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Abstract
In this paper, we establish Jensen’s inequality for s-convex functions in the first sense.
By using Jensen’s inequalities, we obtain some Cauchy type means for p-convex and
s-convex functions in the first sense. Also, by using Hermite–Hadamard inequalities
for the respective generalized convex functions, we find new generalized Cauchy
type means.
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1 Introduction
Cauchy mean value theorem is of huge importance in mathematical analysis. Mercer [18]
and Pečarić [21] made connection between Cauchy type means and Jensen’s inequality.
These are given both in discrete and in integral form and have many applications. A mean-
ingful advancement in theory of Cauchy type means is given in [1–5, 18–21]. Also see [8–
11, 15–17] for more information about means. The following result is given in [19], which
involves Jensen’s inequality both in numerator and denominator.

Theorem 1.1 ([19]) Let G ⊆R be an interval and ri > 0 for all 1 ≤ i ≤ n such that �n
i=1ri =

Sn and c1, . . . , cn ∈ G not all the same. Consider the twice differentiable functions ζ1, ζ2 :
G → R such that

0 ≤ l ≤ ζ ′′
1 (c) ≤ L and 0 ≤ m ≤ ζ ′′

2 (x) ≤ M for all c ∈ G.

Then

l
M

≤
1

Sn
�n

i=1riζ1(ci) – ζ1( 1
Sn

�n
i=1rici)

1
Sn

�n
i=1riζ2(ci) – ζ2( 1

Sn
�n

i=1rici)
≤ L

m
. (1)

Here our aim is to find some Cauchy type means for p-convex and s-convex functions
in the first sense using Jensen’s and Hermite–Hadamard inequalities, respectively.

Let M, N be two bivariable means defined in a real interval G, and let J ⊆ G be a subin-
terval of G. According to Aumann [6], a function ζ : J → G is convex with respect to the
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pair of means (M, N) if

ζ
(
M(j1, j2)

) ≤ N
(
ζ (j1), ζ (j2)

)
, j1, j2 ∈ J ;

and ζ is convex with respect to M if

ζ
(
M(j1, j2)

) ≤ M
(
ζ (j1), ζ (j2)

)
, j1, j2 ∈ J .

These notions generalize the classical notions of convexity. Moreover, taking for M the
weighted power mean, i.e.,

M(j1, j2) =
[
rjp

1 + (1 – r)jp
2
] 1

p ,

and for N the weighted arithmetic mean

N(j1, j2) = [rj1 + (1 – r)j2,

one gets the following definition.

Definition 1.1 ([13, 14]) Let G ⊂ (0,∞) be a real interval and p ∈ R\{0}. A function ζ :
G →R is said to be a p-convex function if

ζ
[[

rgp
1 + (1 – r)gp

2
] 1

p
] ≤ rζ (g1) + (1 – r)ζ (g2) (2)

for all g1, g2 ∈ G and r ∈ [0, 1]. If inequality (2) is reversed, then ζ is called p-concave func-
tion.

Definition 1.2 ([12]) Let s ∈ (0, 1]. A function ζ : [0,∞) → R is called an s-convex func-
tion (in the first sense) or ζ ∈ K1

s if

ζ (r1g1 + r2g2) ≤ rs
1ζ (g1) + rs

2ζ (g2) (3)

for all g1, g2 ∈R
+ = [0,∞) and r1, r2 ≥ 0 with rs

1 + rs
2 = 1.

2 Cauchy type means for p-convex functions in Jensen’s sense
Toplu et al. [22] proved Jensen’s inequality for p-convex functions as follows.

Theorem 2.1 ([22]) Let p ∈ R\{0} and ζ : G ⊂ (0,∞) → R be a p-convex function. Let
gi ∈ G and ri ∈ [0, 1], 0 ≤ i ≤ n, then the following inequality holds:

ζ

(( n∑

1

rig
p
i

) 1
p
)

≤
n∑

1

riζ (gi), (4)

where
∑n

1 ri = 1.

