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Abstract
In the present paper, we introduce sharp upper and lower bounds to the ratio of two
q-gamma functions �q(x + 1)/�q(x + s) for all real number s and 0 < q �= 1 in terms of
the q-digamma function. Our results refine the results of Ismail and Muldoon
(Internat. Ser. Numer. Math., vol. 119, pp. 309–323, 1994) and give the answer to the
open problem posed by Alzer (Math. Nachr. 222(1):5–14, 2001). Also, for the classical
gamma function, our results give a Kershaw inequality for all 0 < s < 1 when letting
q → 1 and a new inequality for all s > 1.
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1 Introduction
There exist several published articles providing different upper and lower bounds for the
ratio of two gamma functions �(x + 1)/�(x + s), x > 0, s ∈ (0, 1) where � is the gamma
function; we refer to [3, 4] and the references given therein. One of the most used and
most studied inequality about the ratio of gamma function is the Kershaw inequality [5],
which can be stated as: For x > 0 and 0 < s < 1

exp
(
(1 – s)ψ(x +

√
s)

)
<

�(x + 1)
�(x + s)

< exp

(
(1 – s)ψ

(
x +

s + 1
2

))
. (1.1)

Inspired by this result, Ismail and Muldoon [1] presented the q-analogue of the right hand
side of (1.1) for the q-gamma function: Let 0 < q < 1 and 0 < s < 1. Then

�q(x + 1)
�q(x + s)

< exp

(
(1 – s)ψq

(
x +

s + 1
2

))
(1.2)

hold true for all x > –s where �q is the q-gamma function defined for all positive real x as
[6, 7]

�q(x) = |1 – q|1–xq
x(x–1)

2 H(q–1)
∞∏

n=0

1 – q̂n+1

1 – q̂n+x , 1 �= q > 0, (1.3)
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and ψq is the q-digamma function defined as the logarithmic derivative of the q-gamma
function: That is; for all positive real x and q �= 1 [8, 9]

ψq(x) =
d

dx
(
log�q(x)

)
=

�′
q(x)

�q(x)
. (1.4)

In (1.3), | · | is the absolute value, H(·) denotes the Heaviside step function and

q̂ =

⎧
⎨

⎩
q if 0 < q ≤ 1,

q–1 if q ≥ 1.

The close connection between two branches of the q-gamma function when 0 < q < 1 and
q > 1 is given by

�q(x) = q
(x–1)(x–2)

2 �q–1 (x), q > 1. (1.5)

It is worth mentioning that Gao [10] has given a lower bound of the ratio of q-gamma
functions

�q(x + 1)
�q(x + s)

> exp

(
1 – s

2
(
ψq(x + 1) + ψq(x + s)

))
(1.6)

for all x > 0, 0 ≤ s < 1 and has shown that the lower bound above and the corresponding
one of the case q → 1 in (1.1) are not comparable in general.

Influenced by (1.1), Alzer [2] posed the following open problem: Let 0 < q �= 1 and 0 <
s < 1. Determine the best possible values a(q, s) and b(q, s) such that the inequalities

exp
[
((1 – s)ψq

(
x + a(q, s)

)]
<

�q(x + 1)
�q(x + s)

< exp
[
(1 – s)ψq

(
x + b(q, s)

)]
(1.7)

hold for all x > 0.
The main goal of this paper is to determine the best possible values a(q, s) and b(q, s) not

only when 0 < s < 1 but for all real number s �= 1. Our upper bound refines the upper bound
of (1.2) and is generalized it for all 0 < q �= 1. Also, when letting q → 1, our result comes
bach to Kershaw inequality (1.1) for all 0 < s < 1 and give a new inequality for gamma
function

exp

(
(1 – s)ψ

(
x +

s + 1
2

))
<

�(x + 1)
�(x + s)

< exp
(
(1 – s)ψ(x +

√
s)

)
(1.8)

which holds true for all s > 1. This result is a new inequality for the classical gamma func-
tion.

