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Abstract
The main purpose of this paper is to show Wirtinger type inequalities for the
pseudo-integral. We are concerned with pseudo-integrals based on the following
three canonical cases: in the first case, the real semiring with pseudo-operation is
generated by a strictly monotone continuous function g; in the second case, the
pseudo-operations include a pseudo-multiplication and a power arithmetic addition;
in the last case, ⊕-measures are interval-valued. Examples are given to illustrate these
equalities.
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1 Introduction
It is well known that if u ∈ C1([0, T],R), u(0) = u(T) and

∫ T
0 u(t) dt = 0, then the following

inequality holds:

∫ T

0

∣
∣u(t)

∣
∣2 dt ≤ T2

4π2

∫ T

0

∣
∣u′(t)

∣
∣2 dt, (1)

with equality if and only if u(t) = A sin( 2π t
T ) + B cos( 2π t

T ), where A and B are constants.
If T = 2π , then Inequality (1) is known in the literature as Wirtinger’s inequality; see
[1, 2]. The Wirtinger’s inequality and its generalizations have wide applications in p-
Laplacian systems [3, 4], time-delay systems [5–7], Lurie systems [8], stability criteria
[9, 10], discrete-time systems [11, 12] and so on.

Pseudo-analysis is chosen as the research background of this paper, because it presents a
contemporary mathematical theory which has been successfully applied in many practical
fields. The last decade has shown an increasing research activity on pseudo-analysis [13–
17]. As a method to promote the classical mathematical analysis, pseudo-analysis extends
the concept of traditional operation to pseudo-operation including pseudo-addition and
pseudo-multiplication. Later on, the researchers present pseudo-integrals [16] based on
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the important theory of pseudo-analysis, namely pseudo-operations and interval-valued
measure. The pseudo-integral is now emerging as one of the hottest mathematical sub-
jects, many scholars have studied its application and promotion on generalizations of in-
tegral inequalities [18–22].

Since the Wirtinger inequality is one of the most important inequalities, this paper
studies three Wirtinger type integral inequalities in pseudo-analysis environment. In
the first case, we consider a Wirtinger type integral inequality for an applied pseudo-
integration equipped with a monotonic continuous mapping g . In the second case, we
study a Wirtinger type integral inequality for the pseudo-integration adopting a semir-
ing ([0.1], sup,�) to design the theory. In the last case, we show a Wirtinger type integral
inequality with respect to interval-valued ⊕-measures. Moreover, several examples are
provided for validation.

The paper is organized as follows: Sect. 2 contains some of preliminaries. Section 3
provides generalizations of two Wirtinger type inequalities to pseudo-integrals on a g-
semiring. Section 4 proves a Wirtinger integral inequality for the pseudo-integral of a real-
valued function with respect to the pseudo-additive measure. The conclusion is shown in
Sect. 5.

2 Preliminaries
In this section, we review some basic notions about pseudo-operations and pseudo-
integrals, the relevant literature includes [15, 23].

An interval [c, d] is a closed subset of [–∞, +∞]. The complete order in [c, d] is expressed
as � which can be the usual order of the real line or can be another order. Also, the total
order � is closely connected to the choice of pseudo-addition. Namely, for the semirings
of the first and the third class, i.e., for the semirings with idempotent pseudo-addition,
total order is induced by the following

x � y if and only if x ⊕ y = x.

For the semiring of the second class given by a generator g , total order is given by

x � y if and only if g(x) ≤ g(y).

Let [c, d]+ = {x|x ∈ [c, d], 0 � x}. The structure ([c, d],⊕,�), endowed with a pseudo-
addition ⊕ and a pseudo-multiplication �, is a semiring (see [16, 24]). The equation
0 � i = 0 holds.

We consider the semiring ([c, d],⊕,�) in two situations. In the first situation, let g :
[c, d] → [0,∞] be a monotone and continuous mapping and let

x ⊕ y = g–1(g(x) + g(y)), x � y = g–1(g(x) · g(y)) and x(n)
� = g–1(gn(x)).