Now, by using Theorem 2.1, we state and prove the following theorem, which gives the
Cauchy type mean for p-convex function.
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Theorem 2.2 Let G ⊂ (0,∞) be an interval, p ∈ R\{0}, and ri ∈ [0, 1]. Let ζ1, ζ2 ∈ C2(G)
be p-convex functions. Then there exist some χ ∈ G such that the following equality holds:

∑n
1 riζ1(gi) – ζ1((

∑n
1 rig

p
i )

1
p )

∑n
1 riζ2(gi) – ζ2((

∑n
1 rig

p
i )

1
p )

=
ζ ′′

1 (χ )
ζ ′′

2 (χ )
, (5)

with each ri ∈ [0, 1] such that
∑n

1 ri = 1 and provided that the denominators are non-zero.

Proof Let us define

H :=

( n∑

1

rig
p
i

) 1
p

and

(Tζ1)(λ) :=
n∑

1

riζ1
(
λgi + (1 – λ)H

)
– ζ1(H),

where λ ∈ [0, 1]. Similarly, we define (Tζ2)(λ).
Note that

(Tζ1)′(λ) :=
n∑

1

ri(gi – H)ζ ′
1
(
λgi + (1 – λ)H

)

and

(Tζ1)′′(λ) :=
n∑

1

ri(gi – H)2ζ ′′
1
(
λgi + (1 – λ)H

)
.

Now consider a function Q(λ) defined as follows:

Q(λ) = (Tζ2)(1)(Tζ1)(λ) – (Tζ1)(1)(Tζ2)(λ),

such that we have

Q(0) = Q(1) = Q′(0) = 0.

Then from two applications of mean value theorem, we have υ ∈ G so that

Q′′(υ) = 0.

It implies that

n∑

i=1

ri(gi – H)2[(Tζ2)(1)ζ ′′
1
(
υgi + (1 – υ)H

)
– (Tζ1)(1)ζ ′′

2
(
υgi + (1 – υ)H

)]
= 0. (6)
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For some fixed υ , the expression in the square brackets in (6) is a continuous function of
gi, so it vanishes. Corresponding to that value of gi, we can have a number

χ = υgi + (1 – υ)H

such that

(Tζ2)(1).ζ ′′
1 (χ ) – (Tζ1)(1).ζ ′′

2 (χ ) = 0.

This gives equality (5). �

Corollary 2.3 Let G ⊂ (0,∞) be an interval, p ∈ R\{0}, and ri ∈ [0, 1]. Let ζ1, ζ2 ∈ C2(G)
be p-convex functions such that ζ ′′

1
ζ ′′

2
is invertible. Then there exist some χ ∈ G such that the

following equality holds:

χ =
(

ζ ′′
1

ζ ′′
2

)–1(∑n
1 riζ1(gi) – ζ1((

∑n
1 rig

p
i )

1
p )

∑n
1 riζ2(gi) – ζ2((

∑n
1 rig

p
i )

1
p )

)
, (7)

with each ri ∈ [0, 1] such that
∑n

1 ri = 1 and provided that the denominators are non-zero.

Corollary 2.4 Let G ⊂ (0,∞) be an interval, p ∈R\{0}, and ri ∈ [0, 1]. Let ζ ∈ C2(G) be a
p-convex function. Then there exist some χ ∈ G such that the following equality holds:

n∑

1

riζ (gi) – ζ

(( n∑

1

rig
p
i

) 1
p
)

=
ζ ′′(χ )

2

( n∑

1

rig2
i –

(( n∑

1

rig
p
i

) 1
p
)2)

(8)

with each ri ∈ [0, 1] such that �n
1 ri = 1.

