are two separate sequence
spaces �p(�n,m) and �p(�n,m) that have different bases and Köthe duals. In this section, we
intend to investigate both these spaces.

3.1 Fractional Cesàro spaces
By assuming n ≥ m the matrix Sn,m = �n,m and the associated sequence spaces �p(�n,m)
and �∞(�n,m) are introduced routinely as the set of all sequences whose �n,m-transforms
are in the spaces �p and �∞, respectively; that is,

�p
(
�n,m)

=

{

u = (uj) ∈ ω :
∞∑

j=0

∣
∣
∣
∣
∣

1
(n+j

j
)

j∑

k=0

(
n – m + j – k – 1

j – k

)

uk

∣
∣
∣
∣
∣

p

< ∞
}

and

�∞
(
�n,m)

=

{

u = (uj) ∈ ω : sup
j

∣
∣
∣
∣
∣

1
(n+j

j
)

j∑

k=0

(
n – m + j – k – 1

j – k

)

uk

∣
∣
∣
∣
∣

< ∞
}

.
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Theorem 3.1 The spaces �p(�n,m) and �∞(�n,m) are Banach spaces with the norms

‖u‖�p(�n,m) =

( ∞∑

j=0

∣
∣
∣
∣
∣

1
(n+j

j
)

j∑

k=0

(
n – m + j – k – 1

j – k

)

uk

∣
∣
∣
∣
∣

p)1/p

and

‖u‖�∞(�n,m) = sup
j

∣
∣
∣
∣
∣

1
(n+j

j
)

j∑

k=0

(
n – m + j – k – 1

j – k

)

uk

∣
∣
∣
∣
∣
,

respectively.

Proof We omit the proof which is a routine verification. �

Remark 3.2 By choosing m = 0 in the above theorem, we obtain the Cesàro sequence
spaces �p(Cn) = Cn

p and �∞(Cn) = Cn∞, defined in [7], which are Banach spaces endowed
with the norms

‖u‖Cn
p =

( ∞∑

j=0

∣
∣
∣
∣
∣

1
(n+j

j
)

j∑

k=0

(
n + j – k – 1

j – k

)

uk

∣
∣
∣
∣
∣

p)1/p

and

‖u‖Cn∞ = sup
j

∣
∣
∣
∣
∣

1
(n+j

j
)

j∑

k=0

(
n + j – k – 1

j – k

)

uk

∣
∣
∣
∣
∣
,

respectively.

Theorem 3.3 Define the sequence (b(k)) = (b(k)
j ) for each k ∈N by

(
b(k))

j =

⎧
⎨

⎩

(–1)j–k(n–m
j–k

)(n+k
k

)
, j ≥ k,

0, j < k,
(j ∈N0).

Then the sequence (b(k)) is a basis for the space �p(�n,m), and each u ∈ �p(�n,m) has a unique
representation of the form u =

∑
k(�n,mu)kb(k).

Proof Let A be a triangle. By Theorem 2.3 of Jarrah and Malkowsky [28], the matrix do-
main UA has a basis if and only if the normed sequence space U has a basis. Hence the
proof follows immediately. �

We use the following lemma to compute the dual spaces. By N , we denote the family of
all finite subsets of N.

Lemma 3.4 ([29]) The following statements hold:
(i) A = (ajk) ∈ (�1,�1) if and only if

sup
k

∞∑

j=0

|ajk| < ∞.
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(ii) A = (ajk) ∈ (�p,�1) if and only if

∞∑

k=0

( ∞∑

j=0

|ajk|
)p∗

< ∞,

where 1 < p < ∞.
(iii) A = (ajk) ∈ (�∞,�1) if and only if

sup
K∈N

∞∑

j=0

∣
∣
∣
∣

∑

k∈K

ajk

∣
∣
∣
∣ < ∞.

(iv) A = (ajk) ∈ (�1, c) if and only if

lim
j→∞ ajk exists for each k ∈N (3.1)

and

sup
jk

|ajk| < ∞. (3.2)

(v) A = (ajk) ∈ (�p, c) if and only if (3.1) holds and

sup
j

∞∑

k=0

|ajk|p∗ < ∞, (3.3)

where 1 < p < ∞.
(vi) A = (ajk) ∈ (�∞, c) if and only if (3.1) holds and

lim
j→∞

∞∑

k=0

|ajk| =
∞∑

k=0

∣
∣
∣ lim
j→∞ ajk

∣
∣
∣.

