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Abstract
In this paper we present direct results (upper estimates) for Baskakov operators acting
in spaces related with Jacobi-type weights. Our results include and extend some
known facts related with this problem. The approach is based in the use of a new
pointwise K-functional.
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1 Introduction
Let C[0,∞) be the family of all real continuous functions on the semiaxis and B(0,∞)
the family of all bounded functions in (0,∞). A family of Baskakov operators is obtained
as follows. For λ ∈ R, λ ≥ 1, and a function f : [0,∞) → R, define (whenever the series
converges)

Vλ(f , x) =
∞∑

k=0

f
(

k
λ

)
vλ,k(x), x ≥ 0, (1)

where

vλ,k(x) =
(

λ + k – 1
k

)
xk

(1 + x)λ+k .

Some authors have considered these operators acting in spaces defined with the help of a
Jacobi weight in the discrete case (λ = n ∈N) (see [6, 17, 18], and [21]).

Let us present some notations. Throughout the paper we set ϕ(x) =
√

x(1 + x) and, for
x > 0,

�(x) = xa/(1 + x)b,

where a ≥ –1 and b ∈R are fixed real parameters.
We will study approximation properties of the operators Vλ in the weighted spaces of

continuous functions

C�[0,∞) =
{

f ∈ C[0,∞) : �f ∈ B(0,∞)
}

.
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When 0 < a < 1 and b > 0, it was proved in [21] that Baskakov operators are unbounded
in C�[0,∞) with the usual weighted norm ‖�f ‖ = ‖�f ‖∞ := supx>0 |�(x)f (x)|. That is the
reason why is better to consider the norm

‖f ‖� =
∣∣f (0)

∣∣ + sup
x>0

∣∣�(x)f (x)
∣∣.

To avoid complications, some authors prefer to work with the space

C0
�[0,∞) =

{
f ∈ C�[0,∞) : f (0) = 0

}
.

For α ∈ [0, 1], we also consider the space

C2,α
� := C2,α

� [0,∞) =
{

g ∈ C�[0,∞) : g ′ ∈ ACloc and �ϕ2αg ′′ ∈ B(0,∞)
}

.

In this paper we present upper estimates for the error �(x)|f (x) – Vλ(f , x)| assuming that
a ≥ –1 and b ∈R.

In the discrete case, pointwise estimates have been obtained by some authors under
more restrictive selections of the parameters a and b. For instance, in the unweighted
case (a = b = 0), Xie [20, Theorem 1.1] proved that, for α ∈ [0, 1],

∣∣f (x) – Vn(f , x)
∣∣ ≤ Cω2

ϕα

(
f ,

ϕ1–α(x)√
n

)
, f ∈ C[0,∞) ∩B(0,∞),

where ω2
ϕα (f , t) is the Ditzian–Totik modulus.

The case α = 0 was previously studied by Huo and Xue in [14, Theorem 1]. For 0 < a < 1,
b > 0, and α ∈ [0, 1], Wang and Xue [18, Theorem 1.1] verified the inequality

�(x)
∣∣f (x) – Vn(f , x)

∣∣ ≤ Cω2
ϕα

(
f ,

ϕ1–α(x)√
n

)

�

, f ∈ C�[0,∞). (2)

The same result appeared in [17].
Our results are not restricted to the consideration of a larger family of parameters a

and b. There are two other important facts to be taken into account. First, instead of the
classical K-functionals, we use a pointwise K-functional of the form

Kα(f , x, t)� = inf
g∈C2,α

�

{‖f – g‖� + t
∥∥�ϕ2g ′′∥∥

(0,x] + tϕ2(1–α)(x)
∥∥�ϕ2αg ′′∥∥

[x,∞)

}
. (3)

In second place, we present the estimates for operators with the continuous parameter λ.
Why are these two changes necessary? As we will show in another paper, the K-functional
(3) is convenient for proving strong converse inequalities.

Notice that, when α = 1, the K-functional (3) is just equivalent to the usual one

Kα(f , t)� = inf
g∈C2,α

�

{‖f – g‖� + t
∥∥�ϕ2αg ′′∥∥}

, (4)

because, for all x > 0,

∥∥�ϕ2g ′′∥∥ ≤ ∥∥�ϕ2g ′′∥∥
(0,x] +

∥∥�ϕ2g ′′∥∥
[x,+∞) ≤ 2

∥∥�ϕ2g ′′∥∥.



