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Abstract
Dedekind type DC sums and their generalizations are defined in terms of Euler
functions and their generalization. Recently, Ma et al. (Adv. Differ. Equ. 2021:30 2021)
introduced the poly-Dedekind type DC sums by replacing the Euler function
appearing in Dedekind sums, and they were shown to satisfy a reciprocity relation. In
this paper, we consider two kinds of new generalizations of the poly-Dedekind type
DC sums. One is a unipoly-Dedekind type DC sum associated with the type 2
unipoly-Euler functions expressed in the type 2 unipoly-Euler polynomials using the
modified polyexponential function, and we study some identities and the reciprocity
relation for these unipoly-Dedekind type DC sums. The other is a unipoly-Dedekind
sums type DC associated with the poly-Euler functions expressed in the unipoly-Euler
polynomials using the polylogarithm function, and we derive some identities and the
reciprocity relation for those unipoly-Dedekind type DC sums.
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1 Introduction
Let

(
(x)

)
=

⎧
⎨

⎩
x – [x] – 1

2 , if x /∈ Z,

0, if x ∈ Z,
(see [1–8, 20–28, 30]),

where [·] denotes the greatest integer not exceeding x.
The Dedekind sums are defined by

S(h, m) =
m–1∑

μ=1

((
μ

m

))((
hμ

m

))
(see [1–8, 20–28, 30]), (1)

where h and m are positive integers.
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The most fundamental result in the theory of Dedekind sums is the reciprocity theorem.
If h and m are relatively prime positive integers, then

S(h, m) + S(m, h) = –
1
4

+
1

12

(
h
m

+
m
h

+
1

hm

)
, (see [2]).

It is well known that the classical Dedekind sums S(h, m), initiated by Richard Dedekind
[9], first arose in the transformation formula of the logarithm of the Dedekind eta func-
tion. Dedekind introduced them to express the functional equation of the Dedekind eta
function. These sums have figured prominently in so many different areas such as elliptic
modular functions to number theory, analysis, number theory, combinatorics, q-series,
Weierstrass elliptic functions, modular forms, and other areas [1–9, 13, 14, 16, 18, 20–
30]. In combinatorial number theory, one is interested in partitions of an integer n from
a finite set of positive integers. Beck et al. showed that the number of such partitions of n
from a finite set is a quasi-polynomial in n, whose coefficients are built up from some gen-
eralization of Dedekind sums [3]. Bayad and Simsek [4, 28] studied three new shifted sums
of Apostol–Dedekind–Rademacher type. The Dedekind type DC (Daehee and Changhee)
sums using Euler functions were first introduced by Kim [13] and have been studied var-
iously by several authors since then [20, 30]. Recently, as a generalization of Dedekind
sums, the poly-Dedekind sums associated with the type 2 poly-Bernoulli functions of in-
dex k [18] and the unipoly-Dedkind sum [11] were introduced. In addition , Ma et al.
introduced the poly-Dedekind sums associated with the poly-Bernoulli functions of in-
dex k [21] and the poly-Dedekind type DC sums associated with the type 2 poly-Euler
functions of index k [20].

In this paper, we introduce two kinds of new generalizations of the poly Dedekind type
DC sums. In Sect. 2, for our goal, we show explicit formulas of type 2 unipoly-Euler poly-
nomials and type 2 unipoly-Genocchi polynomials. In Sect. 3, we introduce a unipoly-
Dedekind type DC sum associated with the type 2 unipoly-Euler functions expressed in
the type 2 unipoly-Euler polynomials using the modified polyexponential function, and
derive the reciprocity relation for these unipoly-Dedekind type DC sums. In Sect. 4, we
introduce a unipoly-Dedekind sums type DC associated with the poly-Euler functions ex-
pressed in the unipoly-Euler polynomials using the polylogarithm function, and derive the
reciprocity relation for those.

The Euler polynomials En(x) (n ∈ N ∪ {0}) are defined by their generating functions as
follows:

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
(see [13, 14, 19, 20]). (2)

When x = 0, En := En(0) are called Euler numbers. The first few of Euler numbers are E0 = 1,
E1 = – 1

2 , E2 = 0, E3 = 1
4 , E4 = 0, . . . , and E2n = 0, (n ∈N).

The Genocchi polynomials Gn(x), (n ∈N∪{0}), are defined by their generating functions
as follows:

2t
et + 1

ext =
∞∑

n=0

Gn(x)
tn

n!
(see [9, 20, 29]). (3)
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When x = 0, Gn := Gn(0) are called Genocchi numbers. The first few of Euler numbers
are G0 = 0, G1 = 1, G2 = –1, G3 = 0, G4 = 1, . . . , and G2n+1 = 0, (n ∈N).

We note that

En =
Gn+1

n + 1
(see [6, 13, 20]). (4)

From (2), we note that

En(x) =
n∑

l=0

(
n
l

)

Elxn–l = (E + x)n, (n ≥ 0), (see [13, 19, 20]) (5)

and

Gn(x) =
n∑

l=0

(
n
l

)

Glxn–l = (G + x)n, (n ≥ 0), (see [12, 20]), (6)

with the usual convention about replacing En and Gn with En and Gn, respectively.
From (2), for n ≡ 1(mod2), we have

(–1)n–1El(n) + El = 2
n–1∑

i=0

(–1)iil, (n ∈N), (see [20]). (7)

Let d be an odd positive integer ≥ 3. Then we have the following well-known relation:

En(x) = dn
d–1∑

i=0

(–1)iEn

(
x + i

d

)
, (see [20]), (8)

where d is an odd positive integer ≥ 3 and n ≥ 0.
The Euler function is defined by

En(x) = En
(
x – [x]

)
, (n ≥ 0), (see [13, 20, 30]), (9)

where [x] denotes the greatest integer not exceeding x.
Kim and Kim considered the modified polyexponential function defined by

Eik(x) =
∞∑

n=1

xn

nk(n – 1)!
, (k ∈ Z), (see [10]). (10)

Note that Ei1(x) = ex – 1.
We introduce the type 2 poly-Euler polynomials, which are given by

Eik(log(1 + 2t))
t(et + 1)

ext =
∞∑

n=0

Ek,n(x)
tn

n!
(k ∈ Z), (see [19]). (11)

When x = 0, Ek,n = Ek,n(0), n ≥ 0, are called type 2 poly-Euler numbers.
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We also introduce the type 2 poly-Genocchi polynomials, which are given by

Eik(log(1 + 2t))
et + 1

ext =
∞∑

n=0

Gk,n(x)
tn

n!
(k ∈ Z), (see [12]). (12)

When x = 0, Gk,n = Gk,n(0), n ≥ 0, are called type 2 poly-Genocchi numbers.
By (12), we easily get Gk,0 = 0, Gk,1 = 1, Gk,2 = –2 + 2l–k , . . . . Since Ei1(log(1 + 2t)) = 2t,

we see that E1,n(x) = En(x) and G1,n(x) = Gn(x) (n ≥ 0) are the Euler polynomials and the
Genocchi polynomials, respectively.