The pseudo-integral for a function p : [a, b] → [c, d] is expressed as

∫ ⊕

[c,d]
p(t) dt = g–1

(∫ d

c
g
(
p(t)

)
dt

)

;
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see for details [17]. The second situation is when

x ⊕ y = max(x, y) and x � y = g–1(g(x)g(y)
)
,

the pseudo-integral for a function p : R → [c, d] is given as

∫ ⊕

R

p � dm = sup
(
p(x) � ψ(x)

)
, (2)

where the function ψ means sup-measure m; see [14].

Theorem 1 ([14]) Let m be a sup-measure on ([0,∞],D([0,∞])), where D([0,∞]) is the
Borel σ -algebra on [0,∞], m(C) = ess supμ(ψ(x)|x ∈ A), and μ : [0,∞] → [0,∞] is a con-
tinuous density. Then, for any pseudo-addition ⊕ with a generator g there exists a family
mλ of ⊕λ-measure on ([0,∞),D), where ⊕λ is generated by gλ (the function g of the power
λ), λ ∈ (0,∞), such that limλ→∞ mλ = m.

Theorem 2 ([14]) Let ([0,∞], sup,�) be a semiring, when � is generated with g , i.e., we
have x � y = g–1(g(x)g(y)) for every x, y ∈ (0,∞). Let m be the same as in Theorem 1. Then
there exists a family mλ of ⊕λ-measures, where ⊕λ is generated by gλ, λ ∈ (0,∞) such that,
for every continuous function p : [0,∞] → [0,∞],

∫ sup

p � dm = lim
λ→∞

∫ ⊕λ

p � dmλ = lim
n→∞

(
gλ

)–1
(∫

gλ
(
p(t)

)
dt

)

. (3)

Pseudo-operations on nonempty subsets C and D of [c, d] adopts the methods similar to
the pseudo-addition and the pseudo-multiplication [14]. If C and D stand for two arbitrary
nonempty subsets of [c, d] and β ∈ [c, d]+, then

C ⊕ D = {x ⊕ y|x ∈ C and y ∈ D},
C � D = {x � y|x ∈ C and y ∈ D},
β � C = {β � x|x ∈ C}.

The present paper focuses on the interval operation. Let I be the class of all closed subin-
tervals of [c, d]+, i.e.,

I =
{

[w, e]|w ≤ e and [w, e] ⊆ [c, d]+}
.

It can be shown (see [13]) that for C, D ∈ I , where C = [d1, h1] and D = [d2, h2],

C ⊕ D = [d1 ⊕ d2, h1 ⊕ h2], C � D = [d1 � d2, h1 � h2].

For β ∈ [c, d]+ and D = [d2, h2] ∈ I , we have β � D = [β � d2,β � h2].

Theorem 3 ([13]) Let ([c, d],⊕,�) be a semiring that belongs to one kind basic categories,
where ⊕ = sup or ⊕ is equivalent to an increasing generator g . Let p : X → [c, d]+ be a
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measurable function. An interval-valued set-function μ̄
p
M based on the pseudo-integral of

p with respect to interval-valued ⊕-measure given by

μ̄
p
M(C) =

∫ ⊕

C
p � dμ̄M =

[∫ ⊕

C
p � dμd,

∫ ⊕

C
p � dμu

]

, (4)

where C ⊆ X, the properties can be summarized as follows:
(i) μ̄

p
M(∅) = [0, 0],

(ii) μ̄
p
M is monotone with respect to �S ,

(iii) μ̄
p
M is additive,

(iv) μ̄
p
M is σ -⊕-additive.

In Eq. (4), the set-function μ̄
p
M is an interval-valued ⊕-measure.

3 Wirtinger integral inequality for pseudo-integrals
In this section, we discuss Wirtinger integral inequality for pseudo-integrals based on the
semiring ([0, T],⊕,�) and semiring ([0, T], sup,�) separately.

