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1 Introduction
Quantum calculus, shortly q-calculus, is the study of calculus without limits. The history
of q-calculus can be dated back to Euler, who first introduced q-calculus in the track of
Newton’s work on infinite series. In 1910, F. H. Jackson [1] defined the definite q-integral,
which is known as the q-Jackson integral. It was the starting point of q-calculus in a sys-
tematic way. In recent years, q-calculus has been actively developed and many researchers
have been increasingly interested in the topic of q-calculus due to applications of the q-
calculus in mathematics and physics such as combinatorics, dynamical systems, fractals,
number theory, orthogonal polynomials, special functions, mechanics and also for scien-
tific problems in some applied areas, see [2–16] for more details.

The subject (p, q)-calculus is a generalization of q-calculus and it is two parameters
quantum calculus. In 2013, P.N. Sadjang [17] studied the (p, q)-derivative, the (p, q)-
integral, and obtained some of their properties and the fundamental of (p, q)-calculus.
Recently, M. Tunç, and E. Göv [18] defined the (p, q)-derivative and (p, q)-integral on fi-
nite interval. The applications of (p, q)-calculus play important roles in physical sciences,
number theory, orthogonal polynomials, see [19–23] for more details. Furthermore, they
studied some properties of (p, q)-calculus and (p, q)-analogue of some important integral
inequalities. The (p, q)-integral inequalities have been studied and rapidly developed dur-
ing this period by many authors, see [24–31] and the references therein.

Mathematical inequalities have been applied in various branches of mathematics like
analysis, differential equations, and geometry. One of the famous inequalities is the Hardy
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inequality. Let us just mention that in 1920, G. H. Hardy [32] presented the following
famous inequality for f being a non-negative integrable function and s > 1:

∫ ∞

0

(
1
x

∫ x

0
f (t) dt

)s

dx ≤
(

s
s – 1

)s ∫ ∞

0
f s(x) dx, (1.1)

which is now known as Hardy inequality. This inequality plays an important role in anal-
ysis and applications, see [33, 34] for more details.

The Hardy inequality has been studied by a large number of authors during the twentieth
century. Over the last 20 years, a large number of papers have appeared in the literature
which deals with the simple proofs, various generalizations and discrete analogue of Hardy
inequality, see [35–39] for more details.

In 2014, L. Maligranda et al. [40] studied a q-analogue of Hardy inequality (1.1) and
some related inequalities. It seems to be a huge new research area to study of these so
called q-Hardy type inequalities. They obtained more general results on q-Hardy type
inequalities. By taking q → 1, we obtain classical results on Hardy inequality (1.1). Next,
L.-E. Persson and S. Shaimardan [41] studied some q-analogue of Hardy type inequalities
for the Riemann–Liouville fractional integral operator; see [42, 43] for more details.

In 1964, N. Levinson [44] presented the inequality respecting integration from a to b for
0 < a < b < ∞, f is a non-negative integrable function and s > 1, then

∫ b

a

(
1
x

∫ x

a
f (t) dt

)s

dx ≤
(

s
s – 1

)s ∫ b

a
f s(x) dx. (1.2)

In 2012, W.T. Sulaiman [45] gave a generalization and improvement for inequalities sim-
ilar to Hardy inequality in the sense when f > 0 on [a, b] ⊂ (0,∞) and 0 < k < 1 ≤ h, as
follows:

h
∫ b

a

1
xh

(∫ x

a
f (t) dt

)h

dx ≤ (b – a)h
∫ b

a

(
f (x)

x

)h

dx –
∫ b

a

(x – a)h

xh f h(x) dx (1.3)

and

k
∫ b

a

1
xk

(∫ x

a
f (t) dt

)k

dx ≤ (1 – a/b)k
∫ b

a
f k(x) dx –

1
bk

∫ b

a
(x – a)kf k(x) dx. (1.4)

In 2013, B. Sroysang [46] presented a generalization for inequalities (1.3) and (1.4) with
additional parameter m in the sense when f > 0 on [a, b] ⊂ (0,∞), 0 < k < 1 ≤ h and m > 0,
as follows:

h
∫ b

a

1
xm

(∫ x

a
f (t) dt

)h

dx ≤ (b – a)h
∫ b

a

f h(x)
xm dx –

∫ b

a

(x – a)h

xm f h(x) dx (1.5)

and

k
∫ b

a

1
xm

(∫ x

a
f (t) dt

)k

dx ≤ (b – a)k

bm

∫ b

a
f k(x) dx –

1
bm

∫ b

a
(x – a)kf k(x) dx. (1.6)

In 2014, B. Sroysang [47] presented a new kind of Hardy inequality and obtained a di-
rect generalization of the original Hardy inequality. Next, K. Mehrez [48] studied some
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generalizations and new refined Hardy type inequalities by using Jensen’s inequality and
Chebyshev integral inequality, see [49–52] for more details.