Kim introduced the Dedekind type DC sums given by

Tp(h, m) = 2
m–1∑

μ=1

(–1)μ
μ

m
Ep

(
hμ

m

)
(see [13]), (13)

where Ep(x) is the pth Euler function.
For p ∈ N with p ≡ 1 (mod2), the reciprocity law of Tp(h, m) is given by

mpTp(h, m) + hpTp(m, h)

= 2
m–1∑

μ=0

(
mh

(
E +

μ

m

)
+ m

(
E + h –

[
hμ

m

]))p

+ (hE + mE)p + (p + 2)Ep,

μ –
[

hμ

m

]
≡ 1(mod2), (see [13, 30]),

where h, k are relative prime positive integers and

(Eh + Em)p =
p∑

l=0

(
p
l

)

ElhlEp–lmp–l(see [13, 30]).

Recently, Ma et al. introduced the poly-Dedekind type DC sums associated with the type
2 poly-Euler functions, which are given by

T (k)
p (h, m) = 2

m–1∑

μ=1

(–1)μ
μ

m
E(k)

p (hμ/m), (h, m, p ∈N), (see [20]), (14)

where Ep(hμ/m) = Ep(〈hμ/m〉).
For n ∈N∪ {0}, as is well known, the Stirling numbers of the first kind are defined by

(x)0 = 1, (x)n =
n∑

l=0

S1(n, l)xl (n ≥ 1),

and

1
l!
(
log(1 + t)

)l =
∞∑

n=l

S1(n, l)
tn

n!
(n, l ≥ 0), (see [12, 15, 17]). (15)
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For n ≥ 0, the Stirling numbers of the second kind are defined by

xn =
n∑

l=0

S2(n, l)(x)l

and

1
k!

(
et – 1

)k =
∞∑

n=k

S2(n, k)
tn

n!
(see [12, 15, 17]), (16)

where (x)0 = 1, (x)n = x(x – 1) . . . (x – n + 1), (n ≥ 1).

2 Type 2 unipoly-Euler numbers and type 2 unipoly-Genocchi numbers
Let τ be any arithmetic function which is real or complex valued and defined on the set
of positive integers N. Then Kim and Kim defined the unipoly function attached to poly-
nomials τ by

uk(x|τ ) =
∞∑

n=1

τ (n)xn

nk , (k ∈ Z), (see [10]). (17)

When τ (n) = 1, uk(x|1) =
∑∞

n=1
xn

nk = Lik(x) is the ordinary polylogarithm function.
From (17), we have

d
dx

uk(x|τ ) =
1
x

uk–1(x|τ ). (18)

Lee et al. introduced the type 2 unipoly-Euler polynomials of index k defined by

uk(log(1 + 2t)|τ )
t(et + 1)

ext =
∞∑

n=0

Ek,n,τ (x)
tn

n!
(see [19]). (19)

When x = 0, Ek,n,τ := Ek,n,τ (0) are called type 2 unipoly-Euler numbers.
The type 2 unipoly-Genocchi polynomials of index k are defined by

uk(log(1 + 2t)|τ )
et + 1

ext =
∞∑

n=0

Gk,n,τ (x)
tn

n!
(see [12]). (20)

When x = 0, Gk,n,τ := Gk,n,τ (0) are called type 2 unipoly-Genocchi numbers.
For n ∈N∪ {0} and k ∈ Z, let τ (n) = 1

�(n) = 1
(n–1)! . Then, from (12) and (19), we have

∞∑

n=0

Ek,n, 1
�

(x)
tn

n!
=

uk(log(1 + 2t)| 1
�

)
t(et + 1)

ext (21)

=
Eik(log(1 + 2t))

t(et + 1)
ext =

∞∑

n=0

Ek,n(x)
tn

n!
.

Thus, from (21) we have

Ek,n, 1
�

(x) = Ek,n(x). (22)
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Similarly, we get

Gk,n, 1
�

(x) = Gk,n(x).

Moreover, from (21), we note that

uk(log(1 + 2t)|τ )
t(et + 1)

ext =

( ∞∑

l=0

Ek,l,τ
tl

l!

)( ∞∑

m=0

xm

m!
tm

)

=
∞∑

n=0

( n∑

l=0

(
n
l

)

Ek,l,τ xn–l

)
tn

n!
. (23)

Thus, by (23), we get

Ek,n,τ (x) =
n∑

l=0

(
n
l

)

Ek,l,τ xn–l (n ≥ 0). (24)

In the same way as (23), we have

Gk,n,τ (x) =
n∑

l=0

(
n
l

)

Gk,l,τ xn–l (n ≥ 0). (25)

Furthermore, by (24) and (25), we have

d
dx

Ek,n,τ (x) = nEk,n–1,τ (x) and
d

dx
Gk,n,τ (x) = nGk,n–1,τ (x), (n ≥ 1). (26)

Theorem 1 For n ≥ 1, we have

Ek,n,τ (x) =
n∑

m=0

m+1∑

l=1

(
n
m

)
(l – 1)!2mτ (l)S1(m + 1, l)

lk–1(m + 1)
En–m(x), (k ∈ Z), (27)

and

Gk,n,τ (x) =
n∑

m=0

m+1∑

l=1

(
n
m

)
(l – 1)!2mτ (l)S1(m + 1, l)

lk–1(m + 1)
Gn–m(x), (k ∈ Z). (28)

Proof From (2), (15), and (19), we have

∞∑

n=0

Ek,n,τ (x)
tn

n!
=

uk(log(1 + 2t)|τ )
t(et + 1)

ext =
1
2

2ext

et + 1
1
t

∞∑

l=1

τ (l)(log(1 + 2t))l

lk (29)

=
1
2

2ext

et + 1
1
t

∞∑

m=1

m∑

l=1

(l – 1)!2mτ (l)S1(m, l)
lk–1

tm

m!

=
∞∑

i=0

Ei(x)
ti

i!

∞∑

m=0

m+1∑

l=1

(l – 1)!2mτ (l)S1(m + 1, l)
lk–1(m + 1)

tm

m!

=
∞∑

n=0

( n∑

m=0

m+1∑

l=1

(
n
m

)
(l – 1)!2mτ (l)S1(m + 1, l)

lk–1(m + 1)
En–m

)
tn

n!
.
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Therefore, from (29) we get identity (27).
By using (3), (15), and (19) in the same way as (29), we also get identity (28). �

In particular, we get

Ek,n,τ =
n∑

m=0

m+1∑

l=1

(
n
m

)
(l – 1)!2mτ (l)S1(m + 1, l)

lk–1(m + 1)
En–m (k ∈ Z),

and the first few of the type 2 unipoly-Euler numbers are E (k)
0,τ = τ (1), E (k)

1,τ = 1
2τ (1) +

1
2k–1 τ (2), . . . . In addition,

Gk,n,τ =
n∑

m=0

m+1∑

l=1

(
n
m

)
(l – 1)!2mτ (l)S1(m + 1, l)

lk–1(m + 1)
Gn–m (k ∈ Z),

and the first few of the type 2 unipoly-Genocchi numbers are Gk,0,τ = 0, Gk,1,τ = τ (1), . . . .
Since Gk,0,τ = 0, we note that

∞∑

n=0

Ek,n,τ (x)
tn

n!
=

uk(log(1 + 2t)|τ )
t(et + 1)

ext (30)

=
∞∑

n=0

Gk,n,τ (x)
tn–1

n!
=

∞∑

n=1

Gk,n,τ (x)
tn–1

n!
=

∞∑

n=0

Gk,n+1,τ (x)
n + 1

tn

n!
.