Let U(t) = u′(t), then u(t) =
∫ t

0 U(s) ds, and Inequality (1) implies that

∫ T

0
U(t)2 dt ≥ 4π2

T2

∫ T

0

(∫ t

0
U(s) ds

)2

dt. (5)

Theorem 4 Suppose that U : [0, T] → [0, T] (T ≥ 0) is a measurable function. If a genera-
tor g : [0, T] → [0, +∞] of the pseudo-addition and the pseudo-multiplication is an increas-
ing function and if

∫ t
0 g(U(s)) ds ∈ C1([0, T],R),

∫ T
0 g(U(t)) dt = 0,

∫ T
0 (

∫ t
0 g(U(s)) ds) dt = 0.

Then for any δ-⊕-measure

∫ ⊕

[0,T]

(
U(t)

)(2)
� dt ≥

(
4π2

T2

)∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U(s) ds

)(2)

�
dt. (6)

Proof By (5), we obtain

∫ T

0

(
g
(
U(t)

))2 dt ≥ 4π2

T2

(∫ T

0

(∫ t

0

(
g
(
U(s)

))
ds

)2

dt
)

.

Since g–1 is an increasing function, one has

g–1
(∫ T

0

(
g
(
U(t)

))2 dt
)

≥
(

4π2

T2

)(

g–1
(∫ T

0

(∫ t

0

(
g
(
U(s)

))
ds

)2

dt
))

,

which implies that

g–1
(∫ T

0

(
g
(
g–1(g

(
U(t)

))2))
)

dt)

≥
(

4π2

T2

)

g–1
(∫ T

0

(

g
(

g–1
(∫ t

0

(
g
(
U(s)

))
ds

)2))

dt
)

.

Hence, we have

∫ ⊕

[0,T]

(
U(t)

)(2)
� dt
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≥
(

4π2

T2

)

g–1
(∫ T

0

(

g
(

g–1
(∫ t

0

(
g
(
U(s)

))
ds

)2))

dt
)

=
(

4π2

T2

)∫ ⊕

[0,T]

(

g–1
(∫ t

0

(
g
(
U(s)

))
ds

)2)

dt

=
(

4π2

T2

)∫ ⊕

[0,T]

(

g–1
(

g
(

g–1
(∫ t

0

(
g
(
U(s)

))
ds

)))2)

dt

=
(

4π2

T2

)∫ ⊕

[0,T]

(

g–1
(∫ t

0

(
g
(
U(s)

))
ds

))(2)

�
dt

=
(

4π2

T2

)∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U(s) ds

)(2)

�
dt.

The proof is therefore complete. �

Example 5 Consider that g(x) = ln x, U(t) = ecos t , and T = 2π . The corresponding pseudo-
operations are x ⊕ y = xy, x � y = eln x·ln y. By direct calculation, one has

∫ ⊕

[0,t]
U(s) ds = e

∫ t
0 ln U(t) dt = esin t ,

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U(s) ds

)(2)

�
dt = g–1

(∫ 2π

0
(sin t)2

)

= eπ ,

∫ ⊕

[0,T]

(
U(t)

)(2)
� dt = g–1

(∫ 2π

0
(cos t)2

)

= eπ .

So Inequality (6) holds.

Example 6 Consider that g(x) = tan x, U(t) = arctan(cos t), and T = 2π . The corresponding
pseudo-operations are x ⊕ y = arctan(tan x + tan y), x � y = arctan(tan x · tan y). Since

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U(s) ds

)(2)

�
dt = arctanπ =

∫ ⊕

[0,T]

(
U(t)

)(2)
� dt,

Inequality (6) holds.

Now, we give an extension of Wirtinger integral inequality with semiring ([0, T], sup,�).

Theorem 7 Let � be represented by an increasing generator g and let m be a complete
sup-measure. Then for any functions U : [0, T] → [0, T], T ≥ 0,

∫ sup

[0,T]
U (2)

� � dm ≥
(

4π2

T2

)∫ sup

[0,T]

((∫ sup

[0,t]
U � dm

)(2)

�

)

� dm.