Recently, many contributions have introduced inequalities for q-special functions and
q-integrals (see [11–16] and the references given therein).

2 Preliminaries and useful lemmas
A real-valued function f , defined on an interval I , is called completely monotonic, if f has
derivatives of all orders and satisfies

(–1)nf (n)(x) ≥ 0, n ∈ N0; x ∈ I. (2.1)



Alzahrani et al. Journal of Inequalities and Applications        (2021) 2021:106 Page 3 of 12

A necessary and sufficient condition that f (x) could be called completely monotonic on
(0,∞) is that [17]

f (x) =
∫ ∞

0
e–xt dα(t), (2.2)

where α(t) is nondecreasing and the integral converges for 0 < x < ∞.
Recently, numerous papers were published presenting remarkable inequalities involving

the q-gamma and the q-digamma functions by means of investigating the monotonicity
and the complete monotonicity properties for functions associated with them (see [18–36]
and the extensive list of references given therein).

Ismail and Muldoon [1] provided the equivalent Stieltjes integral representation for the
q-digamma function as

ψq(x) = – log(1 – q) –
∫ ∞

0

e–xt

1 – e–t dγq(t), x > 0, 0 < q < 1, (2.3)

where γq(t) is a discrete measure with positive masses – log q at the positive points –k log q,
k ∈N. For completeness, and economy of later statements, they include the value q = 1 in
the definition of γq(t):

γq(t) =

⎧
⎨

⎩
– log q

∑∞
k=1 δ(t + k log q), 0 < q < 1,

t, q = 1.

They used the identities

qx log q
1 – qx = –

∫ ∞

0
e–xt dγq(t) and log

(
1 – qx) = –

∫ ∞

0

e–xt

t
dγq(t), (2.4)

which follow easily from the definition of dγq(t) for all x > 0 and 0 < q < 1.

Lemma 2.1 Let s be a real number and the function

g(t; s) = 1 –
1
t

log

(
e(1–s)t – 1
t(1 – s)

)
, s �= 1, (2.5)

be defined for all t > 0. Then the function t 
→ g(t; s) is decreasing on (0,∞) and satisfying
s < g(t; s) < (s + 1)/2 if s < 1 and 1 ≤ g(t; s) ≤ (s + 1)/2 if s > 1.

Proof Differentiation gives t2g ′(t; s) = h(t) where

h(t) = log

(
e(1–s)t – 1
t(1 – s)

)
–

(1 – s)te(1–s)t – e(1–s)t + 1
e(1–s)t – 1

, s �= 1.

Hence, we have

h′(t) = –
e2(1–s)t – e(1–s)t[t2(1 – s)2 + 2] + 1

t(e(1–s)t – 1)2 , s �= 1.
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When s < 1, noting 2n ≥ n2 for all n ≥ 4, we find that

h′(t) = –
1

t(e(1–s)t – 1)2

∞∑

n=4

(1 – s)ntn

n!
(
2n – n(n – 1) – 2

)
< 0.

When s > 1, we find that

h′(t) = –
e2(1–s)t

t(e(1–s)t – 1)2

∞∑

n=4

(s – 1)ntn

n!
(
2n – n(n – 1) – 2

)
< 0.

These reveal that h(t) is decreasing on (0,∞). It is not difficult to see that limt→0 h(t) =
0 which leads to g(t; s) is decreasing on (0,∞). The L’Hospital rule evaluates that
limt→0 g(t; s) = (s + 1)/2 and

lim
t→∞ g(t; s) =

⎧
⎨

⎩
s if s < 1,

1 if s > 1,

which lead to the desired results. �

Let t = – log q in the lemma above. Then we define b(q, s) for all 0 < q < 1 and s ∈ R as

b(q, s) = g(– log q; s) = s +
1

log q
log

(
–

1 – q1–s

(1 – s) log q

)
, s �= 1. (2.6)

Based upon the former lemma, the function q 
→ b(q, s) is satisfying the inequality s <
b(q, s) < (s + 1)/2 if s < 1 and 1 < b(q, s) < (s + 1)/2 if s > 1.