Thus, from (30), we have

Ek,n,τ (x) =
Gk,n+1,τ (x)

n + 1
. (31)

Lemma 2 For n ≥ 1, we have

Gk,n,τ (1) + Gk,n,τ = 2n
n∑

m=1

m!
mk τ (m)S1(n, m), (k ∈ Z), (32)

and

Ek,n–1,τ (1) + Ek,n–1,τ =
2n

n

n∑

m=1

m!
mk τ (m)S1(n, m), (k ∈ Z). (33)

Proof From (20), we have

uk
(
log(1 + 2t)|τ)

=

( ∞∑

l=0

Gk,l,τ
tl

l!

)
(
et + 1

)
(34)

=
∞∑

n=0

(
Gk,n,τ (1) + Gk,n,τ

) tn

n!
=

∞∑

n=1

(
Gk,n,τ (1) + Gk,n,τ

) tn

n!
.

On the other hand, from (17), we have

uk
(
log(1 + 2t)|τ)

=
∞∑

m=1

τ (m)
mk

(
log(1 + 2t)

)m (35)
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=
∞∑

m=1

τ (m)m!
mk

∞∑

n=m
S1(n, m)

2ntn

n!

=
∞∑

n=1

(

2n
n∑

m=1

m!
mk τ (m)S1(n, m)

)
tn

n!
.

Therefore, by (34) and (35), we obtain identity (32). By using (31), we get identity
(33). �

Theorem 3 For an odd positive integer d ≥ 3 and n ≥ 1, we have

(–1)d–1
Gk,n,τ (d) + Gk,n,τ =

n∑

a=1

a∑

b=1

d–1∑

i=0

(
n
a

)

(–1)iin–a (b – 1)!2a

bk–1 τ (b)S1(a, b) (36)

and

(–1)d–1Ek,n–1,τ (d) + Ek,n–1,τ

=
1
n

( n∑

a=1

a∑

b=1

d–1∑

i=0

(
n
a

)

(–1)iin–a (b – 1)!2a

bk–1 τ (b)S1(a, b)

)

. (37)

Proof For an odd positive integer d ≥ 3, from (15) and (17), we have

d–1∑

i=0

(–1)ieituk
(
log(1 + 2t)|τ)

(38)

=
d–1∑

i=0

(–1)i
∞∑

j=0

ij tj

j!

∞∑

b=1

τ (b)(log(1 + 2t))b

bk

=
∞∑

j=0

( d–1∑

i=0

(–1)iij

)
tj

j!

∞∑

a=1

( a∑

b=1

b!2a

bk τ (b)S1(a, b)

)
ta

a!

=
∞∑

n=1

( n∑

a=1

a∑

b=1

d–1∑

i=0

(
n
a

)

(–1)iin–a (b – 1)!2a

bk–1 τ (b)S1(a, b)

)
tn

n!
.

On the other hand,

d–1∑

i=0

(–1)ieituk
(
log(1 + 2t)|τ)

=
(–1)d–1edt + 1

et + 1
uk

(
log(1 + 2t)|τ)

(39)

=
∞∑

n=0

(
(–1)d–1

Gk,n(d) + Gk,n
) tn

n!
.

Therefore, by (38) and (39), we obtain identity (36).
Moreover, from (31), we get identity (37). �

Theorem 4 For an odd positive integer d ≥ 1 and n ≥ 0, we have

Gk,n,τ (x) =
n∑

l=0

(
n
l

) n–l+1∑

j=1

d–1∑

i=0

(–1)idl–1Gl

(
i + x

d

)
(j – 1)!2n–l

jk–1(n – l + 1)
τ (j)S1(n – l + 1, j).
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Proof From
∑n–1

i=0 (–1)ieit = (–1)n–1ent+1
et+1 , (n ≡ 1(mod2)), (2), and (13), we have

uk(log(1 + 2t)|τ )
et + 1

ext (40)

=
1

2d

d–1∑

i=0

(–1)ie( i+x
d ) dt 2 dt

edt + 1
1
t

uk
(
log(1 + 2t)|τ)

=
1

2d

d–1∑

i=0

(–1)i
∞∑

l=0

Gl

(
i + x

d

)
dltl

l!
1
t

∞∑

j=1

τ (j)(log(1 + 2t))j

jk

=
∞∑

l=0

( d–1∑

i=0

(–1)idl–1Gl

(
i + x

d

))
tl

l!

∞∑

a=1

( a∑

j=1

(j – 1)!2a–1

jk–1 τ (j)S1(a, j)

)
ta–1

a!

=
∞∑

l=0

( d–1∑

i=0

dl–1(–1)iGl

(
i + x

d

))
tl

l!

∞∑

a=0

( a+1∑

j=1

(j – 1)!2a

jk–1(a + 1)
τ (j)S1(a + 1, j)

)
ta

a!

=
∞∑

n=0

⎛

⎝
n∑

l=0

(
n
l

) n–l+1∑

j=1

d–1∑

i=0

(–1)idl–1Gl

(
i + x

d

)
(j – 1)!2n–l

jk–1(n – l + 1)
τ (j)S1(n – l + 1, j)

⎞

⎠ tn

n!
.

Therefore, by (40), we get the desired result. �

Corollary 5 For an odd positive integer d ≥ 1 and n ≥ 1, we have

Ek,n–1,τ (x) =
n–1∑

l=0

n–l∑

j=1

d–1∑

i=0

(
n – 1

l

)

(–1)idlEl

(
i + x

d

)
(j – 1)!2n–l–1τ (j)S1(n – l, j)

jk–1(n – l)
.

Proof From (31) and Theorem 4, we have

Ek,n–1,τ (x) =
Gn,τ (x)

n
(41)

=
1
n

n∑

l=1

(
n
l

) n–l+1∑

j=1

d–1∑

i=0

dl–1(–1)iGl

(
i + x

d

)
(j – 1)!τ (j)2n–l

jk–1(n – l + 1)
S1(n – l + 1, j)

=
1
n

n–1∑

l=0

n–l∑

j=1

d–1∑

i=0

(
n

l + 1

)

dl(–1)iGl+1

(
i + x

d

)
(j – 1)!2n–l–1

jk–1(n – l)
τ (j)S1(n – l, j)

=
n
n

n–1∑

l=0

n–l∑

j=1

d–1∑

i=0

(
n – 1

l

)

dl(–1)i Gl+1( i+x
d )

l + 1
(j – 1)!2n–l–1τ (j)S1(n – l, j)

jk–1(n – l)

=
n–1∑

l=0

n–l∑

j=1

d–1∑

i=0

(
n – 1

l

)

(–1)idlEl

(
i + x

d

)
(j – 1)!2n–l–1τ (j)S1(n – l, j)

jk–1(n – l)
.