Proof According to Theorem 2, one has

∫ sup

[0,T]
U (2)

� � dm = lim
λ→∞

(∫ ⊕λ

[0,T]
U (2)

� � dmλ

)

= lim
λ→∞

(
gλ

)–1
(∫ T

0

(
gλ

((
U(t)

)2))dt
)

.
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Since g is increasing, g–1, gλ, (gλ)–1 are also increasing. Thus, by Theorem 4, we have

lim
λ→∞

(
gλ

)–1
(∫ T

0

(
gλ

((
U(t)

)2))dt
)

≥ lim
λ→∞

(
4π2

T2

)
(
gλ

)–1
∫ T

0

((∫ t

0

(
gλ

((
U(s)

)
ds

)2)

dt

= lim
λ→∞

(
4π2

T2

)
(
gλ

)–1
∫ T

0
(gλ(

(
gλ

)–1
((∫ t

0

(
gλ

((
U(s)

)
ds

)(2)
�

)
))

dt

= lim
λ→∞

(
4π2

T2

)∫ ⊕λ

[0,T]
(
(
gλ

)–1(
(∫ t

0

(
gλ

((
U(s)

)
ds

)(2)
�

)
)

� dmλ

= lim
λ→∞

(
4π2

T2

)∫ ⊕λ

[0,T]
(
(
gλ

)–1(
(

gλ

(
(
gλ

)–1
(∫ t

0

(
gλ

((
U(s)

)
ds

))
)2))

� dmλ

= lim
λ→∞

(
4π2

T2

)∫ ⊕λ

[0,T]

((∫ ⊕λ

[0,t]
U � dmλ

)(2)

�

)

� dmλ

=
(

4π2

T2

)∫ sup

[0,T]

((∫ sup

[0,t]
U � dm

)(2)

�

)

� dm.

This ends the proof. �

4 Inequalities of Wirtinger type for pseudo-integrals with respect to
interval-valued ⊕-measures

This section contains the further results of this paper, i.e., Wirtinger type inequalities
based on the interval-valued ⊕-measure [19].

Theorem 8 Let ([a, b],⊕,�) be a g-semiring. If u ∈ C1([0, T],R),
∫ T

0 u(t) dt = 0, U = u′(t),
and U : [a, b] → [a, b] is a measurable function, then

∫ ⊕

[0,T]
U (2)

� � dμ̄M S
4π2

T2

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄M

)(2)

�
� dμ̄M. (7)

Proof By Theorem 3, we have

∫ ⊕

[0,T]
U (2)

� � dμ̄M =
[∫ ⊕

[0,T]
U (2)

� � dμ̄d,
∫ ⊕

[0,T]
U (2)

� � dμ̄h

]

.

On the other hand,

4π2

T2

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄M

)(2)

�
� dμ̄M

=
4π2

T2

∫ ⊕

[0,T]

[∫ ⊕

[0,t]
U � dμ̄d,

∫ ⊕

[0,t]
U � dμ̄h

]

�
[∫ ⊕

[0,t]
U � dμ̄d,

∫ ⊕

[0,t]
U � dμ̄h

]

� dμ̄M

=
4π2

T2

∫ ⊕

[0,T]

[(∫ ⊕

[0,t]
U � dμ̄d

)

�
(∫ ⊕

[0,t]
U � dμ̄d

)

,



Guo and Zhu Journal of Inequalities and Applications        (2021) 2021:118 Page 7 of 11

(∫ ⊕

[0,t]
U � dμ̄h

)

�
(∫ ⊕

[0,t]
U � dμ̄h

)]

� dμ̄M

=
4π2

T2

[∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄d

)(2)

�
� dμ̄d,

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄h

)(2)

�
� dμ̄h

]

.

Let

d1 =
∫ ⊕

[0,T]
U (2)

� dμ̄d, d2 =
∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄d

)(2)

�
� dμ̄d,

h1 =
∫ ⊕

[0,T]
U (2)

� dμ̄h, h2 =
∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄h

)(2)

�
� dμ̄h.