Bustamante et al. Journal of Inequalities and Applications        (2021) 2021:119 Page 3 of 17

Moreover, for 0 ≤ α ≤ 1 and x > 0, we have

Kα(f , x, t)� ≤ 2Kα

(
f , tϕ2(1–α)(x)

)
�
. (5)

Indeed, for y ∈ (0, x], α ∈ [0, 1] and g ∈ C2,α
� , we have

∣∣�(y)ϕ2(y)g ′′(y)
∣∣ = ϕ2(1–α)(y)

∣∣�(y)ϕ2α(y)g ′′(y)
∣∣ ≤ ϕ2(1–α)(x)

∥∥�ϕ2αg ′′∥∥

and then

∥∥�ϕ2g ′′∥∥
(0,x] ≤ ϕ2(1–α)(x)

∥∥�ϕ2αg ′′∥∥. (6)

On the other hand, the use of a continuous parameter allows us to apply the results to
study other family of operators. For a real c > 0, n > c, and a function f : [0,∞) →R, define

Wn,c(f , x) =
∞∑

k=0

f
(

k
n

)
wn,k,c(x), x ≥ 0, (7)

whenever the series converges, where

wn,k,c(x) =
C(n, k, c)

k!
xk

(1 + cx)k+n/c , k > 0,

with C(n, k, c) = n(n + c) · · · (n + (k – 1)c), and wn,0,c(x) = 1/(1 + cx)n/c. Here n is not neces-
sarily an integer.

The operators (7) have been studied by several authors (see [3, 4, 10, 14], and [22]).
Later we show that the operators Wn,c(f , x) are related with Baskakov operators, but with
a family of not integer parameters. This is a good reason for studying the operators Vλ.

The main results are given in Sect. 2 (pending of some auxiliary results that will be
proved in Sect. 3). In Sect. 4 we explain how our approach can be used to obtain similar
results for the operators (7). Converse results will appear in a separated paper.

The paper contains several references written in Chinese. We include them to provide a
review in the topic. Since we do not use any result from these work, the reader can follow
our arguments.

2 Main results
The inequality (8) was proved in [21, page 136], [15, Lemma 2.2] and [18, page 365-366]
under the restriction 0 < a < 1 and b > 0. The same restrictions were considered in [10].

Proposition 2.1 Assume a ≥ –1, b ∈ R, α ∈ [0, 1]. If 0 ≤ a + α < 2, then there exists a
constant C = C(a, b,α) such that, for λ > 2(1 + p), with p = max{|b|, 2|b – α|} and x > 0, one
has

�(x)Vλ

(∣∣∣∣
∫ t

x

|t – u|
�(u)ϕ2α(u)

du
∣∣∣∣, x

)
≤ C

λ
ϕ2(1–α)(x). (8)



Bustamante et al. Journal of Inequalities and Applications        (2021) 2021:119 Page 4 of 17

Proof By definition of Vλ,

�(x)Vλ

(∣∣∣∣
∫ t

x

|t – s|
�(s)ϕ2α(s)

ds
∣∣∣∣, x

)
= �(x)

∞∑

k=0

∣∣∣∣
∫ k/λ

x

|k/λ – s|ds
�(s)ϕ2α(s)

∣∣∣∣vλ,k(x).

First we estimate in (i) the term corresponding to k = 0, for λx ≤ 1. In (ii) we consider the
sum for k > 0 and λx ≤ 1. Finally, in part (iii) we estimate the sum in the case λx ≥ 1.

(i) Assume k = 0 and λx ≤ 1. Then

�(x)
∫ x

0

sds
�(s)ϕ2α(s)

vλ,0(x) =
xa

(1 + x)b+λ

∫ x

0
s1–a–α(1 + s)b–α ds. (9)

If b ≥ α, then from (9) we obtain

�(x)
∫ x

0

sds
�(s)ϕ2α(s)

vλ,0(x) ≤ xa

(1 + x)α+λ

∫ x

0
s1–a–α ds

=
x2–α

(2 – a – α)(1 + x)α+λ
=

xϕ2(1–α)(x)
(2 – a – α)(1 + x)1+λ

≤ ϕ2(1–α)(x)
(2 – a – α)λ

.

If b < α, then from (9) and the condition b + λ ≥ 0, we get

�(x)
∫ x

0

sds
�(s)ϕ2α(s)

vλ,0(x) ≤ xa
∫ x

0
s1–a–α ds =

x2–α

2 – a – α

≤ xϕ2(1–α)(x)
(2 – a – α)(1 + x)1–α

≤ ϕ2(1–α)(x)
(2 – a – α)λ

.

(ii) Suppose 0 < λx ≤ 1 and k > 0. If b ≥ 0, then

�(x)
∫ k/λ

x

(k/λ – s) ds
�(s)ϕ2α(s)

=
xa

(1 + x)b

∫ k/λ

x

(k/λ – s)(1 + s)b ds
sa+α(1 + s)α

≤ k/λ – x
xα(1 + x)b+α

∫ k/λ

x

(1 + s)�b�

(1 + s)�b�–b ds

≤ (k/λ – x)2(1 + k/λ)�b�

xα(1 + x)�b�+α
.

Hence, from Proposition 3.5,

�(x)
∞∑

k=1

∫ k/λ

x

(k/λ – s) ds
�(s)ϕ2α(s)

vλ,k(x)

≤ 1
xα(1 + x)�b�+α

∞∑

k=1

(
k
λ

– x
)2(

1 +
k
λ

)�b�
vλ,k(x) ≤ C

xα(1 + x)α
ϕ2(x)

λ

= C
ϕ2(1–α)(x)

λ
.
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If b < 0, we obtain

�(x)
∫ k/λ

x

(k/λ – s) ds
�(s)ϕ2α(s)

=
xa

(1 + x)b

∫ k/λ

x

(k/λ – s)(1 + s)b ds
sa+α(1 + s)α

≤ 1
xα(1 + x)α

∫ k/λ

x
(k/λ – s) ds =

(k/λ – x)2

2xα(1 + x)α
.