There, from (41), we arrive at the desired result. �

Lemma 6 For l ∈N with l < q, we have

(
q
l

)

Ek,q–l,τ (1) +

(
q

l – 1

)

Ek,q–l+1,τ (1) =
q∑

j=0

(
q – j + 1

l

)(
q
j

)

Ek,j,τ .
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Proof For l ∈N with l < q, we have

dl

dxl

(
xEk,q,τ (x)

)|x=1 = l!

(
q
l

)

Ek,q–l,τ (1) + l!

(
q

l – 1

)

Ek,q–l+1,τ (1). (42)

On the other hand, by (24), we get

dl

dxl

(
xEk,q,τ (x)

)|x=1 =
q∑

j=0

(
q
j

)

Ek,j,τ

((
dl

dxl

)l

xq–j+1
)∣∣

∣∣
x=1

= l!
q∑

j=0

(
q – j + 1

l

)(
q
j

)

Ek,j,τ .

(43)

Therefore, by (42) and (43), we obtain what we want. �

Lemma 7 For q ∈ N, we have

q∑

j=0

(
q
j

)
Ek,j,τ

q – j + 2
=

1
q + 1

Ek,q,τ (1) –
1

(q + 1)(q + 2)
Ek,q+2(1) +

Ek,q+2,τ

(q + 1)(q + 2)
.

Proof By using (26), we observe that

∫ 1

0
xEk,q,τ (x) dx =

1
q + 1

Ek,q+1(1) –
1

q + 1

∫ 1

0
Ek,q+1,τ (x) dx (44)

=
1

q + 1
Ek,q+1,τ (1) –

1
(q + 1)(q + 2)

(
Ek,q+2,τ (1) – Ek,q+2,τ

)
.

On the other hand, by using (24), we have

∫ 1

0
xEk,q,τ (x) dx =

q∑

j=0

(
q
j

)

Ek,j,τ

∫ 1

0
xq–j+1 dx =

q∑

j=0

(
q
j

)
Ek,j,τ

q – j + 2
. (45)

Therefore, by (44) and (45), we get what we want. �

3 Unipoly-Dedekind type DC sums associated withthe type 2 unipoly-Euler
functions of index k

In this section, as a generalization of the poly-Dedekind type DC sums, we consider the
unipoly-Dedekind type DC sums associated with the type 2 unipoly-Euler functions of
index k and derive several noble identities and the reciprocity relation for these.

Naturally, we consider the unipoly-Dedekind type DC sums associated with the type 2
unipoly-Euler functions of index k as follows:

Zk,q,τ (h, m) = 2
m–1∑

μ=1

(–1)μ(μ/m)Ek,q,τ (hμ/m), (h, m, q ∈N, k ∈ Z), (46)

where h, m, q ∈ N with q ≡ 1 (mod2) and Ek,q,τ (x) = Ek,q,τ (x – [x]) are the type 2 unipoly-
Euler functions of index k ([x] is the largest integer less than x).
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For n ∈N∪{0} and k ∈ Z, when τ (n) = 1
�(n) = 1

(n–1)! , we note that Zk,q, 1
�

(h, m) = T (k)
q (h, m).

In addition, we note that

Z1,q, 1
�

(h, m) = 2
m–1∑

μ=1

(–1)μ(μ/m)E1,q, 1
�

(hμ/m) = Tq(h, m).

Theorem 8 Let m be an odd positive integer ≥ 1 and q ∈N. Then we have

mqZk,q,τ (1, m) =
q∑

j=0

q–j∑

i=0

(
q
j

)(
q – j + 1

i

)

Ek,j,τ mq–iEi + 2
q∑

j=0

(
q
j

)

Ek,j,τ mj–1Eq–j+1.

Proof From (5), (7), and (46), we have

Zk,q,τ (1, m) (47)

= 2
m–1∑

μ=0

(–1)μ
(

μ

m

)
Ek,q,τ

(
μ

m

)
= 2

m–1∑

μ=0

(–1)μ
(

μ

m

)
Ek,q,τ

(
μ

m

)

= 2
m–1∑

μ=0

(–1)μ
(

μ

m

) q∑

j=0

(
q
j

)(
μ

m

)q–j

Ek,j,τ

=
q∑

j=0

(
q
j

)

Ek,j,τ m–(q–j+1)

(

2
m–1∑

μ=0

μq–j+1(–1)μ
)

=
q∑

j=0

(
q
j

)

Ek,j,τ m–q+j–1((–1)m–1Eq–j+1(m) + Eq–j+1
)

=
q∑

j=0

(
q
j

)

Ek,j,τ m–q+j–1

(q–j+1∑

i=0

(
q + 1 – j

i

)

mq–j+1–iEi + Eq–j+1

)

=
q∑

j=0

(
q
j

)

Ek,j,τ m–q+j–1
q–j∑

i=0

(
q – j + 1

i

)

mq–j+1–iEi + 2
q∑

j=0

(
q
j

)

Ek,j,τ m–q+j–1Eq–j+1

=
q∑

j=0

q–j∑

i=0

(
q
j

)(
q – j + 1

i

)

Ek,j,τ m–iEi + 2
q∑

j=0

(
q
j

)

Ek,j,τ m–q+j–1Eq–j+1.

By multiplying both sides of (47) by mq, we arrive at the desired result. �

Theorem 9 Let m, q be odd positive integers m ≥ 1 and q ≥ 3, respectively. Then we have

mqZk,q,τ (1, m)

=
q–2∑

i=1

(
q
i

)

Ek,q–i,τ (1)mq–iEi +
q–2∑

i=1

(
q

i – 1

)
(
Ek,q–i+1,τ (1) – Ek,q–i+1,τ

)
mq–iEi

+ 2
q∑

j=0

(
q
j

)

Ek,j,τ mj–1Eq–j+1 + (q + 1)τ (1)Eq + mqEk,q,τ (1).
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Proof For an odd integer q ≥ 3, we observe that Eq–1 = 0. Moreover, E0 = 1 and Ek,0,τ = τ (1).
From (24), we observe that

q∑

j=0

q–j∑

i=0

(
q
j

)(
q – j + 1

i

)

Ek,j,τ mq–iEi (48)

=
q∑

i=0

q–i∑

j=0

(
q
j

)(
q – j + 1

i

)

Ek,j,τ mq–iEi

=
q∑

j=0

(
q
j

)

Ek,j,τ mq +
q–2∑

i=1

q–i∑

j=0

(
q
j

)(
q – j + 1

i

)

Ek,j,τ mq–iEi

+
1∑

j=0

(
q
j

)(
q – j + 1

q – 1

)

Ek,j,τ mEq–1 +

(
q + 1

q

)

τ (1)Eq

=
q–2∑

i=1

q–i∑

j=0

(
q
j

)(
q – j + 1

i

)

Ek,j,τ mq–iEi + (q + 1)τ (1)Eq + mqEk,q,τ (1).