Since the interval [
∫ ⊕

[0,T] U (2)
� � dμ̄d,

∫ ⊕
[0,T] U (2)

� � dμ̄h] is pseudo-convex, an arbitrary ele-
ment

x ∈
∫ ⊕

[0,T]
U (2)

� � dμ̄M

can be written in the form

x = α �
∫ ⊕

[0,T]
U (2)

� � dμ̄d ⊕ β �
∫ ⊕

[0,T]
U (2)

� dμ̄h,

where α,β ∈ [a, b]+, α ⊕ β = 1.
Based on Wirtinger inequality for pseudo-integrals (6), one has

∫ ⊕

[0,T]
U (2)

� � dμ̄d  4π2

T2

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄d

)(2)

�
� dμ̄d.

Since α ∈ [a, b]+ and � is a positively non-decreasing function, we have

α �
∫ ⊕

[0,T]
U (2)

� � dμ̄d  α � 4π2

T2

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄d

)(2)

�
� dμ̄d.

Similarly, for β ∈ [a, b]+ and �-measure μh, � is a positively non-decreasing function, and
then, by Inequality (6), we have

β �
∫ ⊕

[0,T]
U (2)

� � dμ̄h  β � 4π2

T2

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄h

)(2)

�
� dμ̄h.

For

y = α � 4π2

T2

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄d

)(2)

�
� dμ̄d

⊕ β � 4π2

T2

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄h

)(2)

�
� dμ̄h,

we have x  y and

y ∈ 4π2

T2

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄M

)(2)

�
� dμ̄M.
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Therefore, we have completed the first part of the proof. Furthermore, due to the property
of the pseudo-convexity of the subinterval of [a, b]+,

y ∈ 4π2

T2

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄M

)(2)

�
� dμ̄M

can be written in the form

y = α � 4π2

T2

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄d

)(2)

�
� dμ̄d

⊕ β � 4π2

T2

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄h

)(2)

�
� dμ̄h,

for some α,β ∈ [a, b]+, α ⊕ β = 1. It follows from (6) that

∫ ⊕

[0,T]
U (2)

� � dμ̄d  4π2

T2

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄d

)(2)

�
� dμ̄d,

∫ ⊕

[0,T]
U (2)

� � dμ̄h  4π2

T2

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄h

)(2)

�
� dμ̄h.

Since ⊕ is a non-decreasing function, and � is a positively non-decreasing function, one
has

α �
∫ ⊕

[0,T]
U (2)

� � dμ̄d ⊕ β �
∫ ⊕

[0,T]
U (2)

� dμ̄h

 α � 4π2

T2

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄d

)(2)

�
� dμ̄d

⊕ β � 4π2

T2

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄h

)(2)

�
� dμ̄h.

This yields

x = α �
∫ ⊕

[0,T]
U (2)

� � dμ̄d ⊕ β �
∫ ⊕

[0,T]
U (2)

� dμ̄h ∈
∫ ⊕

[0,T]
U (2)

� dμ̄M

satisfying x  y. Hence, the following form holds:

[d1, h1] S [d2, h2].

This completes the proof. �

Remark 9 The proof for a decreasing generator g is similar. In this case, since the total
order is opposite to the usual order on the real line, Inequality (7) is reduced to

[d1, h1] �S [d2, h2].
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Example 10 Consider the g-semiring with the generating function g(x) = x2, the interval-
valued ⊕-measure μ̄((a, b]) = [

√
2
3 (b – a),

√
b – a], (a, b] ∈ B[a, b], the function u(x) = 1

2 , if
0 ≤ x ≤ 1

2 , u(x) = 1, if 1
2 ≤ x ≤ 1 and T = 1. Then, the Wirtinger inequality (7) is of the form

∫ ⊕

[0,1]
U (2)

� � dμ̄M S 4π2
∫ ⊕

[0,1]

(∫ ⊕

[0,t]
U � dμ̄M

)(2)

�
� dμ̄M. (8)

The pseudo-integral of the function U with respect to the interval-valued ⊕-measure μ̄M

is

∫ ⊕

[0,1]
U � dμ̄M =

[∫ ⊕

[0,1]
U � dμ̄d,

∫ ⊕

[0,1]
U � dμ̄h

]

.