Proof By letting ζ1 = ζ and ζ2(w) = w2, where w ∈ (0,∞), in Theorem 2.2, we achieve
equality (8). �

3 Cauchy type means for p-convex functions in the Hermite–Hadamard sense
Let ζ : G ⊂ (0,∞) → R be a p-convex function, p ∈ R\{0}, and g1, g2 ∈ G with g1 < g2. If
ζ ∈ L1[g1, g2], then we have (e.g., see [13])

ζ

((
gp

1 + gp
2

2

) 1
p
)

≤ p
gp

2 – gp
1

∫ g2

g1

ζ (w)
w1–p dw ≤ ζ (g1) + ζ (g2)

2
. (9)

By using the right half of inequality (9), we have following result.

Theorem 3.1 Let G ⊂ (0,∞) be an interval, p ∈ R\{0}, and g1, g2 ∈ G with g1 < g2. Let
ζ1, ζ2 ∈ C2(G) be p-convex functions. Then there exists some χ ∈ G such that the following
equality holds:

p
gp

2 –gp
1

∫ g2
g1

ζ1(w)
w1–p dw – ζ1(( gp

1 +gp
2

2 )
1
p )

p
gp

2 –gp
1

∫ g2
g1

ζ2(w)
w1–p dw – ζ2(( gp

1 +gp
2

2 )
1
p )

=
ζ ′′

1 (χ )
ζ ′′

2 (χ )
, (10)

provided that the denominators are non-zero.
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Proof Let

H :=
(

gp
1 + gp

2
2

) 1
p

and

(Tζ1)(λ) :=
p

gp
2 – gp

1

∫ g2

g1

ζ1(λw + (1 – λ)H)
w1–p dw – ζ1(H),

where λ ∈ [0, 1]. Similarly, we can define (Tζ2)(λ).
Observe that

(Tζ1)′(λ) :=
p

gp
2 – gp

1

∫ g2

g1

(w – H)
ζ ′

1(λw + (1 – λ)H)
w1–p dw

and

(Tζ1)′′(λ) :=
p

gp
2 – gp

1

∫ g2

g1

(w – H)2 ζ ′′
1 (λw + (1 – λ)H)

w1–p dw.

Now consider the function Q(λ) defined by

Q(λ) = (Tζ2)(1)(Tζ1)(λ) – (Tζ1)(1)(Tζ2)(λ)

such that we have

Q(0) = Q(1) = Q′(0) = 0.

Then, from two applications of mean value theorem, we find υ ∈ G such that

Q′′(υ) = 0.

It implies

p
gp

2 – gp
1

∫

[g1,g2]
(w – H)2[(Tζ2)(1)ζ ′′

1
(
wυ – (1 – υ)H

)

– (Tζ1)(1)ζ ′′
2
(
wυ – (1 – υ)H

)]
= 0. (11)

For any fixed υ , the expression in the square brackets in (11) is a continuous function of
w, so it vanishes. Corresponding to that value of w, we get a number

χ = wυ + (1 – υ)H

such that

(Tζ2)(1).ζ ′′
1 (χ ) – (Tζ1)(1).ζ ′′

2 (χ ) = 0.

This gives equality (10). �
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Corollary 3.2 If ζ ′′
1

ζ ′′
2

is invertible, then we have

χ =
(

ζ ′′
1 (χ )

ζ ′′
2 (χ )

)–1( p
gp

2 –gp
1

∫ g2
g1

ζ1(w)
w1–p dw – ζ1(( gp

1 +gp
2

2 )
1
p )

p
gp

2 –gp
1

∫ g2
g1

ζ2(w)
w1–p dw – ζ2(( gp

1 +gp
2

2 )
1
p )

)
. (12)

Corollary 3.3 By taking ζ2(w) = w2 and ζ1 = ζ in Theorem 3.1, we have

p
gp

2 – gp
1

∫ g2

g1

ζ (w)
w1–p dw – ζ

((
gp

1 + gp
2

2

) 1
p
)

=
ζ ′′(χ )

2

[
p

gp
2 – gp

1

(
gp+2

2 – gp+2
1

p + 2

)
–

(
gp

1 + gp
2

2

) 2
p
]

. (13)

4 Cauchy type means for s-convex functions in Jensen’s sense
Here first we prove Jensen’s inequality for s-convex function.