In addition, by using Lemma 6, we have

q–i∑

j=0

(
q
j

)(
q – j + 1

i

)

Ek,j,τ =
q∑

j=0

(
q
j

)(
q – j + 1

i

)

Ek,j,τ –

(
q

i – 1

)

Ek,q–i+1,τ (49)

=

(
q
i

)

Ek,q–i,τ (1) +

(
q

i – 1

)

Ek,q–i+1,τ (1) –

(
q

i – 1

)

Ek,q–i+1,τ

=

(
q
i

)

Ek,q–i,τ (1) +

(
q

i – 1

)
(
Ek,q–i+1,τ (1) – Ek,q–i+1,τ

)
.

Therefore, from Theorem 8, (48), and (49), we get

mqZk,q,τ (1, m)

=
q–2∑

i=1

(
q
i

)

Ek,q–i,τ (1)mq–iEi +
q–2∑

i=1

(
q

i – 1

)
(
Ek,q–i+1,τ (1) – Ek,q–i+1,τ

)
mq–iEi

+ 2
q∑

j=0

(
q
j

)

Ek,j,τ mj–1Eq–j+1 + (q + 1)τ (1)Eq + mqEk,q,τ (1).
�

To prove the next theorem, we employ the symbolic notations as En(x) = (E + x)n,
Ek,n,τ (x) = (Ek,τ + x)n, (n ≥ 0), with the usual convention about replacing En and (Ek,τ )n

with En and Ek,n,τ , respectively.

Theorem 10 Let h, m be relatively prime positive integers and m, q be odd positive integers
m ≥ 1 and q ≥ 3, respectively. Then we have

mq
m–1∑

α=0

q∑

j=0

(–1)α
(

q
j

)

Ek,j,τ

(
α

m

)
hjEq–j

(
h –

[
hα

m

])
=

q∑

j=0

(
q
j

)

(mh)q–jEjEk,q–j,τ (1).
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Proof As the index α ranges through the values α = 0, 1, 2, . . . , m–1, the product hα ranges
over a complete residue system modulo m such that h, m are relatively prime positive
integers, and we may replace < hα

m >= hα
m – [ hα

m ] with < hα
m > without alternating the sum

over α.
Therefore, from (8), we observe that

mq
m–1∑

α=0

(–1)α
q∑

j=0

(
q
j

)

Ek,j,τ

(
α

m

)
hjEq–j

(
h –

[
hα

m

])
(50)

= mq
m–1∑

α=0

(–1)a
(

h
(
Ek,τ +

α

m

)
+

(
E + h –

[
hα

m

]))q

= mq
m–1∑

α=0

(–1)α
(

hEk,τ + E + h +
1
2

–
1
2

+
hα

m
–

[
hα

m

])q

= mq
m–1∑

α=0

(–1)α
(

hEk,τ + E + h +
1
2

+ E1

(
α

m

))q

= mq
m–1∑

α=0

(–1)α
(

h(Ek,τ 1) + E +
α

m

)q

= mq
m–1∑

α=0

(–1)α
q∑

j=0

(
q
j

)(
E +

α

m

)j

hq–j(Ek,τ + 1)q–j

= mq
m–1∑

α=0

(–1)α
q∑

j=0

(
q
j

)

Ej

(
α

m

)
hq–jEk,q–j,τ (1)

=
q∑

j=0

(
q
j

)

mq–j

(

mj
m–1∑

α=0

(–1)αEs

(
α

m

))

hq–jEk,q–j,τ (1)

=
q∑

j=0

(
q
j

)

(mh)q–jEjEk,q–j,τ (1).

Therefore, from (50), we obtain what we want. �

Theorem 11 Let m, q be odd positive integers m ≥ 1 and q ≥ 3, respectively. Then we have

mqZk,q,τ (h, m) + hqZk,q,τ (m, h)

=
m–1∑

α=0

h–1∑

β=0

q∑

l=0

q+1–l∑

j=1

(
q
l

)

(–1)α+β–1 (j – 1)!τ (j)2q–l+1S1(q + 1 – l, j)
jk–1(q + 1 – l)

× (
(αh)mq–l + (βm)hq–l)El

(
α

m
+

β

h

)
.

Proof From Corollary 5, we note that

Ek,q,τ (x) =
q∑

l=0

q∑

j=1

d–1∑

i=0

(
q
l

)

(–1)idlEl

(
i + x

d

)
(j – 1)!2q–lτ (j)S1(q + 1 – l, j)

jk–1(q + 1 – l)
, (51)

where d ∈N with d ≡ 1 (mod2), k ∈ Z, and n ≥ 0.
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From (46) and (51), we get

mqZk,q,τ (h, m) + hqZk,q,τ (m, h) (52)

= 2mq
m–1∑

α=0

(–1)α
α

m
Ek,q,τ

(
hα

m

)
+ 2hq

h–1∑

β=0

(–1)β
β

h
Ek,q,τ

(
mβ

h

)

= 2mq
m–1∑

α=0

(–1)α
α

m

q∑

l=0

q+1–l∑

j=1

h–1∑

β=0

(
q
l

)

(–1)βhlEl

(
β

h
+

α

m

)

× (j – 1)!2q–lτ (j)S1(q + 1 – l, j)
jk–1(q + 1 – l)

+ 2hq
h–1∑

β=0

(–1)β
β

h

q∑

l=0

q+1–l∑

j=1

m–1∑

α=0

(
q
l

)

(–1)αmlEl

(
α

m
+

β

h

)

× (j – 1)!2q–lτ (j)S1(q + 1 – l, j)
jk–1(q + 1 – l)

= 2
m–1∑

α=0

q∑

l=0

q+1–l∑

j=1

h–1∑

β=0

(
q
l

)

(–1)α+β α

m
mq–l(mh)lEl

(
β

h
+

α

m

)

× (j – 1)!2q–lτ (j)S1(q + 1 – l, j)
jk–1(q + 1 – l)

+ 2
h–1∑

β=0

q∑

l=0

q+1–l∑

j=1

m–1∑

α=0

(
q
l

)

(–1)α+β β

h
hq–l(mh)lEl

(
α

m
+

β

h

)

× (j – 1)!2q–lτ (j)S1(q + 1 – l, j)
jk–1(q + 1 – l)

=
m–1∑

α=0

q∑

l=0

q+1–l∑

j=1

h–1∑

β=0

(
q
l

)

(–1)α+β (αh)(mh)–1mq–l(mh)lEl

(
β

h
+

α

m

)

× (j – 1)!2q–l+1τ (j)S1(q + 1 – l, j)
jk–1(q + 1 – l)

+
h–1∑

β=0

q∑

l=0

q+1–l∑

j=1

m–1∑

α=0

(
q
l

)

(–1)α+β (βm)(mh)–1hq–l(mh)lEl

(
α

m
+

β

h

)

× (j – 1)!2q–l+1τ (j)S1(q + 1 – l, j)
jk–1(q + 1 – l)

=
m–1∑

α=0

q∑

l=0

q+1–l∑

j=1

h–1∑

β=0

(
q
l

)

(–1)α+β (j – 1)!τ (j)2q–l+1S1(q + 1 – l, j)
jk–1(q + 1 – l)

× (
(αh)mq–l + (βm)hq–l)El

(
α

m
+

β

h

)
.