Then

�(x)
∞∑

k=1

∫ k/λ

x

(k/λ – s) ds
�(s)ϕ2α(s)

vλ,k(x) ≤ 1
2xα(1 + x)α

∞∑

k=1

(k/λ – x)2vλ,k(x)

≤ 1
2xα(1 + x)α

ϕ2(x)
λ

=
ϕ2(1–α)(x)

2λ
.

(iii) Now we assume that λx ≥ 1. From Corollary 3.4 and Propositions 3.2 (i) and 3.6, one
has (C = 1/(2 – a – α))

�(x)Vλ

(∣∣∣∣
∫ t

x

|t – u|
ua+α(1 + u)α–b du

∣∣∣∣, x
)

≤ CVλ

(
(t – x)2

ϕ2α(x)

(
1 +

(1 + t)b–α

(1 + x)b–α

)
, x

)

=
C

ϕ2α(x)

(
Vλ

(
(t – x)2, x

)
+

Vλ((t – x)2(1 + t)b–α , x)
(1 + x)b–α

)

≤ C
(

ϕ2(1–α)(x)
λ

+
(Vλ((t – x)4, x))1/2(Vλ((1 + t)2(b–α), x))1/2

ϕ2α(x)(1 + x)b–α

)

≤ C
(

ϕ2(1–α)(x)
λ

+ C12|b–α| ϕ
2(1–α)(x)

λ

)
≤ C2

ϕ2(1–α)(x)
λ

. �

Proposition 2.2 If b ∈ R, a ≥ –1, �(x) = xa/(1+x)b, then there exists a constant C = C(a, b)
such that, for all f ∈ C�[0,∞), x > 0 and λ ≥ 2(1 + p), with p = |b|, if a = –1, and p =
max{2|a|, 2|b|, |b|/(1 + a)} otherwise, one has

�(x)
∣∣Vλ(f , x)

∣∣ ≤ C‖f ‖�.

Proof If f ∈ C�[0,∞) and x > 0, then

�(x)
∣∣Vλ(f , x)

∣∣ ≤ �(x)|f (0)|
(1 + x)λ

+ �(x)
∞∑

k=1

∣∣∣∣f
(

k
λ

)∣∣∣∣vλ,k(x).

If a < 0, then f (0) = 0. If a ≥ 0 (note that λ + b ≥ a), then

�(x)|f (0)|
(1 + x)λ

=
xa|f (0)|

(1 + x)λ+b ≤ xa|f (0)|
(1 + x)a ≤ ∣∣f (0)

∣∣.

On the other hand

�(x)
∞∑

k=1

∣∣∣∣f
(

k
λ

)∣∣∣∣vλ,k(x) ≤ �(x)‖�f ‖
∞∑

k=1

vλ,k(x)
�(k/λ)

≤ C‖�f ‖,
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where in the last inequality we have used Proposition 3.8. Hence,

�(x)
∣∣Vλ(f , x)

∣∣ ≤ ∣∣f (0)
∣∣ + C‖�f ‖ = C1‖f ‖� ,

where C1 = max{1, C}. �

Theorem 2.3 Assume b ∈ R, a ∈ [–1, 1), �(x) = xa/(1 + x)b and α ∈ [0, 1]. If 0 ≤ a + α,
then there exist a constant C = C(a, b,α) and λ0 > 0, such that, for x > 0, f ∈ C�[0,∞) and
λ ≥ λ0, one has

�(x)
∣∣f (x) – Vλ(f , x)

∣∣ ≤ CKα

(
f , x,

1
λ

)

�

,

where Kα(f , x, t)� is defined in (3).

Proof If x > 0 and g ∈ C2,α
� [0,∞), we use the representation

g(t) = g(x) + g ′(x)(t – x) +
∫ t

x
g ′′(u)(t – u) du.

If t < x, then

∣∣∣∣
∫ t

x
g ′′(u)(t – u) du

∣∣∣∣ ≤ ∥∥�ϕ2g ′′∥∥
(0,x]

∫ x

t

|t – u|du
ϕ2(u)�(u)

, (10)

and, if t > x, then

∣∣∣∣
∫ t

x
g ′′(u)(t – u) du

∣∣∣∣ ≤ ∥∥�ϕ2αg ′′∥∥
[x,∞)

∫ t

x

|t – u|du
ϕ2α(u)�(u)

.