Lemma 4.1 Let s ∈ (0, 1] and ζ : G ⊂R
+ →R be an s-convex function. Let

∑n
1 rigi be con-

vex combinations of points gi ∈ G with coefficients ri ∈ [0, 1]. Then each s-convex function
(in the first sense) satisfies the inequality

ζ

( n∑

1

rigi

)

≤
n∑

1

rs
i ζ (gi), (14)

where
∑n

1 rs
i = 1.

Proof We apply induction on the number of points in convex combination.
Basis step: for n = 1, equality (14) is true since

ζ (r1g1) ≤ rs
1ζ (g1),

where rs
1 = 1 since r1 = 1.

Induction step: suppose that (14) holds for all convex combinations of points containing
less than or equal to n – 1 points. Let rn 
= 1 and

w =
n–1∑

1

ri

1 – rn
gi,

where the sum
∑n–1

1 ( ri
1–rn

)gi ∈ G. Then, by induction hypothesis, we have

ζ (w) ≤
n–1∑

1

(
ri

1 – rn

)s

ζ (gi). (15)
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By using (3) and (15), we get

ζ

( n∑

1

rigi

)

= ζ
(
(1 – rn)w + rngn

)

≤ (1 – rn)sζ (w) + rs
nζ (gn)

≤ (1 – rn)s
n–1∑

1

(
ri

1 – rn

)s

ζ (gi) + rs
nζ (gn)

=
n∑

1

rs
i ζ (gi). (16)

Thus we get (14). �

Remark 4.1 By taking s = 1 in Lemma 4.1 we can get Jensen’s inequality for convex func-
tion.

Now, by using the above lemma, we state and prove the following theorem, which gives
the Cauchy type means for s-convex function.

Theorem 4.1 Let s ∈ (0, 1] and ri ∈ [0, 1]. Let ζ1, ζ2 ∈ C2(G ⊂ [0,∞)) be s-convex functions
(in the first sense). Then there exist some χ ∈ G such that the following equality holds:

∑n
1 rs

i ζ1(gi) – ζ1(
∑n

1 rigi)∑n
1 rs

i ζ2(gi) – ζ2(
∑n

1 rigi)
=

ζ ′′
1 (χ )

ζ ′′
2 (χ )

(17)

with each ri ∈ [0, 1] such that
∑n

1 rs
i = 1 and provided that the denominators are non-zero.

Proof Define

H :=
n∑

1

rigi

and

(Tζ1)(λ) :=
n∑

1

rs
i ζ1

(
λgi + (1 – λ)H

)
– ζ1(H),

where λ ∈ [0, 1]. Accordingly, we can define (Tζ2)(λ).
Note that

(Tζ1)′(λ) :=
n∑

1

rs
i (gi – H)ζ ′

1
(
λgi + (1 – λ)H

)

and

(Tζ1)′′(λ) :=
n∑

1

rs
i (gi – H)2ζ ′′

1
(
λgi + (1 – λ)H

)
.
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Now consider the function Q(λ) defined by

Q(λ) = (Tζ2)(1)(Tζ1)(λ) – (Tζ1)(1)(Tζ2)(λ)

such that we have

Q(0) = Q(1) = Q′(0) = 0.

Then, from two applications of mean value theorem, we find υ ∈ G such that

Q′′(υ) = 0.

It follows that

n∑

i=1

rs
i (gi – H)2[(Tζ2)(1).ζ ′′

1
(
υgi + (1 – υ)H

)
– (Tζ1)(1).ζ ′′

2
(
υgi + (1 – υ)H

)]
= 0. (18)

For any fixed υ , the expression in the square brackets in (18) is a continuous function of
gi, so it vanishes. Corresponding to that value of gi, we get a number

χ = υ + (1 – υ)H ,

so that

(Tζ2)(1).ζ ′′
1 (χ ) – (Tζ1)(1).ζ ′′

2 (χ ) = 0.