In 2016, S. Wu, B. Sroysang and S. Li [53] investigated certain integral inequalities similar
to the Hardy inequality. They generalized versions of some known results related to the
Hardy inequality and gave some new integral inequalities of Hardy type by introducing
a monotonous function and established the inequality for β being a non-negative real
number, as follows:

∫ b

a

(
F(x)
g(x)

)p

dx ≤
(

p
p – 1

)p ∫ b

a

(
(x – a + β)

f (x)
g(x)

)p

dx, (1.7)

where f ≥ 0, g > 0 on [a, b] ⊆ (0,∞), p ≥ 1, (x – a + β)/g(x) is non-increasing, and

F(x) =
∫ x

a
f (t) dt,

for x ∈ [a, b].
Inspired by this ongoing study, we establish the generalization of some integral inequal-

ities related to Hardy type integral inequalities via (p, q)-calculus. Many results obtained
in this paper provide extensions of other results given in previous papers. Furthermore,
we give some examples to illustrate the investigated results.

2 Preliminaries
Throughout this paper, let [a, b] ⊆ R be an interval and 0 < q < p ≤ 1. The following defi-
nitions and theorems for (p, q)-calculus are given in [17, 18, 24–29].

First, we give some (p, q)-notation, which would appear in this paper. For any real num-
ber n, the (p, q)-analogue of n is defined by

[n]p,q =
pn – qn

p – q
(2.1)

and

[–n]p,q = –
1

(pq)n [n]p,q. (2.2)

If p = 1, then (2.1) reduces to

[n]q =
1 – qn

1 – q
, (2.3)

which is q-analogue of n.

Definition 2.1 ([24]) If f : [a, b] → R is a continuous function, then the (p, q)-derivative
of the function f on [a, b] at x is defined by

aDp,qf (x) =
f (px + (1 – p)a) – f (qx + (1 – q)a)

(p – q)(x – a)
, x 	= a. (2.4)

The function f is said to be a (p, q)-differentiable function on [a, b] if aDp,qf (x) exists for
all x ∈ [a, b].
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It should be noted that

aDp,qf (a) = lim
x→a aDp,qf (x).

In Definition 2.1, if a = 0, then 0Dp,qf = Dp,qf is defined by

Dp,qf (x) =
f (px) – f (qx)

(p – q)x
, x 	= 0. (2.5)

And, if p = 1, then Dp,qf (x) = Dqf (x), which is the q-derivative of the function f , and also
if q → 1 in (2.5), then it reduces to a classical derivative.

Example 2.1 Define function f : [a, b] → R by f (x) = 2x2 + 2x + c, where c is a constant.
Then, for x 	= a, we have

aDp,q
(
2x2 + 2x + c

)
=

2[px + (1 – p)a]2 + 2[px + (1 – p)a] + c
(p – q)(x – a)

–
2[qx + (1 – q)a]2 + 2[qx + (1 – q)a] + c

(p – q)(x – a)

=
2(p + q)x2 – 4ax(p + q) + 4ax – 4a2 + 2a2(p + q) + 2(x – a)

x – a

= 2(p + q)(x – a) + 4a + 2.

Theorem 2.1 If f , g : [a, b] → R are continuous functions and c, d are constants, then the
following formulas hold:

(i) aDp,q[cf (x) ± dg(x)] = caDp,qf (x) ± daDp,qg(x);
(ii) aDp,q[f (x)g(x)] = f (px + (1 – p)a)aDp,qg(x) + g(qx + (1 – q)a)aDp,qf (x);
(iii) aDp,q[ f (x)

g(x) ] = g(px+(1–p)a)aDp,qf (x)–f (px+(1–p)a)aDp,qg(x)
g(px+(1–p)a)g(qx+(1–q)a) .

The proof of this theorem is given by [18].

Definition 2.2 ([24]) If f : [a, b] → R is a continuous function and 0 < a < b, then the
(p, q)-integral is defined by

∫ b

a
f (x)a dp,qx = (p – q)(b – a)

∞∑
k=0

qk

pk+1 f
(

qk

pk+1 b +
(

1 –
qk

pk+1

)
a
)

. (2.6)

f is said to be a (p, q)-integrable function on [a, b] if
∫ b

a f (x)a dp,qx exists for all x ∈ [a, b].