Since g(x) = x2, x � y = x · y, x ⊕ y = α
√

xα + yα , one has

∫ ⊕

[0,1]
U � dμ̄d =

1
2

� μ̄d

([

0,
1
2

])

⊕ 1 � μ̄d

((
1
2

, 1
])

=
1
2

�
√

2
3

· 1
2

⊕ 1 �
√

2
3

· 1
2

=
√

5
12

,
∫ ⊕

[0,1]
U � dμ̄h =

1
2

� μ̄h

([

0,
1
2

])

⊕ 1 � μ̄h

((
1
2

, 1
])

=
1
2

�
√

1
2

⊕ 1 �
√

1
2

=
√

5
8

.

It follows that

∫ ⊕

[0,1]
U � dμ̄M =

[√
5

12
,
√

5
8

]

,

(∫ ⊕

[0,1]
U � dμ̄M

)(2)

�
=

[
5

12
,

5
8

]

,

∫ ⊕

[0,1]

(∫ ⊕

[0,t]
U � dμ̄d

)(2)

�
� dμ̄d =

5
12

� μ̄d[0, 1] =
5

12

√
2
3

,

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄h

)(2)

�
� dμ̄h =

5
8

� μ̄h[0, 1] =
5
8

.

For the right hand side of (8), we have

4π2
∫ ⊕

[0,1]

(∫ ⊕

[0,t]
U � dμ̄M

)(2)

�
� dμ̄M

=
4π2

T2

[∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄d

)(2)

�
� dμ̄d,

∫ ⊕

[0,T]

(∫ ⊕

[0,t]
U � dμ̄h

)(2)

�
� dμ̄h

]

=
[

3
5

√
2
3
π ,

5
2
π

]

.
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Since u(x) = 1
4 , 0 ≤ x ≤ 1

2 , u(x) = 1, 1
2 ≤ x ≤ 1, the following equations hold:

∫ ⊕

[0,1]
U (2)

� � dμ̄d =
1
4

� μ̄d

([

0,
1
2

])

⊕ 1 � μ̄d

((
1
2

, 1
])

=
1
4

�
√

2
3

· 1
2

⊕ 1 �
√

2
3

· 1
2

=
1
4

√
17
3

∫ ⊕

[0,1]
U (2)

� � dμ̄h =
1
4

� μ̄h

([

0,
1
2

])

⊕ 1 � μ̄h

((
1
2

, 1
])

=
1
4

�
√

1
2

⊕ 1 �
√

1
2

=
1
4

√
17
2

.

For the left hand of (8), we have

∫ ⊕

[0,1]
U (2)

� � dμ̄M =
[∫ ⊕

[0,1]
U (2)

� � dμ̄d,
∫ ⊕

[0,1]
U (2)

� � dμ̄h

]

=
[

1
4

√
17
3

,
1
4

√
17
2

]

.

The final form of (8) is

[
3
5

√
2
3
π ,

5
2
π

]

S

[
1
4

√
17
3

,
1
4

√
17
2

]

.

5 Conclusion
In this paper, we present three Wirtinger type integral inequalities for pseudo-integrals
with g-semirings and interval-valued ⊕-measure, respectively. It is well known that
pseudo-integrals cover Lebesgue integrals, Sugeno fuzzy integrals, so the presented pro-
cess can extended to other integrals. Since the Wirtinger integral inequalities are impor-
tant basic tools widely used in engineering technology, and that the pseudo-integral is
applicable in many fields by helping to explain some practical problems, our inequalities
could become essential tools in several practical areas, such as stability analysis of delayed
stochastic neural networks and the Takagi–Sugeno fuzzy time-delay system. Thus, in fu-
ture work, we intend to refine our proposed inequalities and to modify the Wirtinger type
double integral inequality for pseudo-integrals, and then apply them to fuzzy time-varying
delay system.
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