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Abstract
In this paper, the pth moment exponential stability for a class of impulsive delayed
Hopfield neural networks is investigated. Some concise algebraic criteria are provided
by a new method concerned with impulsive integral inequalities. Our discussion
neither requires a complicated Lyapunov function nor the differentiability of the delay
function. In addition, we also summarize a new result on the exponential stability of a
class of impulsive integral inequalities. Finally, one example is given to illustrate the
effectiveness of the obtained results.
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1 Introduction
In the past few years, the artificial neural networks introduced by Hopfield [1, 2] have
become a significant research topic due to their wide applications in various areas such
as signal and image processing, associative memory, combinatorial optimization, pattern
classification, etc. [3–5]. All the applications of Hopfield neural networks (HNNs) depend
on qualitative behavior such as stability, existence and uniqueness, convergence, oscilla-
tion, and so on [6–10]. Particularly, the stability property is a major concern in the design
and applications of neural networks. Therefore, many researchers have been paying much
attention to the stability study of HNNs.

In addition, since time delays are frequently encountered for the finite switching speed
of neurons and amplify in implementation of neural networks, it is meaningful to discuss
the effect of time delays on the stability of HNNs. Consequently, the scientists put forward
the model of delayed Hopfield neural networks (DHNNs) and made great efforts for the
stability research (see e.g. [11, 12]).

Furthermore, it is worth noting that impulsive effects are also a common phenomenon in
many engineering systems, that is, instantaneous jump or reset of system states of automo-
bile industry, network control, video coding, etc. Hence, the model of impulsive delayed
Hopfield neural networks (IDHNNs) is more representative, and it is necessary to probe
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the stability of IDHNNs theoretically and practically. So far, there have been a number of
research achievements (see e.g. [13–17])

Among the existing stability results of impulsive delayed systems, one powerful tech-
nique is Lyapunov method (see e.g. [18–24]). Wei et al. [18] studied the global exponen-
tial stability in the mean-square sense of a class of stochastic impulsive reaction-diffusion
systems with S-type distributed delays based on a Lyapunov–Krasovskii functional and
an impulsive inequality. Ren et al. [19] considered the mean-square exponential input-
to-state stability for a class of delayed stochastic neural networks with impulsive effects
driven by G-Brownian motion by constructing an appropriate G-Lyapunov–Krasovskii
functional, mathematical induction approach, and some inequality techniques.

It should be pointed out that the key to the Lyapunov method is to construct a suit-
able Lyapunov function or functional. However, finding a suitable Lyapunov function or
functional often involves some mathematical difficulties.

On the other hand, an alternative technique for stability analysis of impulsive delayed
systems has been developed based on the fixed point theorem (see e.g.[25–29]). Zhang et
al. [25] studied the application of the fixed point theory to the stability analysis of a class
of impulsive delayed neural networks. By employing the contraction mapping principle,
some novel and concise sufficient conditions have been presented to ensure the existence
and uniqueness of solution and the global exponential stability of the considered system.

However, the fixed point method has its disadvantage due to using Holder inequalities
at an inappropriate time.

Motivated by the above discussion, we attempt to study the stability of IDHNNs by a
new method different from the Lyapunov method and the fixed point method. As we all
know, there are many works focused on discussion to mean-square stability of complex
dynamical systems. However, mean-square stability is actually a special case of pth mo-
ment stability by choosing p = 2, so the study of pth moment stability will be more repre-
sentative. In our paper, we investigate the pth moment exponential stability of IDHNNs
with the help of impulsive integral inequalities. Compared with the Lyapunov method and
the fixed point theory, our method has two advantages. One is no demand of Lyapunov
functions and the differentiability of the delay function. The other is no demand of seek-
ing the appropriate time to use Holder inequalities. Furthermore, a new criterion for the
exponential stability of impulsive integral inequalities is provided based on our discussion.

The contents of this paper are organized as follows. In Sect. 2, some notations, the model
description, and a useful lemma are introduced. In Sect. 3, we consider the pth moment
exponential stability of IDHNNs and obtain some new sufficient conditions. Inspired by
Sect. 3, we discuss the exponential stability of a class of impulsive integral inequalities in
Sect. 4 and give an algebraic criterion. In Sect. 5, one example is given to illustrate the
effectiveness of our results.

2 Preliminaries
Notations: Let Rn denote the n-dimensional Euclidean space. | · | represents the Euclidean
norm for vectors or absolute value for real numbers. N �= {1, 2, . . . , n}. R+ = [0,∞). C[X, Y ]
stands for the space of continuous mappings from the topological space X to the topolog-
ical space Y . For some τ > 0, let C[[–τ , 0], R] be the family of all continuous real-valued
functions φ defined in [–τ , 0] equipped with the norm ‖φ‖ = sups∈[–τ ,0] |φ(s)|.
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Consider a class of impulsive delayed Hopfield neural network described by

dxi(t)
dt

= –aixi(t) +
n∑

j=1

bijfj
(
xj(t)

)
+

n∑

j=1

cijgj
(
xj

(
t – τj(t)