Hence, from Proposition 2.1, we have

�(x)
∣∣Vλ(g, x) – g(x)

∣∣

≤ �(x)Vλ

(∣∣∣∣
∫ t

x
g ′′(u)(t – u) du

∣∣∣∣, x
)

≤ �(x)
∥∥�ϕ2g ′′∥∥

(0,x]Vλ

(∣∣∣∣
∫ x

t

|t – u|du
ϕ2(u)�(u)

∣∣∣∣, x
)

+ �(x)
∥∥�ϕ2αg ′′∥∥

[x,∞)Vλ

(∣∣∣∣
∫ t

x

|t – u|du
ϕ2α(u)�(u)

∣∣∣∣, x
)

≤ C
λ

(∥∥�ϕ2g ′′∥∥
(0,x] + ϕ2(1–α)(x)

∥∥�ϕ2αg ′′∥∥
[x,∞)

)
. (11)

Now, using standard arguments and Proposition 2.2, we have, for x > 0,

�(x)
∣∣f (x) – Vλ(f , x)

∣∣

≤ �(x)
∣∣f (x) – g(x)

∣∣ + �(x)
∣∣Vλ(g – f , x)

∣∣ + �(x)
∣∣g(x) – Vλ(g, x)

∣∣

≤ (1 + C)‖f – g‖� + �(x)
∣∣g(x) – Vλ(g, x)

∣∣. (12)
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Thus, the result follows from (11), (12) and the definition of the K-functional given
in (3). �

Note that the condition a < 1 in Theorem 2.3 is necessary in order to apply Proposi-
tion 2.1 with α = 1 to the right side integral in (10). However, writing

∣∣∣∣
∫ t

x
g ′′(u)(t – u) du

∣∣∣∣ ≤ ∥∥�ϕ2αg ′′∥∥
∣∣∣∣
∫ t

x

|t – u|du
ϕ2α(u)�(u)

∣∣∣∣,

we only need the condition 0 ≤ a + α < 2 to apply Proposition 2.1 and conclude that

�(x)
(
Vλ(g, x) – g(x)

) ≤ C
λ

ϕ2(1–α)(x)
∥∥�ϕ2αg ′′∥∥. (13)

Remark 1 The inequality (13) was proved in [8, Lemma 6] for α = 0, b ∈R, and a ∈ [–1, 0].
For a = b = 0 the inequality (13) was also proved in [19, page 106-107]. The case a = 0 and
b ∈N appeared in [4, Lemma 5] and [22, Lemma 1.6] with α = 0.

Taking into account (12), (13), Proposition 2.2 and the definition of the K-functional
given in (4) we have immediately the following result.

Corollary 2.4 Assume b ∈R, a ≥ –1, �(x) = xa/(1 + x)b and α ∈ [0, 1]. If 0 ≤ a +α < 2, then
there exist a constant C = C(a, b,α) and λ0 > 0 such that, if λ ≥ λ0, x > 0, and f ∈ C�[0,∞),
then

�(x)
∣∣f (x) – Vλ(f , x)

∣∣ ≤ CKα

(
f ,

ϕ2(1–α)(x)
λ

)

�

, (14)

where Kα(f , t) is the K-functional given in (4).

Remark 2 In [5, 11] and [16], direct results as in (14) were given with a = b = 0. In [15, 18]
and [21] the problem was studied with 0 < a < 1 and b > 0. In [9, Proposition 3.3] the
authors considered weights of the form �(x) = xβ0 /(1 + x)β0+β∞ , with β0,β∞ ∈ [–1, 0]. The-
orem 1.2 of [6] is also included in Corollary 2.4. In fact, in [6] for reals r, s and λ satisfying
0 ≤ r < λ ≤ 1 and s ≥ 0, the author considered the weight �∗(x) = xr/(1 + x)s and the norm
‖�∗ϕ2(1–λ)f ‖. But this is equivalent to use the weight �(x) = xa/(1+x)b, with a = r +1–λ ≥ 0
and b = s – 1 + λ.

The operators Vλ, with λ = n ∈N, were considered in [14] and [19], with a = b = 0. In [4]
and [22] the case a = 0 and b ∈ N was studied, while in [10] it was assumed that 0 < a < 1
and b > 0.

Notice that, for α ∈ [0, 1],

xα/2 ≤ ϕα(x) ≤ 2α/2xα/2, 0 < x < 1.

Thus ϕα satisfies condition (6.1.3) in [5] with β(0) = α/2. On the other hand

�(x) ∼ xa as x → 0 + and �(x) ∼ xa–b as x → ∞.

Hence condition (6.1.2) in [5] also holds with γ (0) = a and γ (∞) = a – b.
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As in [5, page 56], if a = 0, define

ω2
ϕα (f , t)� = sup

0<h≤t

∥∥�	2
hϕα f

∥∥, (15)

where 	2
s f (x) = f (x + s) – 2f (x) + f (x – s).

If a > 0, define

ω2
ϕα (f , t)� = sup

0<h≤t

∥∥�	2
hϕα f

∥∥
[t∗ ,∞) + sup

0<h≤t∗

∥∥�
−→
	 2

hϕα f
∥∥

[0,12t∗], (16)

where
−→
	 2

s f (x) = f (x + 2s) – 2f (x + s) + f (x), and

t∗ =
(
21+α/2)2/(2–α)t2/(2–α).

It is well known (see [5, Th. 6.1.1] that there exist positive constants C1 and t0 such that,
for f ∈ C0

�[0,∞) and 0 < t ≤ t0,

1
C1

ω2
ϕα (f , t)� ≤ Kα

(
f , t2)

�
≤ C1ω

2
ϕα (f , t)�, (17)

where Kα(f , t)� is given by (4), and the modulus is defined by (15) when a = 0 and by (16)
when a > 0.