Lemma 2.2 Let s be a positive real number and the function

�(q, s) = –
(1 – s)(1 – q)(1 – qs) log q

qs(1 – q1–s)
, s �= 1, (2.7)

be defined for all 0 < q < 1. Then we have

2 + �(q, s) –
√

�2(q, s) + 4�(q, s) < 2qs, 0 < s < 1, (2.8)

2 + �(q, s) –
√

�2(q, s) + 4�(q, s) < 2q, s > 1, (2.9)

2 + �(q, s) –
√

�2(q, s) + 4�(q, s) >
2(s – 1)q log q

1 – q1–s , s > 0. (2.10)

Proof The inequality (2.8) can be rewritten as

2
(
1 – qs) + �(q, s) <

√
�2(q, s) + 4�(q, s).

Squaring both sides gives qs�(q, s)/(1 – qs)2 > 1, which is true by the facts that (1 – qs)/(1 –
q) < 1 and 1 – q1–s < –(1 – s) log q for all 0 < s < 1. By same method, (2.9) can be proven.

Similarly, the inequality (2.10) is equivalent

–
(1 – s)q log q

1 – q1–s �(q, s) <
(

1 +
(1 – s)q log q

1 – q1–s

)2

.
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It suffices to prove that w(q; s) > 0 for all 0 < s �= 1 where

w(q; s) =
(
1 – q1–s)2 + 2(1 – s)

(
1 – q1–s)q log q – (1 – s)2q1–s log2 q

(
1 – q – qs),

which can be read as

w(q; s) = u(y) + (1 – s)qv(y) log q, y = q1–s,

where

u(y) = (1 – y)2 – y log2 y = y2
∞∑

n=4

logn(1/y)
n!

[
2n – 2 – n(n – 1)

]
> 0,

v(y) = 2(1 – y) + (1 + y) log y = y
∞∑

n=3

logn(1/y)
n!

(2 – n) < 0,

for all 0 < s < 1 and

u(y) = (1 – y)2 – y log2 y =
∞∑

n=4

logn(y)
n!

[
2n – 2 – n(n – 1)

]
> 0,

v(y) = 2(1 – y) + (1 + y) log y =
∞∑

n=3

logn(y)
n!

(n – 2) > 0,

for all s > 1. These results end the proof. �

Lemma 2.3 Let s be a positive real and the two functions

a±(q, s) =
log(1 + 1

2 (�(q, s) ± √
�2(q, s) + 4�(q, s)))

log q
(2.11)

be defined for all 0 < q < 1 where �(q, s) is defined as in (2.7). Then we have

lim
q→1

a±(q, s) = ∓√
s, s > 0, (2.12)

lim
q→0

a±(q, s) =

⎧
⎨

⎩
∓ s, 0 < s < 1,

∓ 1, s > 1,
(2.13)

and

a+(q, s) < 0 < s < a–(q, s) < s + 1 – b(q, s), 0 < s < 1, (2.14)

a+(q, s) < 0 < 1 < a–(q, s) < s + 1 – b(q, s), s > 1, (2.15)

where b(q, s) is defined in (2.6).

Proof The L’Hospital rule and long simple calculations give

lim
q→1

�(q, s) = lim
q→1

�′(q, s) = 0 and lim
q→1

�′′(q, s) = 2s,
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where the derivative is taken with respect to q. Hence, we find that

lim
q→1

a±(q, s) = lim
q→1

q�′(q, s)[
√

�2(q, s) + 4�(q, s) ± (�(q, s) + 2)]
√

�2(q, s) + 4�(q, s)[�(q, s) + 2 ± √
�2(q, s) + 4�(q, s)]

= ± lim
q→1

�′(q, s)
√

�2(q, s) + 4�(q, s)

= ± lim
q→1

√
�2(q, s) + 4�(q, s)

2�′(q, s)
�′′(q, s)

= s/ lim
q→1

a±(q, s).