This gives equality (17). �

Corollary 4.2 Let s ∈ (0, 1]. Let ζ1, ζ2 ∈ C2(G ⊂ [0,∞)) be s-convex functions (in the first
sense) such that ζ ′′

1
ζ ′′

2
is invertible. Then there exist some χ ∈ G such that the following equality

holds:

χ =
(

ζ ′′
1

ζ ′′
2

)–1(∑n
1 rs

i ζ1(gi) – ζ1(
∑n

1 rigi)∑n
1 rs

i ζ2(gi) – ζ2(
∑n

1 rigi)

)
, (19)

with each ri ∈ [0, 1] such that
∑n

1 rs
i = 1 and provided that the denominators are non-zero.

Corollary 4.3 Let s1, s2 ∈ (0, 1). Let ζ1, ζ2 ∈ C2((0,∞)) be an s1-convex function and an
s2-convex function (in the first sense), respectively, defined as ζ1(w) = ws1 and ζ2(w) = ws2 .
Then, from Theorem 4.1, we get

∑n
1 rs1

i (gi)s1 – (
∑n

1 rigi)s1
∑n

1 rs2
i (gi)s2 – (

∑n
1 rigi)s2

=
s1(s1 – 1)
s2(s2 – 1)

(χ )s1–s2 . (20)

5 Cauchy type means for s-convex functions in the Hermite–Hadamard sense
Drgomir and Fitzpatrick [7] gave the following result.
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Theorem 5.1 Suppose that ζ : [0,∞) →R is an s-convex function in the first sense, where
s ∈ (0, 1), and let g1, g2 ∈ [0,∞), g1 ≤ g2. Then the following inequality holds:

ζ

(
g1 + g2

2

)
≤ 1

g2 – g1

∫ g2

g1

ζ (w) dw ≤ ζ (g1) + sζ (g2)
s + 1

. (21)

The above inequalities are sharp.

From inequality (21) we give the following result.

Theorem 5.2 Suppose that ζ1, ζ2 : [0,∞) → R is an s-convex function in the first sense,
where s ∈ (0, 1), and let g1, g2 ∈ [0,∞), g1 ≤ g2. Let ζ1, ζ2 ∈ C2([g1, g2]). Then there exist
some χ ∈ [g1, g2] such that the following equality holds:

1
g2–g1

∫ g2
g1

ζ1(w) dw – ζ1( g1+g2
2 )

1
g2–g1

∫ g2
g1

ζ2(w) dw – ζ2( g1+g2
2 )

=
ζ ′′

1 (χ )
ζ ′′

2 (χ )
, (22)

provided that the denominators are non-zero.

Proof Let

H :=
g1 + g2

2

and

(Tζ )(λ) :=
1

g2 – g1

∫ g2

g1

ζ1
(
λw + (1 – λ)H

)
dw – ζ1(H),

where λ ∈ [0, 1]. Accordingly, we can define (Tζ2)(λ).
We can have

(Tζ1)′(λ) :=
1

g2 – g1

∫ g2

g1

(w – H)ζ ′
1
(
λw + (1 – λ)H

)
dw

and

(Tζ1)′′(λ) :=
1

g2 – g1

∫ g2

g1

(w – H)2ζ ′′
1
(
λw + (1 – λ)H

)
dw.

Now consider the function Q(λ) defined by

Q(λ) = (Tζ2)(1)(Tζ1)(λ) – (Tζ1)(1)(Tζ2)(λ)

such that we have

Q(0) = Q(1) = Q′(0) = 0.

Then, from two applications of mean value theorem, we find υ ∈ [g1, g2] such that

Q′′(υ) = 0.
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It implies

1
g2 – g1

∫

[g1,g2]
(w – H)2[(Tζ2)(1).ζ ′′

1
(
wυ – (1 – υ)H

)

– (Tζ1)(1).ζ ′′
2
(
wυ – (1 – υ)H

)]
= 0. (23)

For some fixed υ , the expression in the square brackets in (23) is a continuous function of
w, so it vanishes. Corresponding to that value of w, we get a number

χ = wυ + (1 – υ)H

such that

(Tζ2)(1).ζ ′′
1 (χ ) – (Tζ1)(1).ζ ′′

2 (χ ) = 0.