For a < 0, we do not know a characterization of the K-functional in terms of an appro-
priate modulus of smoothness.

From Corollary 2.4 and (17), we obtain the following result.

Theorem 2.5 Assume b ∈ R, a ∈ [0, 1), �(x) = xa/(1 + x)b and α ∈ [0, 1]. There exist a
constant C = C(a, b,α) and λ0 > 0 such that, if λ ≥ λ0, x > 0 and f ∈ C0

�[0,∞), then

�(x)
∣∣f (x) – Vλ(f , x)

∣∣ ≤ Cω2
ϕα

(
f ,

ϕ1–α(x)√
λ

)

�

, (18)

where ω2
ϕα (f , t)� is defined in (15) and (16).

In the discrete and unweighted case (n ∈ N and a = b = 0), the inequality (18) was ob-
tained by Huo and Xue [14, Theorem 1] in terms of the usual modulus of continuity (α = 0):

∣∣f (x) – Vn(f , x)
∣∣ ≤ 5ω2

(
f ,

√
x(1 + x)

2n

)
.

In [20, Theorem 1.1], Xie proved an inequality of the form

∣∣f (x) – Vn(f , x)
∣∣ ≤ Cω2

ϕγ

(
f ,

ϕ1–γ (x)√
n

)

any γ ∈ [0, 1].
For 0 < a < 1, b > 0 and α ∈ [0, 1], the inequality (18) was obtained by Wang and Xue [18,

Theorem 1.1]. Another proof was presented in [17].
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3 Auxiliary results
Lemma 3.1 For m ∈N, λ > m, x > 0 and k ∈N0, one has

1
2m–1

(
1 + k/λ

1 + x

)m

≤ vλ+m,k(x)
vλ,k(x)

≤
(

1 + k/λ
1 + x

)m

. (19)

Proof Note that for k = 0 the inequality holds trivially. Next we will consider two cases:
Case I: Assume 0 < k ≤ m. From the definition of vλ,k(x), we have,

vλ+m,k(x)
vλ,k(x)

=
1

(1 + x)m
(λ + m)(λ + m + 1) · · · (λ + k + m – 1)

λ(λ + 1) · · · (λ + k – 1)

=
1

(1 + x)m

k–1∏

j=0

(
1 +

m
λ + j

)
.

Then the result follows taking into account that, if k < m and λ > m, then 1 + k/λ ≤ 1 +
m/λ ≤ 2 and then

1
2m–1

(
1 +

k
λ

)m

≤ 1 +
k
λ

≤ 1 +
m
λ

≤
k–1∏

j=0

(
1 +

m
λ + j

)
≤

(
1 +

m
λ

)k

≤
(

1 +
k
λ

)m

,

where in the last inequality we have applied that (1 + βp)q ≤ (1 + βq)p for p, q ∈ N0, p ≥ q
and β ≥ 0.

Case II: Now suppose k > m. In this case, we have

vλ+m,k(x)
vλ,k(x)

=
1

(1 + x)m
(λ + k)(λ + k + 1) · · · (λ + k + m – 1)

λ(λ + 1) · · · (λ + m – 1)

=
1

(1 + x)m

m–1∏

j=0

(
1 +

k
λ + j

)

and then the result follows taking into account that, for j = 0, 1, . . . , m – 1,

1
2

(
1 +

k
λ

)
≤ λ

λ + j

(
1 +

k
λ

)
≤

(
1 +

k
λ + j

)
≤ 1 +

k
λ

. �

For m = 0, 1, 2, . . . , the central moment of order m of the operator Vλ is defined by

Sλ,m(x) = Vλ

(
(e1 – x)m, x

)
,

where e1 is the function defined by e1(t) = t.

Proposition 3.2 For λ ≥ 1, one has (see [3]):
(i) Sλ,0(x) = 1, Sλ,1(x) = 0, and for m ≥ 1,

Sλ,m+1(x) =
1
λ

ϕ2(x)
(
S′

λ,m(x) + mSλ,m–1(x)
)
. (20)

(ii) For each m ∈ N there exists a constant Cm such that, if λx ≥ 1, then Sλ,2m(x) ≤
Cmϕ2m(x)/λm.
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In particular, from (20), we obtain Sλ,2(x) = ϕ2(x)/λ and, for λx ≥ 1,

Sλ,4(x) =
ϕ4(x)
λ2

(
3 +

6
λ

+
1

λx(1 + x)

)

≤ ϕ4(x)
λ2

(
9 +

λ

1 + λ

)
≤ 10

ϕ4(x)
λ2 , (21)

because the function 
(x) = 1/(x(1 + x)) decreases on (0, +∞).