It is clear from (2.11) that a+(q, s) < 0 and a–(q, s) > 0 which yields limq→1 a±(q, s) = ∓√
s.

In order to prove the second limit, it is not difficult to see that limq→0 �(q, s) = ∞ and

�′(q, s) = –�(q, s)
(

1
1 – q

+
sqs–1

1 – qs –
1

q log q
+

s
q

–
(1 – s)q–s

1 – q1–s

)

= –�(q, s)
(

s + q – sq – q1–s

q(1 – q)(1q1–s)
+

sqs–1

1 – qs –
1

q log q

)
,

which can be used to evaluate

lim
q→0

a±(q, s) = ± lim
q→0

q�′(q, s)
√

�2(q, s) + 4�(q, s)

= ∓ lim
q→0

�(q, s)
√

�2(q, s) + 4�(q, s)

(
q

1 – q
+

sqs

1 – qs –
1

log q
+ s –

(1 – s)q1–s

1 – q1–s

)

=

⎧
⎨

⎩
∓ s, 0 < s < 1,

∓ 1, s > 1.

The inequality a–(q, s) > s is verified for 0 < s < 1 by using (2.8) as

a–(q; s) – s =
log( 2+�(q,s)–

√
�2(q,s)+4�(q,s)

2qs )
log q

> 0, 0 < s < 1,

and the inequality a–(q, s) > 1 is verified for s > 1 by using (2.9) as

a–(q; s) – 1 =
log( 2+�(q,s)–

√
�2(q,s)+4�(q,s)
2q )

log q
> 0, s > 1.

Also, the inequality a–(q, s) < s + 1 – b(q, s) is verified for 0 < s �= 1 by using (2.10) as

a–(q, s) – s – 1 + b(q, s) =
log( 2+�(q,s)–

√
�2(q,s)+4�(q,s)
2

1–q1–s

(s–1)q log q )
log q

< 0.

This ends the proof. �
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3 The main results
In this section, the monotonicity and complete monotonicity properties are investigated
as applied to certain functions involving the q-gamma and q-digamma functions and ex-
ploited to provide the best possible values a(q, s) and b(q, s) in (1.7).

Theorem 3.1 Let s and a be real numbers with s �= 1 and the function

Fa(x; q, s) = log�q(x + 1) – log�q(x + s) – (1 – s)ψq(x + a)

+ (1 – s)
(

a –
s + 1

2

)
H(q – 1) log q (3.1)

be defined for all x > max{–a, –1} and q > 0. Let b(q, s) be defined in (2.6).
• When s < 1. Then:

1. The function –Fa(x; q, s) is a completely monotonic function on (–a,∞) if and
only if a ≥ b(q̂, s).

2. The function Fa(x; q, s) is a completely monotonic function on (–s,∞) if and only if
a ≤ s.

• When s > 1. Then:
1. The function –Fa(x; q, s) is a completely monotonic function on (–1,∞) if and only

if a ≤ 1.
2. The function Fa(x; q, s) is a completely monotonic function on (–1,∞) if and only

if a ≥ b(q̂, s).

Proof Differentiation gives

F ′
a(x; q, s) = ψq(x + 1) – ψq(x + s) – (1 – s)ψ ′

q(x + a), (3.2)

which can be represented, by using (2.3), as

F ′
a(x; q, s) = –

∫ ∞

0

e–(x+1)t

1 – e–t fs(a, t) dγq(t), 0 < q < 1.

Hence, for a positive integer n, we have

(–1)nF (n+1)
a (x; q, s) = –

∫ ∞

0

tne–(x+1)t

1 – e–t fs(a, t) dγq(t),

where

fs(a, t) = 1 – e(1–s)t + (1 – s)te(1–a)t .