Moreover, if c ∈ (a, b), then (p, q)-integral is defined by

∫ b

c
f (x)a dp,qx =

∫ b

a
f (x)a dp,qx –

∫ c

a
f (x)a dp,qx. (2.7)

If a = 0 in (2.6), then one can get the classical (p, q)-integral defined by

∫ b

0
f (x) dp,qx = (p – q)b

∞∑
k=0

qk

pk+1 f
(

qk

pk+1 b
)

(2.8)
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and
∫ b

a
f (x) dp,qx =

∫ b

0
f (x) dp,qx –

∫ a

0
f (x) dp,qx. (2.9)

Example 2.2 Define a function f : [a, b] → R by f (x) = x2 + 2x + c, where c is a constant.
Then we have

∫ b

a
f (x)a dp,qx =

∫ b

a

(
x2 + 2x + c

)
a dp,qx

= (p – q)(b – a)
∞∑

k=0

qk

pk+1

(
qk

pk+1 b +
(

1 –
qk

pk+1

)
a
)2

+ 2(p – q)(b – a)
∞∑

k=0

qk

pk+1

(
qk

pk+1 b +
(

1 –
qk

pk+1

)
a
)

+ (p – q)(b – a)
∞∑

k=0

qk

pk+1 (c)

=
(b – a)3

[3]p,q
+

2(b – a)[a(b – a) + b – a(1 – p – q)]
[2]p,q

+ (b – a)
(
a2 + c

)

=
(b – a)3

[3]p,q
+

2(a + 1)(b – a)2

[2]p,q
+ (b – a)

(
a2 + 2a + c

)
.

The proofs of the following theorems are given in [18].

Theorem 2.2 If f , g : [a, b] → R are continuous functions, t ∈ [a, b] and α is a constant,
then the following formulas hold:

(i) aDp,q
∫ t

a f (x)a dp,qx = f (t);
(ii)

∫ t
c aDp,qf (x)a dp,qx = f (t) – f (c) for c ∈ (a, t);

(iii)
∫ t

a [f (x) + g(x)]a dp,qx =
∫ b

a f (x)a dp,qx +
∫ b

a g(x)a dp,qx;
(iv)

∫ t
a αf (x)a dp,qx = α

∫ b
a f (x)a dp,qx;

(v)
∫ t

a (x – a)αa dp,qx = (t–a)α+1

[α+1]p,q
;

(vi)
∫ t

c f (px + (1 – p)a)aDp,qg(x)a dp,qx = (fg)(x)|tc –
∫ t

c g(qx + (1 – q)a)aDp,qf (x)a dp,qx.

Theorem 2.3 If f , g : [a, b] →R are continuous functions and r > 1 with 1/r + 1/s = 1, then

∫ b

a

∣∣f (x)g(x)
∣∣a dp,qx ≤

(∫ b

a

∣∣f (x)
∣∣r

a dp,qx
)1/r(∫ b

a

∣∣g(x)
∣∣s

a dp,qx
)1/s

. (2.10)

3 Main results
In this section, we are going to establish the generalization of some integral inequalities
related to Hardy type integral inequalities via (p, q)-calculus. The first result is presented
as follows.

Theorem 3.1 If f , g : [a, b] →R are positive continuous functions and 0 < r < 1 with 1/r +
1/s = 1, then

∫ b

a

∣∣f (x)g(x)
∣∣a dp,qx ≥

(∫ b

a

∣∣f (x)
∣∣r

a dp,qx
)1/r(∫ b

a

∣∣g(x)
∣∣s

a dp,qx
)1/s

. (3.1)
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Proof From Theorem 2.3, we get

∫ b

a

∣∣f (x)
∣∣r

a dp,qx ≤
(∫ b

a

(∣∣f (x)g(x)
∣∣1/k)k

a dp,qx
)1/k(∫ b

a

(∣∣g(x)
∣∣–1/k)k′

a dp,qx
)1/k′

=
(∫ b

a

∣∣f (x)g(x)
∣∣a dp,qx

)1/k(∫ b

a

∣∣g(x)
∣∣–k′/k

a dp,qx
)1/k′

,

where r = 1/k and 1/k + 1/k′ = 1.
Consequently,

(∫ b

a

∣∣f (x)
∣∣r

a dp,qx
)1/r

≤
(∫ b

a

∣∣f (x)g(x)
∣∣a dp,qx

)1/(rk)(∫ b

a

∣∣g(x)
∣∣–k′/k

a dp,qx
)1/(rk′)

,

or

(∫ b

a

∣∣f (x)
∣∣r

a dp,qx
)1/r(∫ b

a

∣∣g(x)
∣∣–k′/k

a dp,qx
)–1/(rk′)

≤
∫ b

a

∣∣f (x)g(x)
∣∣a dp,qx.

Therefore,

∫ b

a

∣∣f (x)g(x)
∣∣a dp,qx ≥

(∫ b

a

∣∣f (x)
∣∣r

a dp,qx
)1/r(∫ b

a

∣∣g(x)
∣∣s

a dp,qx
)1/s

.