Proposition 3.3 Assume r ≥ 0, m, q ∈ R and m – r + 1 > 0. Then, for x > 0 and t ≥ 0, one
has

∣∣∣∣
∫ t

x

(t – u)m

ur (1 + u)q du
∣∣∣∣ ≤ |t – x|m+1

(m – r + 1)xr

(
(1 + x)q + (1 + t)q). (22)

Proof First note that

∣∣∣∣
∫ t

x

(t – u)m

ur (1 + u)q du
∣∣∣∣ ≤ (

(1 + x)q + (1 + t)q)
∣∣∣∣
∫ t

x

|t – u|m
ur du

∣∣∣∣.

Now we estimate the last integral in the expression above. If t < x, then, putting u – t =
τ (x – t), we have

∣∣∣∣
∫ t

x

|t – u|m
ur du

∣∣∣∣ =
∫ x

t

(u – t)m

ur du = (x – t)m+1
∫ 1

0

τm

((1 – τ )t + τx)r dτ

≤ (x – t)m+1

xr

∫ 1

0
τm–r dτ =

(x – t)m+1

(m – r + 1)xr .

If x < t, then (note that m > –1 + r ≥ –1)

∣∣∣∣
∫ t

x

|t – u|m
ur du

∣∣∣∣ =
∫ t

x

(t – u)m

ur du ≤ 1
xr

∫ t

x
(t – u)m du =

(t – x)m+1

(m + 1)xr . �

An inequality similar to (22) was proved in [8, Lemma 3] with the conditions 0 ≤ r ≤ 2
and m – r ≥ 0.

Corollary 3.4 Assume a ≥ –1, b ∈ R, �(x) = xa/(1 + x)b and α ∈ [0, 1]. If 0 ≤ a + α < 2,
then, for x > 0 and t ≥ 0,

�(x)
∣∣∣∣
∫ t

x

|t – u|
�(u)ϕ2α(u)

du
∣∣∣∣ ≤ (t – x)2

(2 – a – α)ϕ2α(x)

(
1 +

(1 + t)b–α

(1 + x)b–α

)
. (23)

Proof Since

∣∣∣∣
∫ t

x

|t – u|
�(u)ϕ2α(u)

du
∣∣∣∣ =

∣∣∣∣
∫ t

x

|t – u|(1 + u)b–α

ua+α
du

∣∣∣∣,

the result follows from Proposition 3.3 with q = b – α, m = 1 and r = a + α. �
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In particular, from (23) we have

�(x)
∣∣∣∣
∫ t

x

|t – u|
�(u)ϕ2α(u)

du
∣∣∣∣ ≤ 2(t – x)2

(2 – a – α)ϕ2α(x)
, (24)

for t > x and b ≤ α or t < x and b ≥ α.
It is well known (see [3]) that the operator Vλ satisfies the relation

Vλ

(
(t – x)f (t), x

)
=

ϕ2(x)
λ

V ′
λ

(
f (t), x

)
. (25)

Writing 1 + t = (1 + x) + (t – x) and applying (25), we have

Vλ

(
(1 + t)f (t), x

)
= (1 + x)Vλ

(
f (t), x

)
+

ϕ2(x)
λ

V ′
λ

(
f (t), x

)
. (26)

Using (25) twice, it is easy to show that

Vλ

(
(t – x)2f (t), x

)
=

ϕ2(x)
λ

((
ϕ2(x)

λ
V ′

λ

(
f (t), x

))′
+ Vλ

(
f (t), x

))
. (27)

An inequality similar to (28) was proved by Becker [2, Lemma 6] and Zhang [22,
Lemma 1.5] with a unspecific constant. We include here a simpler proof and give the op-
timal constant.

Proposition 3.5 Let m ∈N and λ ≥ 1. Then

1
(1 + x)m Vλ

(
(t – x)2(1 + t)m, x

) ≤ C(m)
ϕ2(x)

λ
, x ≥ 0, (28)

where C(m) = (1 + m + m2)m!.

Proof Denote Pm(x) = Vλ((1 + t)m, x). It follows from (26) with f (t) = (1 + t)m that

Pm+1(x) = (1 + x)Pm(x) +
x(1 + x)

λ
P′

m(x). (29)

Since P1(x) = 1 + x, we deduce by induction that Pm(x) is a polynomial of degree m which
can be written as

Pm(x) =
m∑

k=1

cm,k(λ)(1 + x)kxm–k , (30)

with cm,k(λ) ≥ 0, k = 1, . . . , m.
In what follows we denote by �(P) the leader coefficient of a polynomial P. From (29) we

also obtain the recurrence relation

�(P1) = 1, �(Pm+1) =
(

1 +
m
λ

)
�(Pm),
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and this implies that

�(Pm) =
m–1∏

j=0

(
1 +

j
λ

)
, m ≥ 1. (31)

Applying (27) with f (t) = (1 + t)m, we get

Vλ

(
(t – x)2(1 + t)m, x

)
=

ϕ2(x)
λ

((
ϕ2(x)

λ
P′

m(x)
)′

+ Pm(x)
)

=:
ϕ2(x)

λ
Qm(x).