(vii) A = (ajk) ∈ (�1,�∞) if and only if (3.2) holds.
(viii) A = (ajk) ∈ (�p,�∞) if and only if (3.3) holds, where 1 < p < ∞.
(ix) A = (ajk) ∈ (�∞,�∞) if and only if

sup
j

∞∑

k=0

|ajk| < ∞.

Dual spaces. The α-dual of a sequence space U consists of all sequences a = (ak) ∈ ω

such that au = (akuk) ∈ �1 for all u = (uk) ∈ U .

Theorem 3.5 The α-duals of the spaces �1(�n,m), �p(�n,m) (1 < p < ∞) and �∞(�n,m) are
as follows:

[
�1(�n,m)

]α :=

{

a = (aj) ∈ ω : sup
k

∞∑

j=0

∣
∣
∣
∣(–1)j–k

(
n – m
j – k

)(
n + k

k

)

aj

∣
∣
∣
∣ < ∞

}

,
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[
�p(�n,m)

]α :=

{

a = (aj) ∈ ω :
∞∑

k=0

( ∞∑

j=0

∣
∣
∣
∣(–1)j–k

(
n – m
j – k

)(
n + k

k

)

aj

∣
∣
∣
∣

)p∗
< ∞

}

,

and

[
�∞(�n,m)

]α :=

{

a = (aj) ∈ ω : sup
K∈N

∞∑

j=0

∣
∣
∣
∣

∑

k∈K

(–1)j–k
(

n – m
j – k

)(
n + k

k

)

aj

∣
∣
∣
∣ < ∞

}

.

Proof Let a = (aj) ∈ ω and define the matrix D = (djk) as

djk =

⎧
⎨

⎩

(–1)j–k(n–m
j–k

)(n+k
k

)
aj, 0 ≤ k ≤ j,

0, otherwise.

For any u = (uj) ∈ �p(�n,m) (1 < p < ∞), we have ajuj = (Dv)j for all j ∈N. Thus au ∈ �1 with
u ∈ �p(�n,m) if and only if Dv ∈ �1 with v ∈ �p. Hence, we conclude that a ∈ [�p(�n,m)]α if
and only if D ∈ (�p,�1). This completes the proof by part (ii) of Lemma 3.4. The other cases
can be proved similarly. �

The β-dual of a sequence space U consists of all sequences a = (ak) ∈ ω such that
(
∑n

k=1 akuk) ∈ c for all u = (uk) ∈ U .

Theorem 3.6 Let us define the following sets:

P1 :=

{

a = (ak) ∈ ω : lim
j→∞

j∑

i=k

(–1)i–k
(

n – m
i – k

)(
n + k

k

)

ai exists for each k ∈ N

}

,

P2 :=

{

a = (ak) ∈ ω : sup
jk

∣
∣
∣
∣
∣

j∑

i=k

(–1)i–k
(

n – m
i – k

)(
n + k

k

)

ai

∣
∣
∣
∣
∣

< ∞
}

,

P3 :=

{

a = (ak) ∈ ω : sup
j

∞∑

k=0

∣
∣
∣
∣
∣

j∑

i=k

(–1)i–k
(

n – m
i – k

)(
n + k

k

)

ai

∣
∣
∣
∣
∣

p∗
< ∞

}

,

and

P4 :=

{

a = (ak) ∈ ω :

lim
j→∞

∞∑

k=0

∣
∣
∣
∣
∣

j∑

i=k

(–1)i–k
(

n – m
i – k

)(
n + k

k

)

ai

∣
∣
∣
∣
∣

=
∞∑

k=0

∣
∣
∣
∣
∣

∞∑

i=k

(–1)i–k
(

n – m
i – k

)(
n + k

k

)

ai

∣
∣
∣
∣
∣

}

.

Then [�1(�n,m)]β = P1 ∩ P2, [�p(�n,m)]β = P1 ∩ P3 (1 < p < ∞) and [�∞(�n,m)]β = P1 ∩ P4

hold.

