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Abstract
In this paper, we propose a new iterative algorithm for solving the multiple-sets split
feasibility problem (MSSFP for short) and the split equality fixed point problem (SEFPP
for short) with firmly quasi-nonexpansive operators or nonexpansive operators in real
Hilbert spaces. Under mild conditions, we prove strong convergence theorems for
the algorithm by using the projection method and the properties of projection
operators. The result improves and extends the corresponding ones announced by
some others in the earlier and recent literature.
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1 Introduction and preliminaries
Let H1, H2, and H3 be three real Hilbert spaces with inner product 〈·, ·〉 and induce norm
‖ · ‖. We use Fix(T) to denote the set of fixed points of a mapping T.

The split feasibility problem (SFP) in finite-dimensional Hilbert spaces was first intro-
duced by Censor and Elfving [6] for modeling inverse problems which arise from phase
retrievals and in medical image reconstruction [3]. The SFP can be formulated as finding
a point x∗ in R

n with the property

x∗ ∈ C and Ax∗ ∈ Q, (1.1)

where C and Q are nonempty closed convex subsets of Rn and R
m, respectively, and A is

an m×n matrix. SFP (1.1) has recently been studied in a more general space. For example,
Xu [21] studied it in an infinite dimensional Hilbert space.

The SFP has been widely studied in recent years. Recently, it has been found that it
can also be used to model the intensity-modulated radiation therapy; see, e.g., [7–11].
One of the well-known methods for solving the SFP is Byrne’s CQ algorithm [3, 4], which
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generated a sequence {xn} by the following iterative algorithm:

xn+1 = PC
(
xn – τnA∗(I – PQ)Axn

)
, (1.2)

where C and Q are nonempty closed convex subsets of H1 and H2 and the step size τn is
located in the interval (0, 2/‖A‖2), A∗ is the adjoint of A, PC and PQ are the metric projec-
tions onto C and Q.

The multiple-set split feasibility problem (MSSFP), which has functions in the inverse
problem of intensity-modulated radiation therapy (see [18]), has recently been presented
in [5] and is formulated as follows:

find a point x ∈ C :=
r1⋂

i=1

Ci such that Ax ∈ Q :=
r2⋂

j=1

Qj, (1.3)

where r1, r2 ∈ N , C1, . . . , Cr1 are closed convex subsets of H1, Q1, . . . , Qr2 are closed convex
subsets of H2, and A : H1 → H2 is a bounded linear operator.

Assuming consistency of the MSSFP, Censor et al. [5] introduced the following projec-
tion algorithm:

xn+1 = P�

(

xn – γ

( r1∑

i=1

αi(xn – PCi xn) +
r2∑

j=1

βjA∗(I – PQj )Axn

))

, n ≥ 0, (1.4)

where 0 < γ < 2
L with L =

∑r1
i=1 αi + ρ(A∗A)

∑r2
j=1 βj and ρ(A∗A) is the spectral radius of

A∗A. They proved convergence of algorithm (1.4) in the case where both H1andH2 are
finite dimensional.

Moudafi [17] came up with the split equality problem (SEP) as follows:

find x ∈ C, y ∈ Q, such that Ax = By, (1.5)

where A : H1 → H3, B : H2 → H3 are two bounded linear operators, C ⊂ H1, Q ⊂ H2 are
two nonempty closed convex sets. Let B = I , it is easy to see that the SFP is the special
case of the SEP. The SEP has already been applied in game theory (see [1]) and intensity-
modulated radiation therapy [5, 12]. Furthermore, the author considered the following
scheme for solving the SEP:

⎧
⎨

⎩
xk+1 = PCk (xk – γ A∗(Axk – Byk)),

yk+1 = PQk (yk + γ B∗(Axk+1 – Byk)).
(1.6)

He obtained a weak convergence of (1.6) under certain appropriate assumptions on the
parameters.

Shi [19] proposed a modification of Moudafi’s ACQA algorithms to solve the SEP and
proved its strong convergence:

wn+1 = PS
{

(1 – αn)
[
I – γ G∗G

]
wn

}
, (1.7)
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i.e.,

⎧
⎨

⎩
xk+1 = PC{(1 – αk)xk – γ A∗(Axk – Byk)}, n ≥ 0,

yk+1 = PQ{(1 – αk)yk + γ B∗(Axk – Byk)}, n ≥ 0.
(1.8)

Recently, Moudafi [16] introduced the following split equality fixed point problem
(SEFPP):

find x ∈ C := F(U), y ∈ Q := F(T) such that Ax = By, (1.9)

where U : H1 → H1 and T : H2 → H2 are two firmly quasi-nonexpansive operators. The
SEFPP has been proved very useful in decomposition methods for PDEs as well as in game
theory and intensity-modulated radiation therapy. For solving SEFPP (1.9), he proposed
the following iterative algorithm:

⎧
⎨

⎩
xk+1 = U(xk – γkA∗(Axk – Byk)),

yk+1 = T(yk + γkB∗(Axk+1 – Byk)).
(1.10)

Further, he proved a weak convergence theorem for SEFPP (1.9) under some mild restric-
tions on the parameters.

In this paper, we introduce a multiple-sets split feasibility problem (MSSFP) and a split
equality fixed point problem (SEFPP), the MSSFP is to find a pair (x, y) such that

(x, y) ∈ C × Q :=
t1⋂

i=1

Ci ×
r1⋂

j=1

Qj and (A1x, B1y) ∈ D × � :=
t2⋂

i=1

Di ×
r2⋂

j=1

�j. (1.11)

The SEFPP is to find a pair (x, y) such that

x ∈ F(T1), y ∈ F(T2) and A2x = B2y, (1.12)

where T1, T2 are two firmly quasi-nonexpansive operators or nonexpansive operators, and
A1 : H1 → H3, A2 : H1 → H3, B1 : H2 → H3, B2 : H2 → H3 are four bounded linear op-
erators. Ci ∈ H1, i = 1, 2, . . . , t1; Qj ∈ H2, j = 1, 2, . . . , r1; Di ∈ H3, i = 1, 2, . . . , t2;�j ∈ H3, j =
1, 2, . . . , r2, are nonempty closed convex subsets.

Guan [15] proposed a new iterative scheme to solve the above problems:

xk+1 = T1

[

xk – λk

t1∑

i=1

αi(xk – PCi,k xk) – ξk

t2∑

i=1

βiA∗
1(A1xk – PDi,k A1xn)

– τA∗
2(A2xk – B2yk)

]

(1.13)
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and

yk+1 = T2

[

yk – σk

r1∑

j=1

γj(yk – PQj,k yk) – ζk

r2∑

j=1

δjB∗
1(B1yk – P�j,k B1yk)

– τB∗
2(B2yn – A2xk+1)

]

. (1.14)

Further, he proved a weak convergence theorem under some mild restrictions on the pa-
rameters.

Inspired by the results, we propose the following questions.