Taking into account

Qm(x) =
(

ϕ2(x)
λ

P′
m(x)

)′
+ Pm(x) =

x(1 + x)
λ

P′′
m(x) +

1 + 2x
λ

P′
m(x) + Pm(x)

=
x(1 + x)

λ
P′′

m(x) +
1 + x

λ
P′

m(x) +
x
λ

P′
m(x) + Pm(x)

and (30), we deduce that Qm is also a polynomial of degree m which can be written as

Qm(x) =
m∑

k=0

dm,k(λ)(1 + x)m–kxk ,

with dm,k(λ) ≥ 0, k = 0, 1, . . . , m.
Hence

Rm(x) :=
Qm(x)

(1 + x)m =
m∑

k=1

dm,k(λ)
(

x
1 + x

)m–k

and then, for all x ≥ 0,

R′
m(x) =

m–1∑

k=0

dm,k(λ)(m – k)
(

x
1 + x

)m–k–1 1
(1 + x)2 ≥ 0.

Thus Rm is increasing on [0, +∞) and then, for all x ≥ 0,

Rm(x) =
Qm(x)

(1 + x)m ≤ lim
x→+∞

Qm(x)
(1 + x)m = �(Qm).

Finally, for all x ≥ 0,

1
(1 + x)m Vλ

(
(t – x)2(1 + t)m, x

)
=

ϕ2(x)
λ

Qm(x)
(1 + x)m ≤ �(Qm).

To finish the proof, it is sufficient to note that

�(Qm) =
(

m(m – 1)
λ

+
2m
λ

+ 1
)

�(Pm) =
(

1 +
m(m + 1)

λ

) m–1∏

j=0

(
1 +

j
λ

)
.
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Putting λ = 1 in the above expression, we obtain a upper bound which is valid for all
λ ≥ 1 and x ≥ 0. Hence, we conclude that

1
(1 + x)m Vλ

(
(t – x)2(1 + t)m, x

) ≤ C(m)
ϕ2(x)

λ
, x ≥ 0,λ ≥ 1,

where C(m) = (1 + m + m2)m!. �

Using (30) and repeating the same arguments as above, it can be proved that, for all
λ ≥ 1, x ≥ 0,

1
(1 + x)m Vλ

(
(1 + t)m, x

)
=

Pm(x)
(1 + x)m ≤ �(Pm) =

m–1∏

j=0

(
1 +

j
λ

)
≤ m!. (32)

In what follows we use a different approach to get an inequality similar to (32) which
is valid for all m ∈ R. We will consider the ceiling and floor functions of a number z ∈ R

defined by

�z� = min{r ∈ Z : r ≥ z} and �z� = max{r ∈ Z : r ≤ z}.

Proposition 3.6 For d ∈R, x > 0 and any λ satisfying λ ≥ 2(1 + |d|), one has

Vλ

(
(1 + t)d, x

) ≤ 2|d|(1 + x)d.

Proof Note that the above inequality is trivial when d = 0.
(i) Assume d = m ∈N. From (32) and taking into account that λ > m, we have

1
(1 + x)m Vλ

(
(1 + t)m, x

) ≤
m–1∏

j=0

(
1 +

j
λ

)
≤ 2m–1. (33)

(ii) For d = –m, m ∈ N, we use the right side inequality in Lemma 3.1 by replacing λ by
λ – m (note that λ – m > m), to obtain

vλ,k(x) ≤
(1 + k

λ–m
1 + x

)m

vλ–m,k(x) ≤ 2m
(

1 + k/λ
1 + x

)m

vλ–m,k(x),

where in the last inequality we have taken into account that λ > 2m and then

1 +
k

λ – m
≤ λ

λ – m

(
1 +

k
λ

)
≤ 2

(
1 +

k
λ

)
.

Therefore

Vλ

(
(1 + t)–m, x

)
=

∞∑

k=0

(1 + k/λ)–mvλ,k(x)

≤ 2m(1 + x)–m
∞∑

k=0

vλ–m,k(x) = 2m(1 + x)–m. (34)
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(iii) If d > 0 and d /∈ N, then, applying Hölder’s inequality and using (33), we have (note
that λ ≥ 2(1 + |d|) > 2�d�),

Vλ

(
(1 + t)d, x

) ≤ (
Vλ

(
(1 + t)�d�, x

))d/�d� ≤ 2(�d�–1)d/�d�(1 + x)d ≤ 2d(1 + x)d.

Similarly, if d < 0 and –d /∈ N, we apply again Hölder’s inequality and (34) (note that λ ≥
2(1 + |d|) ≥ 2|�d�| and 0 < d/�d�) < 1), to obtain

Vλ

(
(1 + t)d, x

) ≤ Vλ(1 + t)�d�, x)d/�d� ≤ 2|�d�|d/�d�(1 + x)d = 2|d|(1 + x)d. �

A result similar to Proposition 3.7 was proved in [10, Lemma 1] in the case that λ = n ∈N

and d ∈ N, but with an unspecific constant. The arguments presented here are similar to
the one given in [10]. Anyway we present a detailed proof because the quoted paper is not
easy to obtain.