Proof a = (ak) ∈ [�1(�n,m)]β if and only if the series
∑∞

k=0 akuk is convergent for all u =
(uk) ∈ �1(�n,m). From the equality

j∑

k=0

akuk =
j∑

k=0

ak

( k∑

i=0

(–1)k–i
(

n – m
k – i

)(
n + i

i

)

vi

)
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=
j∑

k=0

( j∑

i=k

(–1)i–k
(

n – m
i – k

)(
n + k

k

)

ai

)

vk ,

it follows that a = (ak) ∈ [�1(�n,m)]β if and only if the matrix P = (pjk) is in (�1, c), where

pjk =

⎧
⎨

⎩

∑j
i=k(–1)i–k(n–m

i–k
)(n+k

k
)
ai, 0 ≤ k ≤ j,

0, otherwise.

Hence, by part (iv) of Lemma 3.4 we conclude that

lim
j→∞

n∑

i=k

(–1)i–k
(

n – m
i – k

)(
n + k

k

)

ai exists for each k ∈N

and

sup
jk

∣
∣
∣
∣
∣

j∑

i=k

(–1)i–k
(

n – m
i – k

)(
n + k

k

)

ai

∣
∣
∣
∣
∣

< ∞,

which means a = (ak) ∈ P1 ∩ P2 and so we have [�1(�n,m)]β = P1 ∩ P2. The other cases can
be proved similarly. �

The γ -dual of a sequence space U consists of all sequences a = (ak) ∈ ω such that
(
∑n

k=1 akuk) ∈ �∞ for all u = (uk) ∈ U .

Theorem 3.7 The γ -duals of the spaces �1(�n,m), �p(�n,m) (1 < p < ∞) and �∞(�n,m) are
as follows:

[
�1(�n,m)

]γ :=

{

a = (ak) ∈ ω : sup
jk

∣
∣
∣
∣
∣

j∑

i=k

(–1)i–k
(

n – m
i – k

)(
n + k

k

)

ai

∣
∣
∣
∣
∣

< ∞
}

,

[
�p(�n,m)

]γ :=

{

a = (ak) ∈ ω : sup
j

∞∑

k=0

∣
∣
∣
∣
∣

j∑

i=k

(–1)i–k
(

n – m
i – k

)(
n + k

k

)

ai

∣
∣
∣
∣
∣

p∗
< ∞

}

,

and

[
�∞(�n,m)

]γ :=

{

a = (ak) ∈ ω : sup
j

∞∑

k=0

∣
∣
∣
∣
∣

j∑

i=k

(–1)i–k
(

n – m
i – k

)(
n + k

k

)

ai

∣
∣
∣
∣
∣

< ∞
}

.

Proof By using the same technique as in the proof of Theorem 3.6, we obtain the gamma
duals. �

3.2 Fractional difference spaces
The sequence spaces �p(�n,m) (1 < p < ∞) and �∞(�n,m) are introduced similarly by

�p
(
�n,m)

=

{

u = (uj) ∈ ω :
∞∑

j=0

∣
∣
∣
∣
∣

1
(n+j

j
)

j∑

k=0

(–1)j–k
(

m – n
j – k

)

uk

∣
∣
∣
∣
∣

p

< ∞
}
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and

�∞
(
�n,m)

=

{

u = (uj) ∈ ω : sup
j

∣
∣
∣
∣
∣

1
(n+j

j
)

j∑

k=0

(–1)j–k
(

m – n
j – k

)

uk

∣
∣
∣
∣
∣

< ∞
}

.

Theorem 3.8 The spaces �p(�n,m) and �∞(�n,m) are Banach spaces with the norms

‖u‖�p(�n,m) =

( ∞∑

j=0

∣
∣
∣
∣
∣

1
(n+j

j
)

j∑

k=0

(–1)j–k
(

m – n
j – k

)

uk

∣
∣
∣
∣
∣

p)1/p

and

‖u‖�∞(�n,m) = sup
j

∣
∣
∣
∣
∣

1
(n+j

j
)

j∑

k=0

(–1)j–k
(

m – n
j – k

)

uk

∣
∣
∣
∣
∣
,

respectively.

Proof We omit the proof, which is a routine verification. �

Theorem 3.9 Define the sequence (d(k)) = (d(k)
j ) for each k ∈N by

(
d(k))

j =

⎧
⎨

⎩

(m–n+j–k–1
j–k

)(n+k
k

)
, j ≥ k,

0, j < k,
(j ∈ N0).