Thus we get (22). �

Corollary 5.3 If ζ ′′
1

ζ ′′
2

is invertible, then we have

χ =
(

ζ ′′
1 (χ )

ζ ′′
2 (χ )

)–1( 1
g2–g1

∫ g2
g1

Ψ1(w) dw – ζ1( g1+g2
2 )

1
g2–g1

∫ g2
g1

ζ2(w) dw – ζ2( g1+g2
2 )

)
. (24)

Corollary 5.4 Let s1, s2 ∈ (0, 1). By taking ζ1(w) = ws1 and ζ2(w) = ws2 , where w ∈ (0,∞),
in Theorem 5.2 we have

gs1+1
2 –gs1+1

1
(s1+1)(g2–g1) – ( g1+g2

2 )s1

gs2+1
2 –gs2+1

1
(s2+1)(g2–g1) – ( g1+g2

2 )s2

=
s1(s1 – 1)
s2(s2 – 1)

(χ )s1–s2 . (25)

Now we define the following definition.

Definition 5.1 Let s ∈ (0, 1) and g1, g2 ∈ [0,∞), g1 ≤ g2. Then quasi-arithmetic mean for
the strictly monotonic function Φ defined on [g1, g2] is as follows:

M̂Φ (g1, g2) = Φ–1
(

1
g2 – g1

∫ g2

g1

Φ(w) dw – Φ

(
g1 + g2

2

))
. (26)

Theorem 5.5 Let s ∈ (0, 1) and g1, g2 ∈ [0,∞), g1 ≤ g2. Let Φ1,Φ2,Φ3 ∈ C2([g1, g2]) be
strictly monotonic real-valued functions. Then

Φ1(M̂Φ1 (g1, g2)) – Φ1(M̂Φ3 (g1, g2))
Φ2(M̂Φ2 (g1, g2)) – Φ2(M̃Φ3 (g1, g2))

=
Φ ′′

1 (υ)Φ ′
3(υ) – Φ ′

1(υ)Φ ′′
3 (υ)

Φ ′′
2 (υ)Φ ′

3(υ) – Φ ′
2(η)Φ ′′

3 (υ)
(27)

for some υ , provided that the denominators are non-zero.
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Proof Let us choose functions ζ1 = Φ1 ◦ Φ–1
3 , ζ2 = Φ2 ◦ Φ–1

3 , w = Φ3(w), and g1+g2
2 =

1
g2–g1

∫ g2
g1

Φ3(w) dw in Theorem 5.2, we observe that there exists some υ ∈ [g1, g2] such that

Φ1(M̂Φ1 (g1, g2)) – Φ1(M̂Φ3 (g1, g2))
Φ2(M̂Φ2 (g1, g2)) – Φ2(M̂Φ3 (g1, g2))

=
Φ ′′

1 (Φ–1
3 (χ ))Φ ′

3(Φ–1
3 (χ )) – Φ ′

1(Φ–1
3 (χ ))Φ ′′

3 (Φ–1
3 (χ ))

Φ ′′
2 (Φ–1

3 (χ ))Φ ′
3(Φ–1

3 (χ )) – Φ ′
2(Φ–1

3 (χ ))Φ ′′
3 (Φ–1

3 (χ ))
. (28)

Then, by letting Φ–1
3 (χ ) = υ , we notice that we have υ ∈ [g1, g2] such that

Φ1(M̂Φ1 (g1, g2)) – Φ1(M̂Φ3 (g1, g2))
Φ2(M̂Φ2 (g1, g2)) – Φ2(M̂Φ3 (g1, g2))

=
Φ ′′

1 (υ)Φ ′
3(υ) – Φ ′

1(υ)Φ ′′
3 (υ)

Φ ′′
2 (υ)Φ ′

3(υ) – Φ ′
2(υ)Φ ′′

3 (υ)
. (29)�

Again from inequality (21) we have following result.