A partial derivative with respect to a gives

∂

∂a
fs(a, t) = –(1 – s)t2e(1–a)t ,

which means that the function a 
→ fs(a, t) is decreasing on R if s < 1 and increasing on R

if s > 1 for all t > 0. It is easy to show that fs(s, t) > 0 and fs(1, t) < 0 for all real s �= 1 and t > 0,
which means that there is a unique root lying between s and 1 at a = g(t; s) where g(t; s) is
defined in (2.5), such that:
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In the case of s < 1: The function fs(a, t) > 0 for all a < g(t; s) and fs(a, t) < 0 for all a >
g(t; s). According to the definition of the discrete measure fs(a, t) dγq, the function
F ′

a(x; q, s) is a completely monotonic function on (–a,∞) if fs(a, t) < 0 at t = –k log q,
k ∈ N and –F ′

a(x; q, s) is a completely monotonic function on (–a,∞) if fs(a, t) > 0
at t = –k log q, k ∈ N. In other words, F ′

a(x; q, s) is a completely monotonic function
on (–a,∞) if a ≥ g(–k log q; s) and –F ′

a(x; q, s) is a completely monotonic function
on (–a,∞) if a ≤ g(–k log q; s). By virtue of Lemma 2.1, the function t 
→ g(t; s) is
decreasing on (0,∞), then g(–k log q; s) is decreasing for all k ∈N, which means that
the function F ′

a(x; q, s) is a completely monotonic function on (–a,∞) if a ≥ b(q, s)
and –F ′

a(x; q, s) is a completely monotonic function on (–s,∞) if a ≤ s.
In the case of s > 1: The function fs(a, t) < 0 for all a < g(t; s) and fs(a, t) > 0 for all a >

g(t; s). Thus, the function F ′
a(x; q, s) is a completely monotonic function on (–1,∞) if

a ≤ 1 and –F ′
a(x; q, s) is a completely monotonic function on (–1,∞) if a ≥ b(q, s).

It is not difficult to see from (1.4) and (1.5) that F ′
a(x; q–1, s) = F ′

a(x; q, s) for all q > 1 and so
the former rules can be extended to 0 < q �= 1.

By (1.3) and (1.4), it is easy to rewrite the function in (3.1) in the form

Fa(x; q, s) =
∞∑

n=0

log

[
1 – q̂n+x+s

1 – q̂n+x+1

]
– (1 – s)

∞∑

n=0

q̂n+x+a log q̂
1 – q̂n+x+a , q �= 1. (3.3)

Hence, limx→∞ Fa(x; q, s) = 0 for all real s �= 1 which means that for all positive real q �= 1:
• When s < 1, the function –Fa(x; q, s) is a completely monotonic function on (–a,∞) if

a ≥ b(q̂, s) and Fa(x; q, s) is a completely monotonic function on (–s,∞) if a ≤ s.
• When s > 1 the function –Fa(x; q, s) is a completely monotonic function on (–1,∞) if

a ≤ 1 and Fa(x; q, s) is a completely monotonic function on (–1,∞) if a ≥ b(q̂, s).
Conversely, in order to prove the converse, it is clear from (3.2) that

lim
x→∞ q̂–xFa(x; q, s) = –

q̂s(1 – q̂1–s) + (1 – s)q̂a log q̂
1 – q̂

, q �= 1. (3.4)

When s < 1, let the function –Fa(x; q, s) be a completely monotonic function on (–a,∞).
Thus limx→∞ q̂–xFa(x; q, s) ≤ 0, which yields a ≥ b(q̂, s). Now, suppose Fa(x; q, s) (with a >
s) is a completely monotonic function on (–s,∞) for all positive q �= 1. This means that
Fa(x; q, s) is positive on (–s,∞). But this contradicts limx→–s = –∞, a > s.