Then the sequence (d(k)) is a basis for the space �p(�n,m), and each u ∈ �p(�n,m) has a
unique representation of the form u =

∑
k(�n,mu)kd(k).

Theorem 3.10 The α-duals of the spaces �1(�n,m), �p(�n,m) (1 < p < ∞) and �∞(�n,m) are
as follows:

[
�1(�n,m)

]α :=

{

a = (aj) ∈ ω : sup
k

∞∑

j=0

∣
∣
∣
∣

(
m – n + j – k – 1

j – k

)(
n + k

k

)

aj

∣
∣
∣
∣ < ∞

}

,

[
�p(�n,m)

]α :=

{

a = (aj) ∈ ω :
∞∑

k=0

( ∞∑

j=0

∣
∣
∣
∣

(
m – n + j – k – 1

j – k

)(
n + k

k

)

aj

∣
∣
∣
∣

)p∗
< ∞

}

,

and

[
�∞(�n,m)

]α :=

{

a = (aj) ∈ ω : sup
K∈N

∞∑

j=0

∣
∣
∣
∣

∑

k∈K

(
m – n + j – k – 1

j – k

)(
n + k

k

)

aj

∣
∣
∣
∣ < ∞

}

.

Proof The proof is similar to the proof of Theorem 3.5. �

Theorem 3.11 Let us define the following sets:

Q1 :=

{

a = (ak) ∈ ω : lim
j→∞

j∑

i=k

(
m – n + i – k – 1

i – k

)(
n + k

k

)

ai exists for each k ∈ N

}

,
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Q2 :=

{

a = (ak) ∈ ω : sup
jk

∣
∣
∣
∣
∣

j∑

i=k

(
m – n + i – k – 1

i – k

)(
n + k

k

)

ai

∣
∣
∣
∣
∣

< ∞
}

,

Q3 :=

{

a = (ak) ∈ ω : sup
j

∞∑

k=0

∣
∣
∣
∣
∣

j∑

i=k

(
m – n + i – k – 1

i – k

)(
n + k

k

)

ai

∣
∣
∣
∣
∣

p∗
< ∞

}

,

and

Q4 :=

{

a = (ak) ∈ ω :

lim
j→∞

∞∑

k=0

∣
∣
∣
∣
∣

j∑

i=k

(
m – n + i – k – 1

i – k

)(
n + k

k

)

ai

∣
∣
∣
∣
∣

=
∞∑

k=0

∣
∣
∣
∣
∣

∞∑

i=k

(
m – n + i – k – 1

i – k

)(
n + k

k

)

ai

∣
∣
∣
∣
∣

}

.

Then [�1(�n,m)]β = Q1 ∩ Q2, [�p(�n,m)]β = Q1 ∩ Q3 (1 < p < ∞) and [�∞(�n,m)]β = Q1 ∩ Q4

hold.

Proof The proof is similar to the proof of Theorem 3.6. �

Theorem 3.12 The γ -duals of the spaces �1(�n,m), �p(�n,m) (1 < p < ∞) and �∞(�n,m)
are as follows:

[
�1(�n,m)

]γ :=

{

a = (ak) ∈ ω : sup
jk

∣
∣
∣
∣
∣

j∑

i=k

(
m – n + i – k – 1

i – k

)(
n + k

k

)

ai

∣
∣
∣
∣
∣

< ∞
}

,

[
�p(�n,m)

]γ :=

{

a = (ak) ∈ ω : sup
j

∞∑

k=0

∣
∣
∣
∣
∣

j∑

i=k

(
m – n + i – k – 1

i – k

)(
n + k

k

)

ai

∣
∣
∣
∣
∣

p∗
< ∞

}

,

and

[
�∞(�n,m)

]γ :=

{

a = (ak) ∈ ω : sup
j

∞∑

k=0

∣
∣
∣
∣
∣

j∑

i=k

(
m – n + i – k – 1

i – k

)(
n + k

k

)

ai

∣
∣
∣
∣
∣

< ∞
}

.

Proof The proof is similar to the proof of Theorem 3.7. �
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5. İlkhan, M., Roopaei, H.: The Cesàro-Gamma operator and its associated sequence space. Adv. Oper. Theory 45(6)

(2021)
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