The proof is thus accomplished. �

Theorem 3.2 If f is a non-negative function, g is a positive function on [a, b] ⊆ (0,∞), γ

is a positive real number, r > 1, and (x – a + γ )/g(x) is non-increasing, then

∫ b

a

1
gr(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx ≤ (pq)1–1/r

[1 – 1/r]r
p,q

∫ b

a

(x – a + γ )r

gr(x)
f r(x)a dp,qx. (3.2)

Proof From Theorem 2.3, we get

∫ b

a

1
gr(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx ≤
∫ b

a
g–r(x)

∫ x

a
(t – a)1–1/rf r(t)a dp,qt

×
(∫ x

a
(t – a)–1/r dp,qt

)r–1

a dp,qx.

By Theorem 2.2(v), we have

∫ b

a

1
gr(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

≤ 1
[1 – 1/r]r–1

p,q

∫ b

a
g–r(x)

∫ x

a
f r(t)(t – a)1–1/r(x – a)(1–1/r)(r–1)

a dp,qta dp,qx

=
1

[1 – 1/r]r–1
p,q

∫ b

a

∫ b

t
g–r(x)f r(t)(t – a)1–1/r(x – a)(1–1/r)(r–1)

a dp,qxa dp,qt

=
1

[1 – 1/r]r–1
p,q

∫ b

a

∫ b

t

(x – a)r

gr(x)
f r(t)(t – a)1–1/r(x – a)1/r–2

a dp,qxa dp,qt
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≤ 1
[1 – 1/r]r–1

p,q

∫ b

a

∫ b

t

(x – a + γ )r

gr(x)
f r(t)(t – a)1–1/r(x – a)1/r–2

a dp,qxa dp,qt.

By the assumption that the function (x – a +γ )/g(x) is non-increasing and Theorem 2.2(v),
we have

∫ b

a

1
gr(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

≤ 1
[1 – 1/r]r–1

p,q

∫ b

a

(t – a + γ )r

gr(t)
f r(t)(t – a)1–1/r

∫ b

t
(x – a)1/r–2

a dp,qxa dp,qt

=
1

[1 – 1/r]r–1
p,q

∫ b

a

(t – a + γ )r

gr(t)
f r(t)

(
(b – a)1/r–1 – (t – a)1/r–1

[1/r – 1]p,q

)
(t – a)1–1/r

a dp,qt

=
(pq)1–1/r

[1 – 1/r]r
p,q

∫ b

a

(t – a + γ )r

gr(t)
f r(t)

(
1 –

(t – a)1–1/r

(b – a)1–1/r

)
a dp,qt

≤ (pq)1–1/r

[1 – 1/r]r
p,q

∫ b

a

(t – a + γ )r

gr(t)
f r(t)a dp,qt.

This proof is completed. �

Corollary 3.1 If f is a non-negative function, γ is a positive real number, and r > 1, then

∫ b

a

1
(x – a + γ )r

(∫ x

a
f (t)a dp,qt

)r

a dp,qx ≤ (pq)1–1/r

[1 – 1/r]r
p,q

∫ b

a
f r(x)a dp,qx. (3.3)

Remark 3.1 (1) If p = 1, then (3.2) reduces to

∫ b

a

1
gr(x)

(∫ x

a
f (t)a dqt

)r

a dqx ≤ q1–1/r

[1 – 1/r]r
q

∫ b

a

(x – a + γ )r

gr(x)
f r(x)a dqx. (3.4)

Also, if q → 1, then (3.4) reduces to an inequality, which appeared in [53].
(2) If 0 < γ < a, we obtain the following inequality:

∫ b

a

1
xr

(∫ x

a
f (t)a dp,qt

)r

a dp,qx ≤
∫ b

a

1
(x – a + γ )r

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

≤ (pq)1–1/r

[1 – 1/r]r
p,q

∫ b

a
f r(x)a dp,qx. (3.5)

Also, if p = 1 and q → 1, then (3.5) is reduced to (1.2).

Theorem 3.3 If f is a non-negative function, g is a positive function on [a, b] ⊆ (0,∞), γ

is a positive real number, r > 1, 0 ≤ r – m < 1 – 1/r, and (x – a + γ )/g(x) is non-increasing,
then

∫ b

a

1
gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx ≤ (pq)m+1–r–1/r

[1 – 1/r]r–1
p,q [m + 1 – r – 1/r]p,q

×
∫ b

a

(x – a + γ )r

gm(x)
f r(x)a dp,qx. (3.6)
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Proof From Theorem 2.3, we get

∫ b

a

1
gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx ≤
∫ b

a
g–m(x)

∫ x

a
(t – a)1–1/rf r(t)a dp,qt

×
(∫ x

a
(t – a)–1/r dp,qt

)r–1

a dp,qx.