When s > 1, the proof is similar. This ends the proof. �

Corollary 3.1 Let a real number s �= 1 and a positive real number q �= 1. Then, when s < 1,
the inequalities

q(s–1)(a– s+1
2 )H(q–1) exp

(
(1 – s)ψq(x + a)

)
<

�q(x + 1)
�q(x + s)

< q(s–1)(b– s+1
2 )H(q–1) exp

(
(1 – s)ψq(x + b)

)
(3.5)

hold true for all x > –s, a ≤ s and b ≥ b(q̂, s) with best possible constants a = s and b = b(q̂, s).
When s > 1, the inequalities (3.5) are reversed for all x > –1, a ≤ 1 and b ≥ b(q̂, s) with best
possible constants a = 1 and b = b(q̂, s).
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Proof The results obtained in Theorem 3.1 refer to Fb(x; q, s) < 0 < Fa(x; q, s) for all x > –s,
a ≤ s and b ≥ b(q̂, s) when s < 1, which is equivalent to (3.5) and Fa(x; q, s) < 0 < Fb(x; q, s)
for all x > –1, a ≤ 1 and b ≥ b(q̂, s) when s > 1, which is equivalent to the reverse. �

Corollary 3.2 Let a real number s �= 1, a positive real number q �= 1 and a non-negative
integer n. Then, when s < 1, the inequalities

(–1)n(1 – s)ψ (n+1)
q (x + b) < (–1)n[ψ (n)

q (x + 1) – ψ (n)
q (x + s)

]

< (–1)n(1 – s)ψ (n+1)
q (x + a) (3.6)

hold true for all x > –s, a ≤ s and b ≥ b(q̂, s) with best possible constants a = s and b = b(q̂, s).
When s > 1, the inequalities (3.6) are reversed for all x > –1, a ≤ 1 and b ≥ b(q̂, s) with best
possible constants a = 1 and b = b(q̂, s).

Proof The results obtained in Theorem 3.1 refer to

(–1)nF (n+1)
a (x; q, s) < 0 < (–1)nF (n+1)

b (x; q, s)

for all x > –s, a ≤ s and b ≥ b(q̂, s) when s < 1, which is equivalent to (3.6) and F ′
b(x; q, s) <

0 < Fa(x; q, s) for all x > –1, a ≤ 1 and b ≥ b(q̂, s) when s > 1, which is equivalent to the
reverse. �

Remark 3.1 When 0 < q, s < 1, Ismail and Muldoon [1] established the upper bound as in
(1.2). By virtue of Lemma 2.1, b(q, s) < (s + 1)/2 and by increasing of the q-digamma and
exponential functions, it turns out that the upper bound of (3.5) is less (better) than of the
upper bound of (1.2).

Remark 3.2 When letting q → 1 and 0 < s < 1, the inequalities (3.5) become

exp
(
(1 – s)ψ(x + s)

)
<

�(x + 1)
�(x + s)

< exp

(
(1 – s)ψ

(
x +

s + 1
2

))
, (3.7)

which are true for all x > –s. It is noted that the upper bound is the same as (1.1) but the
lower bound of (1.1) is bigger (better) than the lower bound of (3.7). Motivated by this, we
devote the following theorem to refining the lower bound of (3.5) to a q-extension of the
lower bound of (1.1).

Theorem 3.2 Let s �= 1 and q �= 1 be positive real numbers, b(q, s) be defined in (2.6) and
a±(q, s) be defined in (2.11). Then:

• When 0 < s < 1, the inequalities (3.5) hold true for all x ≥ 0, a+(q̂, s) ≤ a ≤ a–(q̂, s) and
b(q̂, s) ≤ b ≤ 1 + s – b(q̂, s) with best possible constants a = a–(q̂, s) and b = b(q̂, s).

• When s > 1, the inequalities (3.5) are reversed for all x ≥ 0, a+(q̂, s) ≤ a ≤ a–(q̂, s) and
b(q̂, s) ≤ b ≤ 1 + s – b(q̂, s) with best possible constants a = a–(q̂, s) and b = b(q̂, s).