Question 1.1 Can we modify iterative scheme (1.8) to a more general iterative scheme for
solving a multiple-sets split feasibility problem and a split equality fixed point problem
instead of solving the split equality problem?

Question 1.2 Can we obtain a strong convergence by the iterative scheme for MSSFP and
SEFPP?

The purpose of this paper is to construct a new algorithm for MSSFP and SEFPP so that
strong convergence is guaranteed. The paper is organized as follows. In Sect. 2, we denote
the concept of minimal norm solution of MSSFP and SEFPP. Using Tychonov regulariza-
tion, we obtain a net of solutions for some minimization problem approximating such min-
imal norm solutions (see Theorem 2.5). In Sect. 3, we introduce an algorithm and prove
the strong convergence of the algorithm, more importantly, its limit is the minimum-norm
solution of MSSFP and SEFPP (see Theorem 3.2).

Throughout the rest of this paper, let I denote the identity operator on a Hilbert space
H , and let 
f denote the gradient of the function f : H → R.

Definition 1.3 ([21]) An operator T on a Hilbert space H is nonexpansive if, for each x
and y in H ,

‖Tx – Ty‖ ≤ ‖x – y‖.

T is said to be strictly nonexpansive if, for each x and y in H ,

‖Tx – Ty‖ < ‖x – y‖.

An operator T on a Hilbert space H is firmly nonexpansive if, for each x and y in H ,

〈x – y, Tx – Ty〉 ≥ ‖Tx – Ty‖2.

T is firmly nonexpansive if 2T – I is nonexpansive, Equivalently, T = (I + S)/2, where S :
H → H is nonexpansive.

T is said to be averaged if there exist 0 < α < 1 and a nonexpansive operator N such that

T = (1 – α)I + αN .
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T is said to be quasi-nonexpansive if F(T) �= ∅ for each x in H , q in F(T),

‖Tx – q‖ ≤ ‖x – q‖.

T is said to be strictly quasi-nonexpansive if F(T) �= ∅ for each x in H , q in F(T),

‖Tx – q‖ < ‖x – q‖.

T is said to be firmly quasi-nonexpansive if F(T) �= ∅ for each x in H , q in F(T),

‖Tx – q‖2 ≤ ‖x – q‖2 – ‖x – Tx‖2.

Let PS denote the projection from H onto a nonempty closed convex subset S of H ; that
is,

PS(w) =
{

x ∈ S, min
x∈S

‖x – w‖
}

.

It is well known that PS(w) is characterized by the inequality

〈
w – PS(w), x – PS(w)

〉 ≤ 0, ∀x ∈ S,

PSand(I – PS) are nonexpansive, averaged, and firmly nonexpansive.
Next we should collect some elementary facts which will be used in the proofs of our

main results.

Lemma 1.4 ([13, 14]) Let X be a Banach space, C be a closed convex subset of X, and
T : C → C be a nonexpansive mapping with Fix(T) �= ∅. If {xn} is a sequence in C weakly
converging to x and if {(I – T)xn} converges strongly to y, then (I – T)x = y.

Lemma 1.5 ([2]) Let {sn} be a sequence of nonnegative real numbers, {αn} be a sequence of
real numbers in [0,1] with

∑∞
n=1 αn = ∞, {un} be a sequence of nonnegative real numbers

with
∑∞

n=1 un < ∞, and {tn} be a sequence of real numbers with lim supn tn ≤ 0. Suppose
that

sn+1 = (1 – αn)sn + αntn + un, ∀n ∈ N .

Then limn→∞ sn = 0.

Lemma 1.6 ([20]) Let {wn}, {zn} be bounded sequences in a Banach space, and let {βn} be
a sequence in [0,1] which satisfies the following condition:

0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1.

Suppose that wn+1 = (1 – βn)wn + βnzn and lim supn→∞ ‖zn+1 – zn‖ – ‖wn+1 – wn‖ ≤ 0, then
limn→∞ ‖zn – wn‖ = 0.
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Lemma 1.7 ([4]) Let f be a convex and differentiable function, and let C be a closed convex
subset of H. Then x ∈ C is a solution of the problem

min
x∈C

f (x)

if and only if x ∈ C satisfies the following optimality condition:

〈
f (x), v – x
〉 ≥ 0, ∀v ∈ C.

Moreover, if f is, in addition, strictly convex and coercive, then the minimization problem
has a unique solution.

Lemma 1.8 ([4]) Let A, B be averaged operators and suppose that Fix(A) ∩ Fix(B) is
nonempty. Then Fix(A) ∩ Fix(B) = Fix(AB) = Fix(BA).

2 Minimum-norm solution of SEFPP and MSSFP
In this section, we define the concept of the minimal norm solution of MSSFP (1.11) and
SEFPP (1.12). Using Tychonov regularization, we obtain a net of solutions for some mini-
mization problems approximating such minimal norm solutions.

We use � to denote the solution set of SEFPP and MSSFP, i.e.,

� =

{

(x, y) ∈ H1 × H2, x ∈
t1⋂

i=1

Ci, y ∈
r1⋂

j=1

Qj, A1x ∈
t2⋂

i=1

Di, B1y ∈
r2⋂

j=1

�j, A2x = B2y,

x ∈ F(T1), y ∈ F(T2)

}

and assume the consistency of SEFPP and MSSFP, so that � is closed, convex, and
nonempty.

We aim to propose a new iterative algorithm for solving MSSFP (1.11) and SEFPP (1.12).
Let the sets Ci, Qi, Di,�i be defined as

Ci =
{

x ∈ H1 : ci(x) ≤ 0
}

, Qj =
{

y ∈ H2 : qj(y) ≤ 0
}

(2.1)

and

Di =
{

u ∈ H1 : di(u) ≤ 0
}

, �j =
{

v ∈ H2 : φj(v) ≤ 0
}

, (2.2)

where ci : H1 → R, i = 1, 2, . . . , t1; qi : H2 → R, j = 1, 2, . . . , r1; di : H3 → R, i = 1, 2, . . . , t2; and
φi : H3 →R, j = 1, 2, . . . , r2, are convex functions.

In order to solve MSSFP (1.11) and SEFPP (1.12), we consider the following minimiza-
tion problem:

min
(x,y)∈Fix(T1)×Fix(T2)

h(x, y), (2.3)

where

h(x, y) = f (x) + g(y) +
1
2
‖A2x – B2y‖2,
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f (x) =
1
2

t1∑

i=1

αi
∥∥(I – PCi )x

∥∥2 +
1
2

t2∑

i=1

βi
∥∥(I – PDi )A1x

∥∥2,

g(y) =
1
2

r1∑

j=1

γj
∥∥(I – PQj )y

∥∥2 +
1
2

r2∑

j=1

δj
∥∥(I – P�j )B1y

∥∥2,

here
∑t1

i=1 αi =
∑t2

i=1 βi =
∑r1

j=1 γj =
∑r2

j=1 δj = 1. The minimization problem is in general ill-
posed. A classical way to deal with such a possibly ill-posed problem is the well-known
Tychonov regularization, which approximates a solution of problem (2.3) by the unique
minimizer of the regularized problem

min
(x,y)∈Fix(T1)×Fix(T2)

hα(x, y) = f (x) + g(y) +
1
2
‖A2x – B2y‖2 +

1
2
α
(‖x‖2 + ‖y‖2), (2.4)

where α > 0 is the regularization parameter. Denote by wα = (xα , yα) the unique solution
of (2.4).