By Theorem 2.2(v), we have

∫ b

a

1
gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

≤ 1
[1 – 1/r]r–1

p,q

∫ b

a
g–m(x)

∫ x

a
f r(t)(t – a)1–1/r(x – a)(1–1/r)(r–1)

a dp,qta dp,qx

=
1

[1 – 1/r]r–1
p,q

∫ b

a

∫ b

t
g–m(x)f r(t)(t – a)1–1/r(x – a)(1–1/r)(r–1)

a dp,qxa dp,qt

=
1

[1 – 1/r]r–1
p,q

∫ b

a

∫ b

t

(x – a)m

gm(x)
f r(t)(t – a)1–1/r(x – a)r+1/r–2–m

a dp,qxa dp,qt

≤ 1
[1 – 1/r]r–1

p,q

∫ b

a

∫ b

t

(x – a + γ )m

gm(x)
f r(t)(t – a)1–1/r(x – a)r+1/r–2–m

a dp,qxa dp,qt.

By the assumption that the function (x – a +γ )/g(x) is non-increasing and Theorem 2.2(v),
we have

∫ b

a

1
gr(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

≤ 1
[1 – 1/r]r–1

p,q

∫ b

a

(t – a + γ )m

gm(t)
f r(t)(t – a)1–1/r

∫ b

t
(x – a)r+1/r–2–m

a dp,qxa dp,qt

=
1

[1 – 1/r]r–1
p,q

∫ b

a

(t – a + γ )m

gm(t)
f r(t)

×
(

(b – a)r+1/r–1–m – (t – a)r+1/r–1–m

[r + 1/r – 1 – m]p,q

)
× (t – a)1–1/r

a dp,qt

=
(pq)m+1–r–1/r

[1 – 1/r]r–1
p,q [m + 1 – r – 1/r]p,q

∫ b

a

(t – a + γ )m

gm(t)
f r(t)

×
(

(t – a)r–m –
(t – a)1–1/r

(b – a)1–1/r+m–r

)
a dp,qt

≤ (pq)m+1–r–1/r

[1 – 1/r]r–1
p,q [m + 1 – r – 1/r]p,q

∫ b

a

(t – a + γ )m

gm(t)
(t – a + γ )r–mf r(t)a dp,qt

=
(pq)m+1–r–1/r

[1 – 1/r]r–1
p,q [m + 1 – r – 1/r]p,q

∫ b

a

(t – a + γ )r

gm(t)
f r(t)a dp,qt.

Hence, the inequality (3.6) is established. �



Thongjob et al. Journal of Inequalities and Applications        (2021) 2021:105 Page 9 of 17

Remark 3.2 If p = 1, then (3.6) reduces to a generalization of q-Hardy inequality as

∫ b

a

1
gm(x)

(∫ x

a
f (t)a dqt

)r

a dqx ≤ qm+1–r–1/r

[1 – 1/r]r–1
q [m + 1 – r – 1/r]q

×
∫ b

a

(x – a + γ )r

gm(x)
f r(x)a dqx. (3.7)

Theorem 3.4 If f is a positive function on [a, b] ⊆ (0,∞), r ≥ 1, and m > 0, then

[r]p,q

∫ b

a

1
xm

(∫ x

a
f (t)a dp,qt

)r

a dp,qx ≤ (b – a)r
∫ b

a

f r(x)
xm a dp,qx

–
∫ b

a

(x – a)r

xm f r(x)a dp,qx. (3.8)

Proof From Theorem 2.3, we get

∫ b

a

1
xm

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

≤
∫ b

a
x–m

(∫ x

a
f r(t)a dp,qt

)(∫ x

a
a dp,qt

)r–1

a dp,qx

=
∫ b

a
x–m

(∫ x

a
f r(t)a dp,qt

)
(x – a)r–1

a dp,qx

=
∫ b

a

∫ b

t
x–mf r(t)(x – a)r–1

a dp,qxa dp,qt

≤
∫ b

a
t–mf r(t)

(∫ b

t
(x – a)r–1

a dp,qx
)

a dp,qt.

By Theorem 2.2(v), we obtain

∫ b

a

1
xm

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

=
∫ b

a
t–mf r(t)

(
(b – a)r – (t – a)r

[r]p,q

)
a dp,qt

=
1

[r]p,q

(
(b – a)r

∫ b

a

f r(t)
tm a dp,qt –

∫ b

a

(t – a)r

tm f r(t)a dp,qt
)

.