Theorem 5.6 Suppose that ζ1, ζ2 : [0,∞) → R is an s-convex function in the first sense,
where s ∈ (0, 1), and let g1, g2 ∈ [0,∞), g1 ≤ g2. Let ζ1, ζ2 ∈ C2([g1, g2]). Then there exist
some χ ∈ [g1, g2] such that the following equality holds:

ζ1(g1)+sζ1(g2)
s+1 – 1

g2–g1

∫ g2
g1

ζ1(w) dw
ζ2(g1)+sζ2(g2)

s+1 – 1
g2–g1

∫ g2
g1

ζ2(w) dw
=

ζ ′′
1 (χ )

ζ ′′
2 (χ )

, (30)

provided that the denominators are non-zero.

Proof Consider the function

(Tζ1)(w) =
sζ1(w) + ζ1(g1)

s + 1
(w – g1) –

∫ w

g1

ζ1(x) dx. (31)

Similarly, we can define Tζ2(w).
Note that

(Tζ1)′(w) =
sζ ′

1(w)
s + 1

(w – g1) –
ζ1(w) – ζ1(g1)

s + 1
(32)

and

(Tζ1)′′(w) =
sζ ′′

1 (w)
s + 1

(w – g1). (33)

We observe that

(Tζ1)(g1) = (Tζ1)′(g1) = (Tζ1)′′(g1) = 0.

Now we define D(w) as follows:

D(w) = (Tζ2)(g2)(Tζ1)(w) – (Tζ1)(g2)(Tζ2)(w). (34)

Then note that

D(g1) = D′(g2) = D′′(g1) = D(g2) = 0.
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Thus, by application of the mean-value theorem, we get

D′′(χ ) = 0

for some χ ∈ [g1, g2]. Consequently, this completes the proof of the theorem. �

Corollary 5.7 If ζ ′′
1

ζ ′′
2

is invertible, then we have

χ =
(

ζ ′′
1 (χ )

ζ ′′
2 (χ )

)–1( ζ1(g1)+sζ1(g2)
s+1 – 1

g2–g1

∫ g2
g1

ζ1(w) dw
ζ2(g1)+sζ2(g2)

s+1 – 1
g2–g1

∫ g2
g1

ζ2(w) dw

)
. (35)

Corollary 5.8 Let s1, s2 ∈ (0, 1). By taking ζ1(w) = ws1 and ζ2(w) = ws2 , where w ∈ (0,∞),
in Theorem 5.6, we have

(gs1
1 + s1gs1

2 ) – ( gs1+1
2 –gs1+1

1
g2–g1

)

(gs2
1 + s2gs2

2 ) – ( gs2+1
2 –gs2+1

1
g2–g1

)
=

s1(s1 – 1)(s2 + 1)
s2(s2 – 1)(s1 + 1)

(χ )s1–s2 . (36)

6 Conclusion
In Sect. 2, we proved Cauchy type mean for p-convex functions. In Sect. 3, Cauchy type
theorem in the Hermite–Hadamard sense was obtained for p-convex functions. In Sect. 4,
we proved Jensen’s inequality for s-convex functions in the first sense, and then a Cauchy
type theorem was obtained. In Sect. 5, a Cauchy type theorem in the Hermite–Hadamard
sense was obtained for s-convex functions in the first sense.
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22. Toplu, T., İşcan, I., Maden, S.: Lazhar type inequalities for p-convex functions. In: International Conference on

Mathematics and Mathematics Education (ICMME-2018), Ordu University, 27–29 June 2018, Ordu (2018)


	Cauchy type means for some generalized convex functions
	Abstract
	Keywords

	Introduction
	Cauchy type means for p-convex functions in Jensen's sense
	Cauchy type means for p-convex functions in the Hermite-Hadamard sense
	Cauchy type means for s-convex functions in Jensen's sense
	Cauchy type means for s-convex functions in the Hermite-Hadamard sense
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