Proof Let 0 < s < 1 and the function

fa(x; q, s) = Fa(x; q, s) – Fa(x + 1; q, s) = – log[x + 1]q + log[x + s]q – (1 – s)
qx+a log q
1 – qx+a ,
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where Fa(x; q, s) is defined in (3.1). Then we have

f ′
a(x; q, s) = –

qx log q
(1 – qx+1)(1 – qx+s)(1 – qx+a)2 f (x),

where

f (x) = qs(1 – q1–s)(1 – qx+a)2 + (1 – s)qa(1 – qx+1)(1 – qx+s) log q,

which can be rewritten as

f (x) = qa+s[λa(q, s) + μa(q, s)q2x – ν(q, s)qx], (3.8)

where

λa(q, s) = q–a(1 – q1–s) + (1 – s)q–s log q,

μa(q, s) = qa(1 – q1–s) + (1 – s)q log q,

ν(q, s) = 2
(
1 – q1–s) + (1 – s)

(
1 + q1–s) log q.

It is easy to see that

ν(q, s) = q1–s
∞∑

n=3

(1 – s)n logn(1/q)
n!

(2 – n) < 0, 0 < q < 1,

which means that f (x) > 0 for all 0 < q < 1 if λa(q, s) ≥ 0 and μa(q, s) ≥ 0. In other words:
f (x) > 0 for all 0 < q < 1 if

b(q, s) ≤ a ≤ s + 1 – b(q, s), (3.9)

which shows that fa(x; q, s) is increasing on (–s,∞) and since limx→∞ fa(x; q, s) = 0, we have
fa(x; q, s) < 0 for all 0 < q < 1 and a satisfies (3.9). Hence, we have

Fa(x; q, s) < Fa(x + 1; q, s) < lim
n→∞ Fa(x + n; q, s) = 0,

which gives the upper bound of (3.5) for all positive real q �= 1 since Fa(x; q, s) = Fa(x; q–1, s).
Based on Lemma 2.1, b(q, s) ≤ (s + 1)/2, then a = b(q̂, s) is better than a = s + 1 – b(q̂, s).

In order to prove the lower bound, differentiating (3.8) gives

f ′(x) = qx+a+s log q
[
2μa(q, s)qx – ν(q, s)

]
< 0, μa(q, s) ≥ 0,

which leads to f (x) is decreasing on [0,∞) for all 0 < q < 1 and a ≤ s + 1 – b(q, s). Hence,
f (x) < 0 if f (0) ≤ 0. That is,

q2a –
(
�(q, s) + 2

)
qa + 1 ≤ 0,
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which yields a+(q, s) ≤ a ≤ a–(q, s). By virtue of (2.14) a–(q, s) < s + 1 – b(q, s), thus we have
to take a+(q, s) ≤ a ≤ a–(q, s). By increasing of the q-digamma and exponential functions,
the best value is at a = a–(q, s) and this result can be extended for all q > 0 at a = a–(q̂, s).

When s > 1, by the same method and by aiding (2.15), we can easily prove the reverse of
(3.5). �

Remark 3.3 It is clear that Theorem 3.2 and Corollary 3.1 have the same upper bounds
when 0 < s < 1 and the same lower bounds when s > 1. By virtue of Lemma 2.3 (a–(q̂, s) < s
when 0 < s < 1 and a–(q̂, s) < 1 when s > 1), then the results in Theorem 3.2 are better than
the corresponding ones in Corollary 3.1.

Remark 3.4 It is worth mentioning that when letting q → 1:
• When 0 < s < 1, the results in Theorem 3.2 go back to the Kershaw inequalities (1.1) by

using the limits in Lemmas 2.1 and 2.2.
• When s > 1, the results in Theorem 3.2 take the form of the inequality (1.8), which is

considered as the extension of the Kershaw inequality (1.1) when s > 1. This result is a
new inequality for the ratio of classical gamma functions.
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