The inequality (3.8) is proved. �

Remark 3.3 If p = 1, then (3.8) reduces to

[r]q

∫ b

a

1
xm

(∫ x

a
f (t)a dqt

)r

a dqx

≤ (b – a)r
∫ b

a

f r(x)
xm a dqx –

∫ b

a

(x – a)r

xm f r(x)a dqx. (3.9)

Also, if q → 1, then (3.9) reduces to an inequality, which appeared in [46].
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Theorem 3.5 If f is a positive function on [a, b] ⊆ (0,∞), 0 < r < 1, and m > 0, then

[r]p,q

∫ b

a

1
xm

(∫ x

a
f (t)a dp,qt

)r

a dp,qx ≥ (b – a)r

bm

∫ b

a
f r(x)a dp,qx

–
1

bm

∫ b

a
(x – a)rf r(x)a dp,qx. (3.10)

Proof From Theorem 3.1, we get

∫ b

a

1
xm

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

≥
∫ b

a
x–m

(∫ x

a
f r(t)a dp,qt

)(∫ x

a
a dp,qt

)r–1

a dp,qx

=
∫ b

a
x–m

(∫ x

a
f r(t)a dp,qt

)
(x – a)r–1

a dp,qx

=
∫ b

a

∫ b

t
x–mf r(t)(x – a)r–1

a dp,qxa dp,qt

≥ b–m
∫ b

a
f r(t)

(∫ b

t
(x – a)r–1

a dp,qx
)

a dp,qt.

By Theorem 2.2(v), we obtain

∫ b

a

1
xm

(∫ x

a
f (t)a dp,qt

)r

a dp,q

= b–m
∫ b

a
f r(t)

(
(b – a)r – (t – a)r

[r]p,q

)
a dp,qt

=
(b – a)r

bm

∫ b

a
f r(t)a dp,qt –

1
bm

∫ b

a
(t – a)rf r(t)a dp,qt.

This completes the proof. �

Remark 3.4 If p = 1, then (3.10) reduces to

[r]q

∫ b

a

1
xm

(∫ x

a
f (t)a dqt

)r

a dqx

≥ (b – a)r

bm

∫ b

a
f r(x)a dqx –

1
bm

∫ b

a
(x – a)rf r(x)a dqx. (3.11)

Also, if q → 1, then (3.11) reduces to an inequality, which appeared in [46].

Theorem 3.6 If f , g are positive functions on [a, b] ⊆ (0,∞) such that g is non-decreasing,
r ≥ 1, and m > 0, then

[r]p,q

∫ b

a

1
gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx ≤ (b – a)r
∫ b

a

f r(x)
gm(x) a dp,qx

–
∫ b

a

(x – a)r

gm(x)
f r(x)a dp,qx. (3.12)
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Proof From Theorem 2.3, we get

∫ b

a

1
gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

≤
∫ b

a
g–m(x)

(∫ x

a
f r(t)a dp,qt

)

×
(∫ x

a
a dp,qt

)r–1

a dp,qx

=
∫ b

a
g–m(x)

(∫ x

a
f r(t)a dp,qt

)
(x – a)r–1

a dp,qx

=
∫ b

a

∫ b

t
g–m(x)f r(t)(x – a)r–1

a dp,qxa dp,qt.

By the assumption of the function g and Theorem 2.2(v), we obtain

∫ b

a

1
gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

≤
∫ b

a
g–m(t)f r(t)

(∫ b

t
(x – a)r–1

a dp,qx
)

a dp,qt

=
∫ b

a
g–m(t)f r(t)

(
(b – a)r – (t – a)r

[r]p,q

)
a dp,qt

=
1

[r]p,q

(
(b – a)r

∫ b

a

f r(t)
gm(t) a dp,qt –

∫ b

a

(t – a)r

gm(t)
f r(t)a dp,qt

)
,

which finishes the proof. �

Remark 3.5 If p = 1, then (3.12) reduces to

[r]q

∫ b

a

1
gm(x)

(∫ x

a
f (t)a dqt

)r

a dqx

≤ (b – a)r
∫ b

a

f r(x)
gm(x) a dqx –

∫ b

a

(x – a)r

gm(x)
f r(x)a dqx. (3.13)

Also, if q → 1, then (3.13) reduces to the generalization of (1.5), which appeared in [53].

Theorem 3.7 If f , g are positive functions on [a, b] ⊆ (0,∞) such that g is non-decreasing,
0 < r < 1, and m > 0, then

[r]p,q

∫ b

a

1
gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

≥ (b – a)r
∫ b

a

f r(x)
gm(b) a dp,qx –

∫ b

a

(x – a)r

gm(b)
f r(x)a dp,qx. (3.14)

Proof From Theorem 3.1, we get

∫ b

a

1
gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx
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≥
∫ b

a
g–m(x)

(∫ x

a
f r(t)a dp,qt

)

×
(∫ x

a
a dp,qt

)r–1

a dp,qx

=
∫ b

a
g–m(x)

(∫ x

a
f r(t)a dp,qt

)
(x – a)r–1

a dp,qx

=
∫ b

a

∫ b

t
g–m(x)f r(t)(x – a)r–1

a dp,qxa dp,qt.