Therefore, from (52), we obtain the reciprocity relation for the type 2 unipoly-Dedekind
type DC sums. �
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Corollary 12 Let m, q, be odd positive integers m ≥ 1 and q ≥ 3, respectively. Then we get

mqZ1,q, 1
�

(h, m) + hqZ1,q, 1
�

(m, h) = mqTq(h, m) + hqTq(m, h)

= 2
m–1∑

α=0

h–1∑

β=0

(mh)q–1(–1)α+β (αh + mβ)Eq

(
β

h
+

α

m

)
,

where �(n) = (n – 1)!.

4 Unipoly-Dedekind type DC sums associated withunipoly-Euler functions of
index k

In this section, as another generalization of the poly Dedekind type DC sums, we consider
unipoly-Dedekind type DC sums associated with the unipoly-Euler functions of index k
and derive the reciprocity relation for these. For the purposes of this section, we first intro-
duce two new polynomials, the poly-Euler polynomials and poly-Genocchi polynomials,
using the polylogarithm function of arbitrary index k.

It is well known that the polylogarithm function of index k is defined by

Lik(x) =
∞∑

n=1

xn

nk , (k ∈ Z), (see [8, 10, 12]).

Note that Li1(x) = – log(1 – x).
We consider the poly-Euler polynomials given by

Lik(1 – e–2t)
t(et + 1)

ext =
∞∑

n=0

E∗
k,n(x)

tn

n!
, (k ∈ Z). (53)

When x = 0, E∗
k,n = E∗

k,n(0), n ≥ 0, are called poly-Euler numbers.
We also introduce the poly-Genocchi polynomials, which are given by

Lik(1 – e–2t)
et + 1

ext =
∞∑

n=0

G∗
k,n(x)

tn

n!
, (k ∈ Z). (54)

When x = 0, G∗
k,n = G∗

k,n(0), n ≥ 0, are called poly-Genocchi numbers.
Since Li1(1 – e–2t) = 2t, we see that E∗(1)

n (x) = En(x) and G∗(1)
n (x) = Gn(x) (n ≥ 0) are the

Euler polynomials and the Genocchi polynomials, respectively.
In addition, we define the unipoly-Euler polynomials of arbitrary index k defined by

uk(1 – e–2t)|τ )
t(et + 1)

ext =
∞∑

n=0

E∗
k,n,τ (x)

tn

n!
. (55)

When x = 0, E∗
k,n,τ = E∗

k,n,τ (0) are called unipoly-Euler numbers.
When τ (n) = 1 for all n, E∗

k,n,1(x) = E∗
k,n(x) is the poly-Euler polynomials.

The unipoly-Genocchi polynomials of arbitrary index k are defined by

uk(1 – e–2t)|τ )
et + 1

ext =
∞∑

n=0

G∗
k,n,τ (x)

tn

n!
. (56)

When x = 0, G∗
k,n,τ = G

∗
k,n,τ (0) are called unipoly-Genocchi numbers.
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When τ (n) = 1 for all n, G∗
k,n,1(x) = G∗

k,n(x) is the poly-Genocchi polynomials.
Now, we consider a new type of unipoly-Dedekind type DC sums associated with the

unipoly-Euler function of index k as follows:

Yk,q,τ (h, m) = 2
m–1∑

μ=1

(–1)μ(μ/m)E∗
k,q,τ (hμ/m), (h, m, q ∈N, k ∈ Z), (57)

where h, m, q ∈ N with q ≡ 1 (mod2) and E∗
k,q,τ (x) = E∗

k,q,τ (x – [x]) are the unipoly-Euler
functions of index k ([x] is the largest integer less than x).

For n ∈ N ∪ {0} and k ∈ Z, let τ (n) = 1. From E∗
k,q,1 = E∗

k,q and (13), we note that
Yk,q,1(h, m) = Tk,q(h, m).

Y1,q,1(h, m) = 2
m–1∑

μ=1

(–1)μ(μ/m)E1,q,1(hμ/m) = Tq(h, m).

We note that

uk(1 – e–2t)|τ )
t(et + 1)

ext =

( ∞∑

l=0

E∗
k,l,τ

tl

l!

)( ∞∑

m=0

xm

m!
tm

)

=
∞∑

n=0

( n∑

l=0

(
n
l

)

E∗
k,l,τ xn–l

)
tn

n!
. (58)

Thus, by (58), we get

E∗
k,n,τ (x) =

n∑

l=0

(
n
l

)

E∗
k,l,τ xn–l (n ≥ 0). (59)

In the same way as (59), we have

G∗
k,n,τ (x) =

n∑

l=0

(
n
l

)

G∗
k,l,τ xn–l (n ≥ 0). (60)

Furthermore, by (59) and (60), we have

d
dx

E∗
k,n,τ (x) = nE∗

k,n–1,τ (x) and
d

dx
G∗

k,n,τ (x) = nG∗
k,n–1,τ (x), (n ≥ 1). (61)

Theorem 13 For n ≥ 1, we have

E∗
k,n,τ (x) =

n∑

m=0

m+1∑

l=1

(
n
m

)
(l – 1)!(–1)l+m+12mτ (l)S2(m + 1, l)

lk–1(m + 1)
En–m(x), (k ∈ Z) (62)

and

G∗
k,n,τ (x) =

n∑

m=0

m+1∑

l=1

(
n
m

)
(l – 1)!(–1)l+m+12mτ (l)S2(m + 1, l)

lk–1(m + 1)
Gn–m(x), (k ∈ Z). (63)

Proof From (2), (16), and (55), we have

∞∑

n=0

E∗
k,n,τ (x)

tn

n!
=

uk(1 – e–2t)|τ )
t(et + 1)

ext =
1
2

2ext

et + 1
1
t

∞∑

l=1

τ (l)(1 – e–2t)l

lk (64)
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=
1
2

2ext

et + 1
1
t

∞∑

m=1

m∑

l=1

(l – 1)!(–1)l(–2)mτ (l)S2(m, l)
lk–1

tm

m!

=
∞∑

i=0

Ei(x)
ti

i!

∞∑

m=0

m+1∑

l=1

(l – 1)!(–1)l+m+12mτ (l)S2(m + 1, l)
lk–1(m + 1)

tm

m!

=
∞∑

n=0

( n∑

m=0

m+1∑

l=1

(
n
m

)
(l – 1)!(–1)l+m+12mτ (l)S2(m + 1, l)

lk–1(m + 1)
En–m(x)

)
tn

n!
.

Therefore, from (64), we get identity (62).
By using (3), (16), and (56), in the same way as (64), we also get identity (63). �

In (62), when x = 1, we get

E∗
k,n,τ =

n∑

m=0

m+1∑

l=1

(
n
m

)
(l – 1)!(–1)l+m+12mτ (l)S2(m + 1, l)

lk–1(m + 1)
En–m (k ∈ Z), (65)

and the first few of the unipoly-Euler numbers are E∗
k,0,τ = τ (1), E∗

k,1,τ = –τ (1)+ 1
2k–1 τ (2), . . . .