Lemma 2.1 For the sake of convenience, let H = H1 × H2, define:

M :=

(∑t1
i=1 αi(I – PCi ) 0

0
∑r1

j=1 γj(I – PQj )

)

,

N :=

(∑t2
i=1 βiA∗

1(I – PDi )A1 0
0

∑r2
j=1 δjB∗

1(I – P�j )B1

)

,

and

G := (A2, –B2), G∗G :=

(
A∗

2A2 –A∗
2B2

–B∗
2A2 B∗

2B2

)

,

where G : H → H3 and G∗G : H → H , then M,λ1N and λ2G∗G are firmly nonexpansive
operators, where 0 < λ1 < 1/(max{ρ(A∗

1A1),ρ(B∗
1B1)}) and 0 < λ2 < 1/ρ(G∗G).

Proof By (I – PS) and PS are firmly nonexpansive operators, x = (x1, x2) ∈ H1 × H2, y =
(y1, y2) ∈ H1 × H2.‖Mx – My‖2 = ‖∑t1

i=1 αi(I – PCi )x1 –
∑t1

i=1 αi(I – PCi )y1‖2 + ‖∑r1
j=1 γj(I –

PQj )x2 –
∑r1

j=1 γj(I – PQj )y2‖2 ≤ 〈x1 – y1,
∑t1

i=1 αi(I – PCi )x1 –
∑t1

i=1 αi(I – PCi )y1〉 + 〈x2 –
y2,

∑r1
j=1 γj(I – PQj )x2 –

∑r1
j=1 γj(I – PQj )y2〉 = 〈x – y, Mx – My〉, so M is a firmly nonexpansive

operator. Similarly, we can prove that λ1N and λ2G∗G are firmly nonexpansive opera-
tors. �

Proposition 2.2 Let T = T1 × T2, which is mentioned in (1.12), w = (x, y). For any α > 0,
the solution wα = (xα , yα) of (2.4) is uniquely defined. Then wα = (xα , yα) is characterized by
the inequality

〈
h(wα) + αwα , w – wα

〉 ≥ 0, ∀w ∈ Fix(T),

i.e.,
〈 t1∑

i=1

αi(I – PCi )xα +
t2∑

i=1

βiA∗
1(I – PDi )A1xα + A∗

2(A2xα – B2yα) + αxα , x – xα

〉

≥ 0,
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∀x ∈ Fix(T1);

and
〈 r1∑

j=1

γj(I – PQj )yα +
r2∑

j=1

δjB∗
1(I – P�j )B1yα – B∗

2(A2xα – B2yα) + αyα , y – yα

〉

≥ 0,

∀x ∈ Fix(T2).

Proof It is well known that h(x, y) = 1
2
∑t1

i=1 αi‖(I – PCi )x‖2 + 1
2
∑t2

i=1 βi‖(I – PDi )A1x‖2 +
1
2
∑r1

j=1 γj‖(I – PQj )y‖2 + 1
2
∑r2

j=1 δj‖(I – P�j )B1y‖2 + 1
2‖A2x – B2y‖2 is convex and differen-

tiable with gradient 
h(w) = Mw + Nw + G∗Gw, hα(w) = h(w) + 1
2α‖w‖2. We can get that

hα is strictly convex, coercive, and differentiable with gradient


hα(w) = Mw + Nw + G∗Gw + αw.

It follows from Lemma 1.7 that wα is characterized by the inequality

〈
h(wα) + αwα , w – wα

〉 ≥ 0, ∀w ∈ Fix(T). (2.5)

We can get that

〈 t1∑

i=1

αi(I – PCi )x +
t2∑

i=1

βiA∗
1(I – PDi )A1x + A∗

2(Axα – Byα) + αxα , x – xα

〉

≥ 0,

∀x ∈ Fix(T1);

and
〈 r1∑

j=1

γj(I – PQj )y +
r2∑

j=1

δjB∗
1(I – P�j )B1y – B∗

2(Axα – Byα) + αyα , y – yα

〉

≥ 0,

∀x ∈ Fix(T2). �

Definition 2.3 An element w̄ = (x̄, ȳ) ∈ � is said to be the minimalnormsolution of MSSFP
(1.11) and SEFPP (1.12) if ‖w̄‖ = infw∈� ‖w‖.

The next result collects some useful properties of {wα}, the unique solution of (2.4).

Proposition 2.4 Let wα be given as the unique solution of (2.4) for any sequence {αn} such
that limn αn = 0, let wαn be abbreviated as wn. Then the following assertions hold:

(i) ‖wα‖ is decreasing for α ∈ (0,∞);
(ii) α �→ wα defines a continuous curve from (0,∞) to H.

Proof Let α > β > 0; since wα and wβ are the unique minimizers of hα and hβ , wα =
(xα , yα), wβ = (xβ , yβ ), respectively, we can get that

hα(wα) = h(wα) +
1
2
α‖wα‖2 ≤ h(wβ ) +

1
2
α‖wβ‖2 = hα(wβ )
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and

hβ (wβ ) = h(wβ ) +
1
2
β‖wβ‖2 ≤ h(wα) +

1
2
β‖wα‖2 = hβ (wα).

Hence we can obtain that ‖wα‖ ≤ ‖wβ‖. That is to say, ‖wα‖ is decreasing for α ∈ (0,∞).
By Proposition 2.2, we have

〈
h(wα) + αwα , wβ – wα

〉 ≥ 0

and

〈
h(wβ ) + βwβ , wα – wβ

〉 ≥ 0.

It follows that

〈wα – wβ ,αwα – βwβ〉 ≤ 〈
wα – wβ ,
h(wβ ) – 
h(wα)

〉
.