By the assumption of the function g and Theorem 2.2(v), we obtain

∫ b

a

1
gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

≥ g–m(b)
∫ b

a
f r(t)

(∫ b

t
(x – a)r–1

a dp,qx
)

a dp,qt

= g–m(b)
∫ b

a
f r(t)

(
(b – a)r – (t – a)r

[r]p,q

)
a dp,qt

=
1

[r]p,q

(
(b – a)r

∫ b

a

f r(t)
gm(b) a dp,qt –

∫ b

a

(t – a)r

gm(b)
f r(t)a dp,qt

)
.

The proof is accomplished. �

Remark 3.6 If p = 1, then (3.14) reduces to

[r]q

∫ b

a

1
gm(x)

(∫ x

a
f (t)a dqt

)r

a dqx

≥ (b – a)r
∫ b

a

f r(x)
gm(b) a dqx –

∫ b

a

(x – a)r

gm(b)
f r(x)a dqx. (3.15)

Also, if q → 1, then (3.15) reduces to the generalization of (1.6), which appeared in [53].

Theorem 3.8 Let f , g be positive functions on [a, b] ⊆ (0,∞), r ≥ 1, m > 0 and

G(x) =
∫ x

0
g(t)a dp,qt. (3.16)

If the function G is non-decreasing, then

[r]p,q

∫ b

a

1
Gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

≤ (b – a)r
∫ b

a

f r(x)
Gm(x) a dp,qx –

∫ b

a

(x – a)r

Gm(x)
f r(x)a dp,qx. (3.17)

Proof From Theorem 2.3, we get

∫ b

a

1
Gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx
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≤
∫ b

a
G–m(x)

(∫ x

a
f r(t)a dp,qt

)(∫ x

a
a dp,qt

)r–1

a dp,qx. (3.18)

By the assumption of the function G(x), we have

∫ b

a

1
Gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

≤
∫ b

a
G–m(x)

(∫ x

a
f r(t)a dp,qt

)
(x – a)r–1

a dp,qx

=
∫ b

a

∫ b

t
G–m(x)f r(t)(x – a)r–1

a dp,qxa dp,qt

≤
∫ b

a
G–m(t)f r(t)

(∫ b

t
(x – a)r–1

a dp,qx
)

a dp,qt.

By Theorem 2.2(v), we obtain

∫ b

a

1
Gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

=
∫ b

a
G–m(t)f r(t)

(
(b – a)r – (t – a)r

[r]p,q

)
a dp,qt

=
1

[r]p,q

(
(b – a)r

∫ b

a

f r(t)
Gm(t) a dp,qt –

∫ b

a

(t – a)r

Gm(t)
f r(t)a dp,qt

)
,

which gives the required inequality. �

Remark 3.7 If p = 1, then (3.17) reduces to

[r]q

∫ b

a

1
Gm(x)

(∫ x

a
f (t)a dqt

)r

a dqx

≤ (b – a)r
∫ b

a

f r(x)
Gm(x) a dqx –

∫ b

a

(x – a)r

Gm(x)
f r(x)a dqx. (3.19)

Also, if q → 1, then (3.19) reduces to the generalization of (1.5).

Theorem 3.9 Let f , g be positive functions on [a, b] ⊆ (0,∞), 0 < r < 1, m > 0 and let G(x)
be defined by (3.16). If the function G is non-decreasing, then

[r]p,q

∫ b

a

1
Gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx ≥ (b – a)r
∫ b

a

f r(x)
Gm(b) a dp,qx

–
∫ b

a

(x – a)r

Gm(b)
f r(x)a dp,qx. (3.20)

Proof From Theorem 3.1, we get

∫ b

a

1
Gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx ≥
∫ b

a
G–m(x)

(∫ x

a
f r(t)a dp,qt

)

×
(∫ x

a
a dp,qt

)r–1

a dp,qx. (3.21)
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By the assumption of the function G(x), we have

∫ b

a

1
Gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

≥
∫ b

a
G–m(x)

(∫ x

a
f r(t)a dp,qt

)
(x – a)r–1

a dp,qx

=
∫ b

a

∫ b

t
xmG–m(x)f r(t)(x – a)r–1

a dp,qxa dp,qt

≥
∫ b

a
G–m(b)f r(t)

(∫ b

t
(x – a)r–1

a dp,qx
)

a dp,qt.