In (63), when x = 1, we get

G∗
k,n,τ =

n∑

m=0

m+1∑

l=1

(
n
m

)
(l – 1)!(–1)l+m+12mτ (l)S2(m + 1, l)

lk–1(m + 1)
Gn–m (k ∈ Z), (66)

and the first few of the unipoly-Genocchi numbers are G∗
k,0,τ = 0, G∗

k,1,τ = τ (1), . . . .
Since G∗

k,0,τ = 0, we note that

E∗
k,n,τ (x) =

G∗
k,n+1,τ (x)
n + 1

. (67)

Lemma 14 For n ≥ 1, we have

G∗
k,n,τ (1) + G∗

k,n,τ = 2n
n∑

m=1

(–1)n+mm!
mk τ (m)S2(n, m), (k ∈ Z) (68)

and

E∗
k,n–1,τ (1) + E∗

k,n–1,τ =
2n

n

n∑

m=1

(–1)n+mm!
mk τ (m)S2(n, m), (k ∈ Z). (69)

Proof From (5) and (56), we have

uk
(
1 – e–2t|τ)

=

( ∞∑

l=0

G∗
k,l,τ

tl

l!

)
(
et + 1

)
(70)

=
∞∑

n=0

(
G∗

k,n,τ (1) + G∗
k,n,τ

) tn

n!

=
∞∑

n=1

(
G∗

k,n,τ (1) + G∗
k,n,τ

) tn

n!
.
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On the other hand, from (17), we have

uk
(
1 – e–2t|τ)

=
∞∑

m=1

τ (m)
mk (–1)m(

e–2t – 1
)m (71)

=
∞∑

m=1

τ (m)m!
mk (–1)m

∞∑

n=m
S2(n, m)

(–2)ntn

n!

=
∞∑

n=1

(

2n
n∑

m=1

(–1)n+mm!
mk τ (m)S2(n, m)

)
tn

n!
.

Therefore, by (70) and (71), we obtain identity (68). By using (67), we get identity (69). �

Theorem 15 For an odd positive integer d ≥ 3 and n ≥ 1, we have

(–1)d–1Gk,n,τ (d) + G∗
k,n,τ (72)

=
n∑

a=1

a∑

b=0

d–1∑

i=0

(
n
a

)

(–1)iin–a (b – 1)!(–1)a+b2a

bk–1 τ (b)S2(a, b)

and

(–1)d–1E∗
k,n–1,τ (d) + E∗

k,n–1,τ (73)

=
1
n

( n∑

a=1

a∑

b=0

d–1∑

i=0

(
n
a

)

(–1)iin–a (b – 1)!(–1)a+b2a

bk–1 τ (b)S2(a, b)

)

.

Proof For an odd positive integer d ≥ 3, from (15) and (17), we have

d–1∑

i=0

(–1)ieituk
(
1 – e–2t|τ)

(74)

=
d–1∑

i=0

(–1)i
∞∑

j=0

ij tj

j!

∞∑

b=1

τ (b)(–1)b(e–2t – 1)b

bk

=
∞∑

j=0

( d–1∑

i=0

(–1)iij

)
tj

j!

∞∑

b=1

τ (b)(–1)bb!
bk

∞∑

a=b

S2(a, b)
(–2t)a

a!

=
∞∑

j=0

( d–1∑

i=0

(–1)iij

)
tj

j!

∞∑

a=1

( a∑

b=1

(b – 1)!(–1)b(–2)a

bk–1 τ (b)S2(a, b)

)
ta

a!

=
∞∑

n=1

( n∑

a=1

a∑

b=0

d–1∑

i=0

(
n
a

)

(–1)iin–a (b – 1)!(–1)a+b2a

bk–1 τ (b)S2(a, b)

)
tn

n!
.

On the other hand, from
∑n–1

i=0 (–1)ieit = (–1)n–1ent+1
et+1 , (n ≡ 1(mod2)), we have

d–1∑

i=0

(–1)ieituk
(
1 – e–2t|τ)

=
(–1)d–1edt + 1

et + 1
uk

(
1 – e–2t|τ)

(75)
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=
∞∑

n=0

(
(–1)d–1G∗

k,n(d) + G∗
k,n

) tn

n!
.

Therefore, by (74) and (75), we obtain identity (72).
Moreover, from (67), we get identity (73). �

Theorem 16 For an odd positive integer d ≥ 1 and n ≥ 0, we have

G∗
k,n,τ (x) =

n∑

l=0

(
n
l

) n–l+1∑

j=1

d–1∑

i=0

(–1)idl–1

× Gl

(
i + x

d

)
(j – 1)!(–1)j+n–l+12n–l

jk–1(n – l + 1)
τ (j)S2(n – l + 1, j).

Proof From (2) and (14), for an odd positive integer d ≥ 1, we have

uk(1 – e–2t|τ )
et + 1

ext (76)

=
1

2d

d–1∑

i=0

(–1)ie( i+x
d ) dt 2dt

edt + 1
1
t

uk
(
1 – e–2t|τ)

=
1

2d

d–1∑

i=0

(–1)i
∞∑

l=0

Gl

(
i + x

d

)
dltl

l!
1
t

∞∑

j=1

τ (j)(–1)j(e–2t – 1))j

jk

=
1

2d

d–1∑

i=0

(–1)i
∞∑

l=0

Gl

(
i + x

d

)
dltl

l!
1
t

∞∑

j=1

τ (j)(–1)jj!
jk

∞∑

a=j

S2(a, j)
(–2t)a

a!

=
∞∑

l=0

( d–1∑

i=0

(–1)idl–1Gl

(
i + x

d

))
tl

l!

∞∑

a=1

( a∑

j=1

(j – 1)!(–1)j+a2a–1

jk–1 τ (j)S2(a, j)

)
ta–1

a!

=
∞∑

l=0

( d–1∑

i=0

dl–1(–1)iGl

(
i + x

d

))
tl

l!

∞∑

a=0

( a+1∑

j=1

(j – 1)!(–1)j+a+12a

jk–1(a + 1)
τ (j)S2(a + 1, j)

)
ta

a!

=
∞∑

n=0

( n∑

l=0

(
n
l

) n–l+1∑

j=1

d–1∑

i=0

(–1)idl–1

× Gl

(
i + x

d

)
(j – 1)!(–1)j+n–l+12n–l

jk–1(n – l + 1)
τ (j)S2(n – l + 1, j)

)
tn

n!
.

Therefore, by (76), we get the desired result. �

Corollary 17 For an odd positive integer d ≥ 1 and n ≥ 1, we have

E∗
k,n–1,τ (x) =

n–1∑

l=0

n–l∑

j=1

d–1∑

i=0

(
n – 1

l

)

(–1)idlEl

(
i + x

d

)
(j – 1)!(–1)n+j–l2n–l–1τ (j)S2(n – l, j)

jk–1(n – l)
.
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Proof From (67) and Theorem 16, we have

E∗
k,n–1,τ (x) (77)

=
G∗

k,n,τ (x)
n

=
1
n

n∑

l=1

(
n
l

) n–l+1∑

j=1

d–1∑

i=0

dl–1(–1)iGl

(
i + x

d

)
(j – 1)!τ (j)(–1)j+n–l+12n–l

jk–1(n – l + 1)
S2(n – l + 1, j)

=
1
n

n–1∑

l=0

n–l∑

j=1

d–1∑

i=0

(
n

l + 1

)

dl(–1)iGl+1

(
i + x

d

)
(j – 1)!(–1)j+n–l2n–l–1

jk–1(n – l)
τ (j)S2(n – l, j)

=
n
n

n–1∑

l=0

n–l∑

j=1

d–1∑

i=0

(
n – 1

l

)

dl(–1)i Gl+1( i+x
d )

l + 1
(j – 1)!(–1)j+n–l2n–l–1τ (j)S2(n – l, j)

jk–1(n – l)

=
n–1∑

l=0

n–l∑

j=1

d–1∑

i=0

(
n – 1

l

)

(–1)idlEl

(
i + x

d

)
(j – 1)!(–1)n+j–l2n–l–1τ (j)S2(n – l, j)

jk–1(n – l)
.