))
, t ≥ 0, t �= tk ,

�xi(tk) = xi(tk + 0) – xi(tk) = Iik
(
xi(tk)

)
, k = 1, 2, . . . ,

xi(s) = ϕi(s), –τ ≤ s ≤ 0, i ∈N , (2.1)

where i ∈N and n is the number of neurons in the neural network. xi(t) stands for the state
of the ith neuron at time t. fj(•), gj(•) ∈ C[R, R], fj(xj(t)) is the activation function of the jth
neuron at time t and gj(xj(t – τj(t))) is the activation function of the jth neuron at time
t – τj(t), where τj(t) ∈ C[R+, R+] denotes the transmission delay along the axon of the jth
neuron and satisfies 0 ≤ τj(t) ≤ τj (τj is a constant). The constant ai > 0 stands for the rate
with which the ith neuron will reset its potential to the resting state when disconnected
from the network and external inputs. The constant bij represents the connection weight
of the jth neuron on the ith neuron at time t. The constant cij denotes the connection
strength of the jth neuron on the ith neuron at time t – τj(t). The fixed impulsive moments
tk (k = 1, 2, . . .) satisfy 0 = t0 < t1 < t2 < · · · and limk→∞ tk = ∞. xi(tk + 0) and xi(tk – 0) stand
for the right-hand and left-hand limit of xi(t) at time tk , respectively. Iik(xi(tk)) shows the
abrupt change of xi(t) at the impulsive moment tk and Iik(•) ∈ C[R, R]. ϕi(s) ∈ C[[–τ , 0], R]
and τ = maxj∈N {τj}.

Denote by x(t;ϕ) = (x1(t;ϕ1), . . . , xn(t;ϕn))T ∈ Rn the solution of system (2.1), where
ϕ(s) = (ϕ1(s), . . . ,ϕn(s))T ∈ Rn. The solution x(t;ϕ) of system (2.1) is, for time variable t, a
piecewise continuous vector-valued function with the first kind discontinuity at the points
tk (k = 1, 2, . . .), where it is left-continuous i.e. the following relations are valid:

xi(tk – 0) = xi(tk), xi(tk + 0) = xi(tk) + Iik
(
xi(tk)

)
, i ∈N , k = 1, 2, . . . .

Throughout this paper, we always assume that fj(0) = gj(0) = Ijk(0) = 0 for j ∈ N and
k = 1, 2, . . . . Then system (2.1) admits a trivial solution with initial value ϕ = 0.

Definition 2.1 The trivial solution of system (2.1) is said to be pth (p ≥ 1) moment expo-
nentially stable if there exists a pair of positive constants λ and C such that

∣∣xi(t;ϕ)
∣∣p ≤ C max

i∈N
{‖ϕi‖p}e–λt , t ≥ 0,

holds for any ϕi(s) ∈ C[[–τ , 0], R] and i ∈N .

Lemma 2.1 Suppose 0 < θ < 1 and λθ (t – s) < 1 – θ . Then
∫ t

s eλx dx > θ (t – s)eλt holds for
t > s and λ > 0.

Proof Construct function F(t) =
∫ t

s eλx dx – θ (t – s)eλt . For fixed s, it is easy to find that
F(s) = 0 and

F ′(t) = eλt – θeλt – λθ (t – s)eλt = eλt[1 – θ – λθ (t – s)
]

> 0.

So, F(t) > F(s) = 0 as t > s, which means
∫ t

s eλx dx > θ (t – s)eλt(t > s). �
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3 pth moment exponential stability of IDHNNs
In this section, we develop a new method to discuss the pth moment exponential stability
of system (2.1). Before proceeding, we introduce some hypotheses listed as follows:

(H1) There exist nonnegative constants αj such that, for any x(1)
j , x(2)

j ∈ R,

∣∣fj
(
x(1)

j
)

– fj
(
x(2)

j
)∣∣ ≤ αj

∣∣x(1)
j – x(2)

j
∣∣, j ∈N .

(H2) There exist nonnegative constants βj such that, for any x(1)
j , x(2)

j ∈ R,

∣∣gj
(
x(1)

j
)

– gj
(
x(2)

j
)∣∣ ≤ βj

∣∣x(1)
j – x(2)

j
∣∣, j ∈N .

(H3) There exist nonnegative constants Pjk such that, for any x(1)
j , x(2)

j ∈ R,

∣∣Ijk
(
x(1)

j
)

– Ijk
(
x(2)

j
)∣∣ ≤ Pjk

∣∣x(1)
j – x(2)

j
∣∣, j ∈N , k = 1, 2, . . . .

Theorem 3.1 Suppose that
(i) there exist constants μ > 0 and θ ∈ (0, 1) such that infk=1,2,...{θ (tk – tk–1)} ≥ μ and

maxk=1,2,...{tk – tk–1} < 1–θ
θai

,
(ii) there exist constants Pi such that Pik ≤ Piμ for i ∈N and k = 1, 2, . . . ,
(iii)

3p–1

{
a1–p

i

( n∑

j=1

|bijαj|
)p

+ a1–p
i

( n∑

j=1

|cijβj|
)p

+ a1–p
i Pp

i

}
< ai.