Then
〈
wα – wβ ,
h(wβ ) – 
h(wα)

〉

= 〈wα – wβ , Mwβ + Nwβ – Mwα – Nwα〉
+

〈
wα – wβ , G∗G(wβ – wα)

〉

and

〈
wα – wβ , G∗G(wβ – wα)

〉 ≤ 0. (2.6)

Then
〈

xα – xβ ,
t1∑

i=1

αi(I – PCi )xβ –
t1∑

i=1

αi(I – PCi )xα

〉

≤ –
t1∑

i=1

αi
∥∥(I – PCi )xα – (I – PCi )xβ

∥∥2 ≤ 0, (2.7)

〈

xα – xβ ,
t2∑

i=1

βiA∗
1(I – PDi )A1xβ –

t2∑

i=1

βiA∗
1(I – PDi )A1xα

〉

=
t2∑

i=1

βi
〈
A1xα – A1xβ , (I – PDi )A1xβ – (I – PDi )A1xα

〉

≤ –
t2∑

i=1

βi
∥
∥(I – PDi )A1xα – (I – PDi )A1xβ

∥
∥2 ≤ 0, (2.8)

〈

yα – yβ ,
r1∑

j=1

γj(I – PQj )yβ –
r1∑

j=1

γj(I – PQj )yα

〉

≤ –
r1∑

j=1

γj
∥
∥(I – PQj )yα – (I – PQj )yβ

∥
∥2 ≤ 0, (2.9)
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〈

yα – yβ ,
r2∑

j=1

δjB∗
1(I – P�j )B1yβ –

r2∑

j=1

δjB∗
1(I – P�j )B1yα

〉

=
r2∑

j=1

δj
〈
B1yα – B1yβ , (I – P�j )B1yβ – (I – P�j )B1yα

〉

≤ –
r2∑

j=1

δj
∥
∥(I – P�j )B1yα – (I – P�j )B1yβ

∥
∥2 ≤ 0. (2.10)

By (2.6)–(2.10), we can get

〈
wα – wβ ,
h(wβ ) – 
h(wα)

〉 ≤ 0.

Hence

〈wα – wβ ,αwα – βwβ〉 ≤ 0

α‖wα – wβ‖2 ≤ 〈
wα – wβ , (β – α)wβ

〉
.

It turns out that

‖wα – wβ‖ ≤ |α – β|/α‖wβ‖.

Thus α �→ wα defines a continuous curve from (0,∞) to H. �

Theorem 2.5 Let wα be given as the unique solution of (2.4). Then wα converges strongly
as α → 0 to the minimum-norm solution w̄ of MSSFP (1.11) and SEFPP (1.12).

Proof For any 0 < α < ∞, wα is given as (2.4), it follows that

hα(wα) = h(wα) +
1
2
α‖wα‖2 ≤ h(w̄) +

1
2
α‖w̄‖2 = hα(w̄).

Since w̄ ∈ � is a solution for MSSFP and SEFPP, we get

h(wα) +
1
2
α‖wα‖2 ≤ 1

2
α‖w̄‖2.

Hence, ‖wα‖ ≤ ‖w̄‖ for all α > 0. That is to say, {wα} is a bounded net in H = H1 × H2.
For any sequence {αn} such that limn αn = 0, let wαn be abbreviated as wn. All we need to

prove is that {wn} contains a subsequence converging strongly to w̄.
Indeed {wn} is bounded and Fix(T) is bounded convex. By passing to a subsequence if

necessary, we may assume that {wn} converges weakly to a point ŵ ∈ Fix(T). By Proposi-
tion 2.2, we get that

〈
h(wn) + αnwn, w̄ – wn
〉 ≥ 0

and

〈
h(wn) + αnwn, ŵ – wn
〉 ≥ 0. (2.11)
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It follows that

〈
h(wn), w̄ – wn
〉 ≥ αn〈wn, wn – w̄〉,

i.e.,

〈 t1∑

i=1

αi(I – PCi )xn +
t2∑

i=1

βiA∗
1(I – PDi )A1xn + A∗

2(Axn – Byn), x̄ – xn

〉

≥ αn〈xn, xn – x̄〉,

and

〈 r1∑

j=1

γj(I – PQj )yn +
r2∑

j=1

δjB∗
1(I – P�j )B1yn – B∗

2(Axn – Byn), ȳ – yn

〉

≥ αn〈yn, yn – ȳ〉

i.e.,

〈
Mwn + Nwn + G∗Gwn, w̄ – wn

〉 ≥ αn〈wn, wn – w̄〉.

By w̄ ∈ �,

αn〈wn, wn – w̄〉
≤ 〈Mwn – Mw̄, w̄ – wn〉 +

〈
G∗G(wn – w̄), w̄ – wn

〉
+ 〈Nwn – Nw̄, w̄ – wn〉

≤ –

∥
∥∥
∥∥

t1∑

i=1

αi(I – PCi )xn –
t1∑

i=1

αi(I – PCi )x̄

∥
∥∥
∥∥

2

–

∥∥
∥∥∥

t2∑

i=1

βi(I – PDi )A1xn –
t2∑

i=1

βi(I – PDi )A1x̄

∥∥
∥∥∥

2

–

∥∥
∥∥
∥

r1∑

j=1

γj(I – PQj )yn –
r1∑

j=1

γj(I – PQj )ȳ

∥∥
∥∥
∥

2

–

∥
∥∥
∥∥

r2∑

j=1

δj(I – P�j )B1yn –
r2∑

j=1

δj(I – P�j )B1ȳ

∥
∥∥
∥∥

2

– ‖Gwn‖2,

we have

∥∥
∥∥∥

t1∑

i=1

αi(I – PCi )xn –
t1∑

i=1

αi(I – PCi )x̄

∥∥
∥∥∥

2

+

∥∥
∥∥
∥

t2∑

i=1

βi(I – PDi )A1xn –
t2∑

i=1

βi(I – PDi )A1x̄

∥∥
∥∥
∥

2

+

∥∥
∥∥
∥

r1∑

j=1

γj(I – PQj )yn –
r1∑

j=1

γj(I – PQj )ȳ

∥∥
∥∥
∥

2
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+

∥
∥∥
∥∥

r2∑

j=1

δj(I – P�j )B1yn –
r2∑

j=1

δj(I – P�j )B1ȳ

∥
∥∥
∥∥

2

+ ‖Gwn‖2

≤ αn〈wn, wn – w̄〉 ≤ αn‖wn‖‖wn – w̄‖ ≤ 2αn‖w̄‖2 → 0.

Furthermore, note that {wn} converges weakly to a point ŵ ∈ Fix(T), then {h(wn)} con-
verges weakly to h(ŵ). It follows that h(ŵ) = 0, i.e., ŵ ∈ �.

By (2.11),

〈
h(wn) + αnwn, ŵ – wn
〉 ≥ 0,

i.e.,

〈
Mwn + Nwn + G∗Gwn + αnwn, ŵ – wn

〉 ≥ 0,
〈
Mwn + Nwn + G∗Gwn + αnwn, ŵ – wn

〉

= 〈Mwn – Mŵ, ŵ – wn〉 + 〈Nwn – Nŵ, ŵ – wn〉 +
〈
G∗G(wn – ŵ), ŵ – wn

〉

+ 〈αnwn – αnŵ, ŵ – wn〉 + 〈αnŵ, ŵ – wn〉
≤ –‖Mwn – Mŵ‖2 – ‖Nwn – Nŵ‖2 –

∥
∥G(wn – ŵ)

∥
∥2

+ 〈αnŵ, ŵ – wn〉 – αn‖wn – ŵ‖2

≥ 0.