Proposition 3.7 For � > 0, x > 0 and any real λ satisfying λ ≥ 2(1 + �), one has

∞∑

k=1

(
λ

k

)�

vλ,k(x) ≤ 2�(1 + ���)!
x�

. (35)

Proof (i) Assume � ∈N. First note that, for x > 0,

x�

(
λ

k

)� vλ,k(x)
vλ–�,k+�(x)

=
(

λ

k

)� (k + �)!
k!

λ(λ + 1) · · · (λ + k – 1)
(λ – �)(λ – � + 1) · · · (λ – � + (k + � – 1))

=
(

λ

k

)� (k + �)!
k!

1
(λ – 1)(λ – 2) · · · (λ – �)

=
1
k�

�∏

i=1

(k + i)
�∏

j=1

(
1 –

j
λ

)–1

.

Also, note that

1
k�

�∏

i=1

(k + i) =
�∏

i=1

(
1 +

i
k

)
≤ (1 + �)!.

On the other hand, since λ > 2�, we have

�∏

j=1

(
1 –

j
λ

)–1

≤
(

1 –
�

λ

)–�

=
(

λ

λ – �

)�

< 2�.

Therefore

∞∑

k=1

(
λ

k

)�

vλ,k(x) ≤ 2�(1 + �)!
x�

∞∑

k=1

vλ–�,k+�(x) ≤ 2�(1 + �)!
x�

. (36)
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(ii) Finally assume � > 0 and � /∈ N. Using Hölder’s inequality and (36), we have (note that
λ ≥ 2(1 + �) ≥ 2���),

∞∑

k=1

(
λ

k

)�

vλ,k(x) ≤
( ∞∑

k=1

(
λ

k

)���
vλ,k(x)

)�/���
≤ 2�(1 + ���)!

x�
. �

Proposition 3.8 For a ∈ [–1,∞) and b ∈ R, there exists a constant C = C(a, b) such that,
for x > 0 and λ ≥ 2(1 + p), with p = |b|, if a = –1, and p = max{2|a|, 2|b|, |b|/(1 + a)} other-
wise, we have

∞∑

k=1

(
λ

k

)a(
1 +

k
λ

)b

vλ,k(x) ≤ C
(1 + x)b

xa , x > 0.

Proof When a ≥ 0, we use Hölder’s inequality to obtain

∞∑

k=1

(
λ

k

)a(
1 +

k
λ

)b

vλ,k(x) ≤
( ∞∑

k=1

(
λ

k

)2a

vλ,k(x)

)1/2(
Vλ

(
(1 + t)2b, x

))1/2,

and then the result follows from Propositions 3.6 and 3.7.
When –1 < a < 0, we use again Hölder’s inequality and Proposition 3.6 to get

∞∑

k=1

(
k
λ

)–a(
1 +

k
λ

)b

vλ,k(x) ≤ (
Vλ(t, x)

)–a(Vλ

(
(1 + t)b/(1+a), x

))1+a

≤ 2|b| (1 + x)b

xa .

When a = –1 a different argument is needed. Note that, for k ≥ 1, we have

vλ,k(x)
vλ+1,k–1(x)

=
λx
k

and then

∞∑

k=1

k
λ

(
1 +

k
λ

)b

vλ,k(x)

= x
∞∑

k=1

(
1 +

k
λ

)b

vλ+1,k–1(x)

= x
∞∑

k=0

(
1 +

k + 1
λ

)b

vλ+1,k(x) = x
(

λ + 1
λ

)b ∞∑

k=0

(
1 +

k
λ + 1

)b

vλ+1,k(x)

≤ 22|b|x(1 + x)b,

where in the last inequality we have applied Proposition 3.6 and the fact that 1 ≤ λ+1
λ

≤ 2.�

4 Application to other operators
As we remark in the Introduction, the operators Wn,c, with c > 0 and n > c have been
studied by some authors. Some estimates for these operators can be inferred by the one
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presented above. In fact, if f : [0,∞) →R and we set g(t) = f (t/c), then

Vn/c(g, cx) =
∞∑

k=0

g
(

ck
n

)(
n/c + k – 1

k

)
(cx)k

(1 + cx)k+n/c

=
∞∑

k=0

f
(

k
n

)
n(n + c) · · · (n + (k – 1)c)

k!
xk

(1 + cx)k+n/c

=
∞∑

k=0

f
(

k
n

)
C(n, k, c)

k!
xk

(1 + cx)k+n/c = Wn,c(f , x). (37)

For the operators Wn,c, Hou and Xue [14] gave upper estimates in the unweighted case
(a = b = 0). Chen and Wu in [4] and by Zhang in [22] considered the same operators but
acting in weighted spaces with polynomial weights (a = 0 and b ∈ N). While Gao, Kong
and Xue [10] analyzed the weight �(x) = xa/(1 + x)b, with 0 < a < 1 and b > 0. All the results
of these authors can be recovered for our approach by using equation (37).

The ideas in this work can be used to study other families of operators like Lupas, Szász–
Mirakyan and some modifications of Baskakov operators, like the ones considered in [1,
7, 12, 13]. For instance, in [13] only some special polynomial weights were presented.

In our setting, for the case of Szász–Mirakyan operators, the authors will present similar
results in a forthcoming work.
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