There, from (77), we arrive at the desired result. �

We can obtain the following lemmas in the same way as Lemma 6 and Lemma 7, respec-
tively, in Sect. 2.

Lemma 18 For l ∈N with l < q, we have

(
q
l

)

E∗
k,q–l,τ (1) +

(
q

l – 1

)

E∗
k,q–l+1,τ (1) =

q∑

j=0

(
q – j + 1

l

)(
q
j

)

E∗
k,j,τ .

Lemma 19 For q ∈N, we have

q∑

j=0

(
q
j

)
E∗

k,j,τ

q – j + 2
=

1
q + 1

E∗
k,q,τ (1) –

1
(q + 1)(q + 2)

E∗
k,q+2,τ (1) +

E∗
k,q+2,τ

(q + 1)(q + 2)
.

In addition, we can obtain the following theorems in the same way as Theorem 9 and
Theorem 10, respectively, in Sect. 3.

Theorem 20 Let m, q be odd positive integers m ≥ 1 and q ≥ 3, respectively. Then we have

mqYk,q,τ (1, m)

=
q–2∑

i=1

(
q
i

)

E∗
k,q–i,τ (1)mq–iEi +

q–2∑

i=1

(
q

i – 1

)
(
E∗

k,q–i+1,τ (1) – E∗
k,q–i+1,τ

)
mq–iEi

+ 2
q∑

j=0

(
q
j

)

E∗
k,j,τ mj–1Eq–j+1 + (q + 1)τ (1)Eq + mqE∗

k,q,τ (1).
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Theorem 21 Let h, m be relatively prime positive integers and m, q be odd positive integers
m ≥ 1 and q ≥ 3, respectively. Then we have

mq
m–1∑

α=0

q∑

j=0

(–1)α
(

q
j

)

E∗
k,j,τ

(
α

m

)
hjEq–j

(
h –

[
hα

m

])
=

q∑

j=0

(
q
j

)

(mh)q–jEjE∗
k,q–j,τ (1).

Now, we obtain the following reciprocity theorem for the unipoly-Dedekind type DC
sums associated with the unipoly-Euler function with index k.

Theorem 22 Let m, q be odd positive integers m ≥ 1 and q ≥ 3, respectively. Then we have

mqYk,q,τ (h, m) + hqYk,q,τ (m, h)

=
m–1∑

α=0

h–1∑

β=0

q∑

l=0

q+1–l∑

j=1

(
q
l

)

(–1)α+β+q+1+j–l (j – 1)!τ (j)2q–l+1S2(q + 1 – l, j)
jk–1(q + 1 – l)

× (
(αh)mq–l + (βm)hq–l)El

(
α

m
+

β

h

)
.

Proof From Corollary 17, we note that

E∗
k,q,τ (x) =

q∑

l=0

q∑

j=1

d–1∑

i=0

(
q
l

)

(–1)idlEl

(
i + x

d

)
(78)

× (j – 1)!(–1)q+1+j–l2q–lτ (j)S2(q + 1 – l, j)
jk–1(q + 1 – l)

,

where d ∈N with d ≡ 1 (mod2), k ∈ Z, and n ≥ 0.
From (78), in the same way as (53),

mqYk,q,τ (h, m) + hqYk,q,τ (m, h) (79)

= 2mq
m–1∑

α=0

(–1)α
α

m
Ek,q,τ

(
hα

m

)
+ 2hq

h–1∑

β=0

(–1)β
β

h
Ek,q,τ

(
mβ

h

)

= 2mq
m–1∑

α=0

(–1)α
α

m

q∑

l=0

q+1–l∑

j=1

h–1∑

β=0

(
q
l

)

(–1)βhlEl

(
β

h
+

α

m

)

× (j – 1)!(–1)q+1+j–l2q–lτ (j)S2(q + 1 – l, j)
jk–1(q + 1 – l)

+ 2hq
h–1∑

β=0

(–1)β
β

h

q∑

l=0

q+1–l∑

j=1

m–1∑

α=0

(
q
l

)

(–1)αmlEl

(
α

m
+

β

h

)

× (j – 1)!(–1)q+1+j–l2q–lτ (j)S2(q + 1 – l, j)
jk–1(q + 1 – l)

= 2
m–1∑

α=0

q∑

l=0

q+1–l∑

j=1

h–1∑

β=0

(
q
l

)

(–1)α+β α

m
mq–l(mh)lEl

(
β

h
+

α

m

)

× (j – 1)!(–1)q+1+j–l2q–lτ (j)S2(q + 1 – l, j)
jk–1(q + 1 – l)
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+ 2
h–1∑

β=0

q∑

l=0

q+1–l∑

j=1

m–1∑

α=0

(
q
l

)

(–1)α+β β

h
hq–l(mh)lEl

(
α

m
+

β

h

)

× (j – 1)!(–1)q+1+j–l2q–lτ (j)S2(q + 1 – l, j)
jk–1(q + 1 – l)

=
m–1∑

α=0

q∑

l=0

q+1–l∑

j=1

h–1∑

β=0

(
q
l

)

(–1)α+β+q+1+j–l (j – 1)!τ (j)2q–l+1S2(q + 1 – l, j)
jk–1(q + 1 – l)

× (
(αh)mq–l + (βm)hq–l)El

(
α

m
+

β

h

)
.

Therefore, from (79), we obtain the reciprocity relation for the unipoly-Dedekind type DC
sums. �

Corollary 23 Let m, q, be odd positive integers m ≥ 1 and q ≥ 3, respectively. Then we get

mqY1,q,1(h, m) + hqY1,q,1(m, h) = mqTq(h, m) + hqTq(m, h)

= 2
m–1∑

α=0

h–1∑

β=0

(mh)q–1(–1)α+β (αh + mβ)Eq

(
β

h
+

α

m

)
,

where τ (n) = 1 for all n.

5 Conclusion
In this paper, as further generalizations of the poly-Dedekind type DC sums, we intro-
duced two kinds of unipoly-Dedekind type DC sums. In Sect. 3, the type 2 unipoly-
Dedekind type DC sums associated with the type 2 unipoly-Euler functions of index k
were introduced, and some interesting identities and the reciprocity relation were shown.
In Sect. 4, the unipoly-Dedekind type DC sums associated with the unipoly-Euler func-
tions of index k were introduced, and some interesting identities and the reciprocity rela-
tion were shown. We would like to further study another Dedekind type DC sums.
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