Then

‖Mwn – Mŵ‖2 + ‖Nwn – Nŵ‖2 +
∥
∥G(wn – ŵ)

∥
∥2 + αn‖wn – ŵ‖2 ≤ 〈αnŵ, ŵ – wn〉,

we have

‖wn – ŵ‖2 ≤ 〈ŵ, ŵ – wn〉.

Consequently, that {wn} converges weakly to ŵ actually implies that {wn} converges
strongly to ŵ. At last, we prove that ŵ = w̄, and this finishes the proof.

Since {wn} converges weakly to ŵ and ‖wn‖ ≤ ‖w̄‖, we can get that

‖ŵ‖ ≤ lim inf
n

‖wn‖ ≤ ‖w̄‖ = min
{‖w‖ : w ∈ �

}
.

This shows that ŵ is also a point in � which assumes a minimum norm. Due to the unique-
ness of a minimum-norm element, we obtain ŵ = w̄. �

Finally, we introduce another method to get the minimum-norm solution of MSSFP and
SEFPP.

Lemma 2.6 Let S = I – σ1M – σ2λ1N – σ3λ2G∗G, where 0 < λ1 < 1/(max{ρ(A∗
1A1),

ρ(B∗
1B1)}), 0 < λ2 < 1/ρ(G∗G),σi > 0, i = 1, 2, 3. σ1 + σ2 + σ3 ≤ 1 with ρ(A∗

1A1),ρ(B∗
1B1),

ρ(G∗G) being the spectral radius of the self-adjoint operator A∗
1A1, B∗

1B1, G∗G on H, then
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we have the following:
(1) ‖S‖ ≤ 1 (i.e., S is nonexpansive) and averaged;
(2) Fix(S) = {(x, y) ∈ H1 ×H2, x ∈ ⋂t1

i=1 Ci, y ∈ ⋂r1
j=1 Qj, A1x ∈ ⋂t2

i=1 Di, B1y ∈ ⋂r2
j=1 �j, A2x =

B2y}, Fix(PFix(T)S) = Fix(PFix(T)) ∩ Fix(S) = �;
(3) w ∈ Fix(PFix(T)S) if and only if w is a solution of the variational inequality 〈
h(x, y), v–

w〉,∀v ∈ Fix(T).

Proof (1)

‖Mx – My‖2

=

∥∥∥
∥∥

t1∑

i=1

αi(I – PCi )x1 –
t1∑

i=1

αi(I – PCi )y1

∥∥∥
∥∥

2

+

∥∥
∥∥
∥

r1∑

j=1

γj(I – PQj )x2 –
r1∑

j=1

γj(I – PQj )y2

∥∥
∥∥
∥

2

≤ ‖x – y‖2,

‖λ1Nx – λ1Ny‖2

= λ2
1

∥∥
∥∥
∥

t2∑

i=1

βiA∗
1(I – PDi )A1x1 –

t2∑

i=1

βiA∗
1(I – PDi )A1y1

∥∥
∥∥
∥

2

+ λ2
1

∥∥
∥∥
∥

r2∑

j=1

δjB∗
1(I – P�j )B1x2 –

r2∑

j=1

δjB∗
1(I – P�j )B1y2

∥∥
∥∥
∥

2

≤ λ1

∥∥
∥∥∥

t2∑

i=1

βi(I – PDi )A1x1 –
t2∑

i=1

βi(I – PDi )A1y1

∥∥
∥∥∥

2

+ λ1

∥∥
∥∥
∥

r2∑

j=1

δj(I – P�j )B1x2 –
r2∑

j=1

δj(I – P�j )B1y2

∥∥
∥∥
∥

2

≤ λ1‖A1x1 – A1y1‖2 + λ1‖B1x2 – B1y2‖2

≤ ‖x1 – y1‖2 + ‖x2 – y2‖2 = ‖x – y‖2.

λ2‖G∗G(x – y)‖ ≤ ‖x – y‖.
Let S1 = σ1M + σ2λ1N + σ3λ2G∗G, we have

‖S1x – S2y‖
=

∥∥σ1Mx – σ1My + σ2λ1Nx – σ2λ1Ny + σ3λ2G∗Gx – σ3λ2G∗Gy
∥∥

≤ σ1‖Mx – My‖ + σ2‖λ1Nx – λ1Ny‖ + σ3
∥
∥λ2G∗Gx – λ2G∗Gy

∥
∥

≤ (σ1 + σ2 + σ3)‖x – y‖ ≤ ‖x – y‖.

We can get that S1 is a nonexpansive operator.

‖Sx – Sy‖2
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=
∥∥x – y – (S1x – S1y)

∥∥2

= ‖x – y‖2 + ‖S1x – S2y‖2 – 2〈x – y, S1x – S1y〉
≤ ‖x – y‖2 + 2‖σ1Mx – σ1My‖2 + 2‖σ2λ1Nx – σ2λ1Ny‖2

+ 2
∥∥σ3λ2G∗Gx – σ3λ2G∗Gy

∥∥2 – 2〈x – y, S1x – S1y〉
≤ ‖x – y‖2 + 2σ1〈x – y,σ1Mx – σ1My〉 + 2σ2〈x – y,σ2λ1Nx – σ2λ1Ny〉

+ 2σ3
〈
x – y,σ3λ2G∗Gx – σ3λ2G∗Gy

〉
– 2〈x – y, S1x – S1y〉

≤ ‖x – y‖2 + 2
〈
x – y,σ1Mx – σ1My + σ2λ1Nx – σ2λ1Ny + σ3λ2G∗G(x – y)

〉

– 2〈x – y, S1x – S1y〉
≤ ‖x – y‖2

so ‖S‖ ≤ 1, i.e., S is nonexpansive.
Indeed, let η ∈ (0, 1) such that (σ1 + σ2 + σ3)/(1 – η) ∈ (0, 1], then S = I – σ1M – σ2λ1N –

σ3λ2G∗G = ηI + (1 – η)V , where V = I – 1
1–η

(σ1M + σ2λ1N + σ3λ2G∗G) is a nonexpansive
mapping. That is to say, S is averaged.

(2) If w ∈ {(x, y) ∈ H1 × H2, x ∈ ⋂t1
i=1 Ci, y ∈ ⋂r1

j=1 Qj, A1x ∈ ⋂t2
i=1 Di, B1y ∈ ⋂r2

j=1 �j, A2x =
B2y}, it is obvious that w ∈ Fix(S). Conversely, assuming that w ∈ Fix(S), we have w = w –
σ1Mw – σ2λ1Nw – σ3λ2G∗Gw, hence σ1Mw + σ2λ1Nw + σ3λ2G∗Gw = 0,∀w̆ ∈ �,

〈
σ1Mw + σ2λ1Nw + σ3λ2G∗Gw, w – w̆

〉

= 〈σ1Mw, w – w̆〉 + 〈σ2λ1Nw, w – w̆〉 +
〈
σ3λ2G∗Gw, w – w̆

〉

= 〈σ1Mw – σ1Mw̆, w – w̆〉 + 〈σ2λ1Nw – σ2λ1Nw̆, w – w̆〉
+

〈
σ3λ2G∗G(w – w̆), w – w̆

〉

≥ σ1‖Mw‖2 + σ2‖λ1Nw‖2 + σ3
∥∥λ2G∗Gw

∥∥2

≥ ‖σ1Mw‖2 + ‖σ2λ1Nw‖2 +
∥∥σ3λ2G∗Gw

∥∥2.