By Theorem 2.2(v), we obtain

∫ b

a

1
Gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx

=
∫ b

a
G–m(b)f r(t)

(
(b – a)r – (t – a)r

[r]p,q

)
a dp,qt

=
1

[r]p,q

(
(b – a)r

∫ b

a

f r(t)
Gm(b) a dp,qt –

∫ b

a

(t – a)r

Gm(b)
f r(t)a dp,qt

)
,

provided the left and right sides are finite. �

Remark 3.8 If p = 1, then (3.20) reduces to

[r]q

∫ b

a

1
Gm(x)

(∫ x

a
f (t)a dqt

)r

a dqx

≥ (b – a)r
∫ b

a

f r(x)
Gm(b) a dqx –

∫ b

a

(x – a)r

Gm(b)
f r(x)a dqx. (3.22)

Also, if q → 1, then (3.22) reduces to the generalization of (1.6).

4 Examples
In the following, we will give examples to illustrate our main results.

Example 4.1 Define the continuous functions f , g : [1, 3] → R by f (x) = x4 and g(x) = 1/x.
Applying Theorem 3.1 with p = 2/3, q = 1/3, r = 1/2 and s = –1, the left side of (3.1) be-
comes

∫ b

a

∣∣f (x)g(x)
∣∣a dp,qx =

∫ 3

1

∣∣x4(1/x)
∣∣1 d2/3,1/3x

=
∫ 3

1
x3

1 d2/3,1/3x

=
(3 – 1)4

[4]2/3,1/3
+

3(1)(3 – 1)3

[3]2/3,1/3
+

3(1)2(3 – 1)2

[2]2/3,1/3
+ 13(3 – 1)

≈ 73.65714286.
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For the right side of (3.1), one has

(∫ b

a

∣∣f (x)
∣∣r

a dp,qx
)1/r(∫ b

a

∣∣g(x)
∣∣s

a dp,qx
)1/s

=
(∫ 3

1

(
x4)1/2

1 d2/3,1/3x
)2(∫ 3

1
(1/x)–1

1 d2/3,1/3x
)–1

=
(∫ 3

1
x2

1 d2/3,1/3x
)2(∫ 3

1
x1 d2/3,1/3x

)–1

=
[

(3 – 1)3

[3]2/3,1/3
+

2(1)(3 – 1)2

[2]2/3,1/3
+ 12(3 – 1)

]2[ (3 – 1)[3 – 1(1 – 2/3 – 1/3)]
[2]2/3,1/3

]–1

≈ 68.58503401.

It is clear that 73.65714286 ≥ 68.58503401, which confirms the result described in Theo-
rem 3.1.

Example 4.2 Define functions f , g : [1, 3] → R by f (x) = x and g(x) = x – 1/6. Then f is
non-negative function and g is a positive function on [1, 3]. Applying Theorem 3.3 with
p = 1/2, q = 1/3, r = m = 2 and γ = 5/6, the left side of (3.6) becomes

∫ b

a

1
gm(x)

(∫ x

a
f (t)a dp,qt

)r

a dp,qx =
∫ 3

1

1
(x – 1/6)2

(∫ x

1
t1 d1/2,1/3t

)2

1 d1/2,1/3x

=
∫ 3

1

1
(x – 1/6)2

(x – 1)2(x – 1/6)2

(5/6)2 1 d1/2,1/3x

=
36
25

(3 – 1)3

[2 + 1]1/2,1/3

=
10,368

475

≈ 21.82736842,

by Theorem 2.2(v).
For the right side of (3.6), one has

(pq)m+1–r–1/r

[1 – 1/r]r–1
p,q [m + 1 – r – 1/r]p,q

∫ b

a

(x – a + γ )r

gm(x)
f r(x)a dp,qx

=
(1/6)2+1–2–1/2

[1 – 1/2]2–1
1/2,1/3[2 + 1 – 2 – 1/2]1/2,1/3

∫ 3

1

(x – 1 + 5/6)2

(x – 1/6)2 x2
1 d1/2,1/3x

=
(1/6)1/2

[1/2]2
1/2,1/3

∫ 3

1
x2

1 d1/2,1/3x

=
(1/6)1/2

[1/2]2
1/2,1/3

[
(3 – 1)3

[3]1/2,1/3
+

2(3 – 1)2

[2]1/2,1/3
+ 12(3 – 1)

]

≈ 40.46697790.

It is clear that 21.82736842 ≤ 40.46697790, which confirms the result described in Theo-
rem 3.3.
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5 Conclusion
In the present paper, we use (p, q)-calculus to establish new integral inequalities related
to Hardy type integral inequalities. Many existing results in the literature are reduced to
special cases of our results when p = 1 and q → 1. The results of this paper are new and
significantly contribute to the existing literature on the topic. In addition, we shall study
these results in fractional (p, q)-calculus and conformable fractional (p, q)-calculus in the
future.
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