This leads to w ∈ {(x, y) ∈ H1 × H2, x ∈ ⋂t1
i=1 Ci, y ∈ ⋂r1

j=1 Qj, A1x ∈ ⋂t2
i=1 Di, B1y ∈ ⋂r2

j=1 �j,
A2x = B2y}, it is obvious that w ∈ Fix(S).

(3)

〈
h(x, y), v – w
〉 ≥ 0, ∀v ∈ Fix(T)

⇔ 〈
w – (w – S1w), v – w

〉 ≥ 0, ∀v ∈ Fix(T)

⇔ w = PFix(T)(w – S1w)

⇔ w ∈ Fix(PFix(T)S). �

Remark 2.7 Take constants λ1andλ2, where 0 < λ1 < 1/(max{ρ(A∗
1A1),ρ(B∗

1B1)}), 0 < λ2 <
1/ρ(G∗G), with ρ(A∗

1A1),ρ(B∗
1B1),ρ(G∗G) being the spectral radius of the self-adjoint

operator A∗
1A1, B∗

1B1, G∗G. For τ1 ∈ (0, (1 – λ1(max{‖A∗
1A1‖,‖B∗

1B1‖}))/σ2λ1), τ2 ∈ (0, (1 –
λ2‖G∗G‖)/σ3λ2), τ = min{τ1, τ2}, (σ1 +σ2 +σ3)/(1–σ2λ1τ –σ3λ2τ ) ∈ (0, 1), we define a map-
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ping

Wα(w) := PFix(T)
[
(1 – σ2λ1τ – σ3λ2τ )I – σ1M – σ2λ1N – σ3λ2G∗G

]
w.

It is easy to check that Wα is contractive. So, Wα has a unique fixed point denoted by wα ,
that is,

wα = PFix(T)
[
(1 – σ2λ1τ – σ3λ2τ )I – σ1M – σ2λ1N – σ3λ2G∗G

]
wα . (2.12)

Theorem 2.8 Let wα be given as (2.12). Then wα converges strongly as α → 0 to the
minimum-norm solution w̄ of MSSFP and SEFPP.

Proof Let w̆ be a point in �. I – σ1/(1 – σ2λ1τ – σ3λ2τ )M – σ2λ1/(1 – σ2λ1τ – σ3λ2τ )N –
σ3λ2/(1 – σ2λ1τ – σ3λ2τ )G∗G is nonexpansive. It follows that

‖wα – w̆‖
=

∥∥PFix(T)
[
(1 – σ2λ1τ – σ3λ2τ )I – σ1M – σ2λ1N – σ3λ2G∗G

]
wα

– PFix(T)
[
I – σ1M – σ2λ1N – σ3λ2G∗G

]
w̆

∥∥

≤ ∥∥[
(1 – σ2λ1τ – σ3λ2τ )I – σ1M – σ2λ1N – σ3λ2G∗G

]
wα

–
[
I – σ1M – σ2λ1N – σ3λ2G∗G

]
w̆

∥∥

≤ (1 – σ2λ1τ – σ3λ2τ )
∥∥(

wα – σ1/(1 – σ2λ1τ – σ3λ2τ )Mwα

– σ2λ1/(1 – σ2λ1τ – σ3λ2τ )Nwα – σ3λ2(1 – σ2λ1τ – σ3λ2τ )G∗Gwα

)

–
(
w̆ – σ1/(1 – σ2λ1τ – σ3λ2τ )Mw̆

– σ2λ1/(1 – σ2λ1τ – σ3λ2τ )Nw̆ – σ3λ2/(1 – σ2λ1τ – σ3λ2τ )G∗Gw̆
)∥∥

+ τ (σ2λ1 + σ3λ2)‖w̆‖
≤ (1 – σ2λ1τ – σ3λ2τ )‖wα – w̆‖ + τ (σ2λ1 + σ3λ2)‖w̆‖.

Hence,

‖wα – w̆‖ ≤ ‖w̆‖.

Then {wα} is bounded.
From (2.12), we have

∥∥wα – PFix(T)
[
I – σ1M – σ2λ1N – σ3λ2G∗G

]
wα

∥∥ ≤ τ
∥∥(σ2λ1 + σ3λ2)wα

∥∥ → 0.

Next we show that wα is relatively norm compact as α → 0+. In fact, assuming that {τn} ⊆
(0, min{(1 – λ1(max{‖A∗

1A1‖,‖B∗
1B1‖}))/σ2λ1, (1 – λ2‖G∗G‖)/σ3λ2}) is such that τn → 0+ as

n → ∞. Put wn := wαn , we have the following:

∥
∥wn – PFix(T)

[
I – σ1M – σ2λ1N – σ3λ2G∗G

]
wn

∥
∥ ≤ τ

∥
∥(σ2λ1 + σ3λ2)wn

∥
∥ → 0.
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We deduce that

‖wα – w̆‖2

=
∥
∥PFix(T)

[
(1 – σ2λ1τ – σ3λ2τ )I – σ1M – σ2λ1N – σ3λ2G∗G

]
wα

– PFix(T)
[
I – σ1M – σ2λ1N – σ3λ2G∗G

]
w̆

∥
∥2

≤ 〈[
(1 – σ2λ1τ – σ3λ2τ )I – σ1M – σ2λ1N – σ3λ2G∗G

]
wα

–
[
I – σ1M – σ2λ1N – σ3λ2G∗G

]
w̆, wα – w̆

〉

≤ (1 – σ2λ1τ – σ3λ2τ )
〈(

wα – σ1/(1 – σ2λ1τ – σ3λ2τ )Mwα

– σ2λ1/(1 – σ2λ1τ – σ3λ2τ )Nwα – σ3λ2(1 – σ2λ1τ – σ3λ2τ )G∗Gwα

)

–
(
w̆ – σ1/(1 – σ2λ1τ – σ3λ2τ )Mw̆ – σ2λ1/(1 – σ2λ1τ – σ3λ2τ )Nw̆

– σ3λ2/(1 – σ2λ1τ – σ3λ2τ )G∗Gw̆
)
, wα – w̆

〉
– τ (σ2λ1 + σ3λ2)〈w̆, wα – w̆〉

≤ (1 – σ2λ1τ – σ3λ2τ )‖wα – w̆‖2 – τ (σ2λ1 + σ3λ2)〈w̆, wα – w̆〉.

Therefore,

‖wα – w̆‖2 ≤ 〈–w̆, wα – w̆〉.

In particular,

‖wn – w̆‖2 ≤ 〈–w̆, wn – w̆〉, ∀w̆ ∈ �.

Since {wn} is bounded, there exists a subsequence of {wn} which converges weakly to a
point w̄. Without loss of generality, we may assume that {wn} converges weakly to w̄. Notice
that

∥∥wn – PFix(T)
[
I – σ1M – σ2λ1N – σ3λ2G∗G

]
wn

∥∥ ≤ τ
∥∥(σ2λ1 + σ3λ2)wn

∥∥ → 0,

and by Lemma 1.4, we can get w̄ ∈ Fix(TS) = �.
By

‖wn – w̆‖2 ≤ 〈–w̆, wn – w̆〉, ∀w̆ ∈ �,

we have

‖wn – w̄‖2 ≤ 〈–w̄, wn – w̄〉.

Consequently, that {wn} converges weakly to w̄ actually implies that {wn} converges
strongly to w̄. That is to say, {wα} is relatively norm compact as α → 0+.

On the other hand, by

‖wn – w̆‖2 ≤ 〈–w̆, wn – w̆〉, ∀w̆ ∈ �,
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let n → ∞, we have

‖w̄ – w̆‖2 ≤ 〈–w̆, w̄ – w̆〉, ∀w̆ ∈ �.

This implies that

〈–w̆, w̆ – w̄〉 ≤ 0, ∀w̆ ∈ �,

which is equivalent to

〈–w̄, w̆ – w̄〉 ≤ 0, ∀w̆ ∈ �.

It follows that w̄ ∈ PFix(T)(0). Therefore, each cluster point of wα equals w̄. So wα → w̄(α →
0) is the minimum-norm solution of SFP and SEFPP. �

3 Main results
In this section, we introduce the following algorithm to solve MSSFP and SEFFP. The pur-
pose for such a modification lies in the hope of strong convergence.

Algorithm 3.1 For an arbitrary point w0 = (x0, y0) ∈ H = H1 × H2, the sequence {wn} =
{(xn, yn)} is generated by the iterative algorithm

wn+1 = PFix(T)
{

(1 – τn)
[
I – σ1M – σ2λ1N – σ3λ2G∗G

]
wn

}
, (3.1)

i.e.,

xn+1 = PFix(T1)

{

(1 – τn)

[

xn – σ1

t1∑

i=1

αi(I – PCi )xn – σ2λ1

t2∑

i=1

βiA∗
1(I – PDi )A1xn

– σ3λ2A∗
2(A2xn – B2yn)

]}

, n ≥ 0

and

yn+1 = PFix(T2)

{

(1 – τn)

[

yn – σ1

r1∑

j=1

γj(I – PQj )yn – σ2λ1

r2∑

j=1

δjB∗
1(I – P�j )B1yn

+ σ3λ2B∗
2(A2xn – B2yn)

]}

, n ≥ 0,

where τn > 0 is a sequence in (0,1) such that
(i) limn τn = 0;

(ii)
∑∞

n=0 τn = ∞;
(iii)

∑∞
n=0 |τn+1 – τn| < ∞ or limn |τn+1 – τn|/τn = 0.

Now, we prove the strong convergence of the iterative algorithm.

Theorem 3.2 The sequence {wn} generated by Algorithm 3.1 converges strongly to the
minimum-norm solution w̄ of MSSFP and SEFPP.
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Proof Let Rn and R be defined by

Rnw := PFix(T)
{

(1 – τn)
[
I – σ1M – σ2λ1N – σ3λ2G∗G

]}
w = PFix(T)

[
(1 – τn)Sw

]
,

Rw := PFix(T)
(
I – σ1M – σ2λ1N – σ3λ2G∗G

)
w = PFix(T)(Sw),

where S = I – σ1M – σ2λ1N – σ3λ2G∗G. By Lemma 2.6 it is easy to see that Rn is a contrac-
tion with contractive constant (1 – τn); and Algorithm 3.1 can be written as wn+1 = Rnwn.

For any w̆ ∈ �, we have

‖Rnw̆ – w̆‖ =
∥∥PFix(T)

[
(1 – τn)Sw̆

]
– w̆

∥∥

=
∥∥PFix(T)

[
(1 – τn)Sw̆

]
– PFix(T)(Sw̆)

∥∥

≤ ∥∥(1 – τn)Sw̆ – Sw̆
∥∥

= τn‖Sw̆‖ = τn‖w̆‖.

Hence

‖wn+1 – w̆‖ = ‖Rnwn – w̆‖ ≤ ‖Rnwn – Rnw̆‖ + ‖Rnw̆ – w̆‖
≤ ∥

∥PFix(T)
[
(1 – τn)Swn

]
– PFix(T)

[
(1 – τn)Sw̆

]∥∥ +
∥
∥PFix(T)

[
(1 – τn)Sw̆

]
– w̆

∥
∥

≤ (1 – τn)‖wn – w̆‖ + τn‖w̆‖
≤ max

{‖wn – w̆‖, |w̆‖},

‖Swn+1 – w̆‖ ≤ ‖wn+1 – w̆‖.

It follows that ‖wn – w̆‖ ≤ max{‖w0 – w̆‖, |w̆‖}. So {wn} and {Swn} are bounded.
Next we prove that limn ‖wn+1 – wn‖ = 0.
Indeed,

‖wn+1 – wn‖ = ‖Rnwn – Rn–1wn–1‖
≤ ‖Rnwn – Rnwn–1‖ + ‖Rnwn–1 – Rn–1wn–1‖
≤ (1 – τn)‖wn – wn–1‖ + ‖Rnwn–1 – Rn–1wn–1‖.

Notice that

‖Rnwn–1 – Rn–1wn–1‖ =
∥
∥PFix(T)

[
(1 – τn)Swn–1

]
– PFix(T)

[
(1 – τn–1)Swn–1

]∥∥

≤ ∥∥(1 – τn)Swn–1 – (1 – τn–1)Swn–1
∥∥

= |τn – τn–1|‖Swn–1‖.

Hence,

‖wn+1 – wn‖ ≤ (1 – τn)‖wn – wn–1‖ + |τn – τn–1|‖Swn–1‖.

By virtue of assumptions (i)–(iii) and Lemma 1.5, we have

lim
n

‖wn+1 – wn‖ = 0.
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Therefore,

‖wn – Rwn‖ ≤ ‖wn+1 – wn‖ + ‖Rnwn – Rwn‖
≤ ‖wn+1 – wn‖ +

∥
∥(1 – τn)Swn – Swn

∥
∥

≤ ‖wn+1 – wn‖ + τn‖Swn‖ → 0.

The demiclosedness principle ensures that each weak limit point of {wn} is a fixed point
of the nonexpansive mapping R = TS, that is, a point of the solution set � of MSSFP and
SEFPP.

At last, we will prove that limn ‖wn+1 – w̄‖ = 0.
Choose 0 < δ < 1 such that (σ1 + σ2 + σ3)/(1 – δ) ∈ (0, 1), then S = I – σ1M – σ2λ1N –

σ3λ2G∗G = δI + (1 – δ)V , where V = I – σ1/(1 – δ)M – σ2λ1/(1 – δ)N – σ3λ2/(1 – δ)G∗G is
a nonexpansive mapping. Taking z ∈ �, we deduce that

‖wn+1 – z‖2 =
∥
∥PFix(T)

[
(1 – τn)Swn

]
– z

∥
∥2

≤ ∥∥[(1 – τn)Swn – z
∥∥2

≤ (1 – τn)‖Swn – z‖2 + τn‖z‖2

≤ ∥∥δ(wn – z) + (1 – δ)(Vwn – z)
∥∥2 + τn‖z‖2

≤ δ
∥∥(wn – z)

∥∥2 + (1 – δ)
∥∥(Vwn – z)

∥∥2 – δ(1 – δ)‖wn – Vwn‖2 + τn‖z‖2

≤ ∥∥(wn – z)
∥∥2 – δ(1 – δ)‖wn – Vwn‖2 + τn‖z‖2.

Then

δ(1 – δ)‖wn – Vwn‖2 ≤ ∥∥(wn – z)
∥∥2 – ‖wn+1 – z‖2 + τn‖z‖2

=
(∥∥(wn – z)

∥∥ + ‖wn+1 – z‖)(∥∥(wn – z)
∥∥ – ‖wn+1 – z‖) + τn‖z‖2

≤ (∥∥(wn – z)
∥∥ + ‖wn+1 – z‖)(‖wn – wn+1‖

)
+ τn‖z‖2 → 0.

Note that S = I –σ1M–σ2λ1N –σ3λ2G∗G = δI +(1–δ)V , it follows that limn ‖Swn –wn‖ = 0.
Take a subsequence {wnk } of {wn} such that lim supn〈wn – w̄, –w̄〉 = limk〈wnk – w̄, –w̄〉.
By virtue of the boundedness of {wn}, we may further assume, with no loss of generality,

that wnk converges weakly to a point w̆. Since ‖Rwn – wn‖ → 0, using the demiclosedness
principle, we know that w̆ ∈ Fix(R) = Fix(PFix(T)S) = �. Noticing that w̄ is the projection of
the origin onto �, we get that

lim sup
n

〈wn – w̄, –w̄〉 = lim
k

〈wnk – w̄, –w̄〉 = 〈w̆ – w̄, –w̄〉 ≤ 0.

Finally, we compute

‖wn+1 – w̄‖2 =
∥
∥PFix(T)

[
(1 – τn)Swn

]
– w̄

∥
∥2

=
∥
∥PFix(T)

[
(1 – τn)Swn

]
– TSw̄

∥
∥2

≤ ∥∥(1 – τn)Swn – Sw̄
∥∥2
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Table 1 Effectiveness of Iterative method

Iterative method Error Number of iteration Time/s

iterative method (3.1) 10–5 18 0.0000
iterative method (1.13) (1.14) 10–5 107 0.078125
iterative method (3.1) 10–7 24 0.015625
iterative method (1.13) (1.14) 10–7 142 0.09375
iterative method (3.1) 10–10 32 0.015625
iterative method (1.13) (1.14) 10–10 194 0.125
iterative method (3.1) 10–12 38 0.03125
iterative method (1.13) (1.14) 10–12 228 0.1875
iterative method (3.1) 10–15 47 0.03125
iterative method (1.13) (1.14) 10–15 280 0.203125

≤ ∥∥(1 – τn)Swn – w̄
∥∥2

=
∥∥(1 – τn)(Swn – w̄) + τn(–w̄)

∥∥2

= (1 – τn)2∥∥(Swn – w̄)
∥∥2 + τ 2

n ‖w̄‖2 + 2τn(1 – τn)〈Swn – w̄, –w̄〉
= (1 – τn)2∥∥(Swn – w̄)

∥∥2 + τn
[
τn‖w̄‖2 + 2(1 – τn)〈Swn – w̄, –w̄〉].

Since lim supn〈wn – w̄, –w̄〉 ≤ 0,‖Swn – wn‖ → 0, we know that lim supn(τn‖w̄‖2 + 2(1 –
τn)〈Swn – w̄, –w̄〉) ≤ 0. By Lemma 1.5, we conclude that limn ‖wn+1 – w̄‖ = 0. This completes
the proof. �

4 Numerical experiments
We provide a numerical example to illustrate the effectiveness of our algorithm. The pro-
gram was written in Mathematica. All results are carried out on a personal DELL computer
with Intel(R) Core(TM)i5-5200 CPU @ 2.20 GHz and RAM 4.00 GB.

In this algorithm, we take error = 10–5, 10–7, 10–10, 10–12, 10–15, respectively. We con-
sider the split feasibility problem (1.1) with H1 = R, H2 = R, C = (–∞, 0], Q = (–∞, 0],
D = (–∞, 0], � = (–∞, 0]. T1x = x, T2y = y, A1 = B1 = A2 = 1, B2 = –1, σ1 = σ2 = σ3 = 1

3 ,
λ1 = 1

‖A1‖2 ,λ2 = 1. Take τn = 2
3 , an initial point x1 = –20, y1 = –10. Obviously, x∗ = 0, y∗ = 0

is a solution of this problem. In consideration of Algorithm 3.1, we have

⎧
⎨

⎩
xn+1 = PFix(T1)[ 1

3 (xn – 1
3 (xn + yn))]; n ≥ 0;

yn+1 = PFix(T2)[ 1
3 (yn – 1

3 (xn + yn))]; n ≥ 0.

As for iterative method (1.13) and (1.14), we take H1 = R, H2 = R, C = (–∞, 0], Q =
(–∞, 0], D = (–∞, 0], � = (–∞, 0]. T1x = x, T2y = y, A1 = B1 = A2 = 1, B2 = –1, λ = ξ =
σ = ζ = 1

3 . Take τ = 1
8 , an initial point x1 = –20, y1 = –10.

In consideration of algorithms (1.13) and (1.14), we have

⎧
⎨

⎩
xn+1 = T1(xn – 1

8 (xn + yn)); n ≥ 0;

yn+1 = T2(yn – 1
8 (xn+1 + yn))]; n ≥ 0.

From Table 1, it is easy to see that our iterative method converges faster in less time.
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5 Conclusions
The paper proposed a new iterative method to solve the split equality fixed point problem
of firmly quasi-nonexpansive or nonexpansive operators and multiple-sets split feasibility
problem and obtained a strong convergence result without any semi-compact assumption
imposed on operators. The results improved and unified many recent results.
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