Then system (2.1) is globally exponentially stable in the pth (p ≥ 1) moment.

Proof Multiplying both sides of system (2.1) with eait and integrating from tk–1 + ε (ε > 0)
to t ∈ (tk–1, tk) yields

xi(t)eait = xi(tk–1 + ε)eai(tk–1+ε)

+
∫ t

tk–1+ε

eais

{ n∑

j=1

bijfj
(
xj(s)

)
+

n∑

j=1

cijgj
(
xj

(
s – τj(s)

))
}

ds. (3.1)

Letting ε → 0+ in (3.1), we have, for t ∈ (tk–1, tk) (k = 1, 2, . . .),

xi(t)eait = xi(tk–1 + 0)eaitk–1

+
∫ t

tk–1

eais

{ n∑

j=1

bijfj
(
xj(s)

)
+

n∑

j=1

cijgj
(
xj

(
s – τj(s)

))
}

ds. (3.2)

Setting t = tk – ε′ (ε′ > 0) in (3.2), we get

xi
(
tk – ε′)eai(tk –ε′) = xi(tk–1 + 0)eaitk–1

+
∫ tk –ε′

tk–1

eais

{ n∑

j=1

bijfj
(
xj(s)

)
+

n∑

j=1

cijgj
(
xj

(
s – τj(s)

))
}

ds,
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which generates, by letting ε′ → 0+,

xi(tk – 0)eaitk = xi(tk–1 + 0)eaitk–1

+
∫ tk

tk–1

eais

{ n∑

j=1

bijfj
(
xj(s)

)
+

n∑

j=1

cijgj
(
xj

(
s – τj(s)

))
}

ds. (3.3)

As xi(tk – 0) = xi(tk), (3.3) can be rearranged as

xi(tk)eaitk = xi(tk–1 + 0)eaitk–1

+
∫ tk

tk–1

eais

{ n∑

j=1

bijfj
(
xj(s)

)
+

n∑

j=1

cijgj
(
xj

(
s – τj(s)

))
}

ds. (3.4)

Combining (3.2) and (3.4), we derive, for t ∈ (tk–1, tk] (k = 1, 2, . . .),

xi(t)eait = xi(tk–1 + 0)eaitk–1 +
∫ t

tk–1

eais

{ n∑

j=1

bijfj
(
xj(s)

)
+

n∑

j=1

cijgj
(
xj

(
s – τj(s)

))
}

ds.

This leads to, for t ∈ (tk–1, tk] (k = 1, 2, . . .),

xi(t)eait = xi(tk–1)eaitk–1 +
∫ t

tk–1

eais

{ n∑

j=1

bijfj
(
xj(s)

)
+

n∑

j=1

cijgj
(
xj

(
s – τj(s)

))
}

ds

+ Ii(k–1)
(
xi(tk–1)

)
eaitk–1 .

Hence,

xi(tk–1)eaitk–1 = xi(tk–2)eaitk–2 +
∫ tk–1

tk–2

eais

{ n∑

j=1

bijfj
(
xj(s)

)
+

n∑

j=1

cijgj
(
xj

(
s – τj(s)

))
}

ds

+ Ii(k–2)
(
xi(tk–2)

)
eaitk–2 ,

...

xi(t2)eait2 = xi(t1)eait1 +
∫ t2

t1

eais

{ n∑

j=1

bijfj
(
xj(s)

)
+

n∑

j=1

cijgj
(
xj

(
s – τj(s)

))
}

ds

+ Ii1
(
xi(t1)

)
eait1 ,

xi(t1)eait1 = ϕi(0) +
∫ t1

0
eais

{ n∑

j=1

bijfj
(
xj(s)

)
+

n∑

j=1

cijgj
(
xj

(
s – τj(s)

))
}

ds.

By induction, we obtain that, for t > 0,

xi(t) = ϕi(0)e–ait + e–ait
∫ t

0
eais

{ n∑

j=1

bijfj
(
xj(s)

)
+

n∑

j=1

cijgj
(
xj

(
s – τj(s)

))
}

ds

+ e–ait
∑

0<tk<t

{
Iik

(
xi(tk)

)
eaitk

}
.
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From (H1)–(H3), we know, for t > 0,

∣∣xi(t)
∣∣ ≤ ∣∣ϕi(0)

∣∣e–ait + e–ait
n∑

j=1

|bijαj|
∫ t

0
eais

∣∣xj(s)
∣∣ds

+ e–ait
n∑

j=1

|cijβj|
∫ t

0
eais sup

s–τj(s)≤υ≤s

∣∣xj(υ)
∣∣ds + e–ait

∑

0<tk <t

{
Pik

∣∣xi(tk)
∣∣eaitk

}
.

Denote

Ii1 =
∣∣ϕi(0)

∣∣e–ait , Ii2 = e–ait
n∑

j=1

|bijαj|
∫ t

0
eais

∣∣xj(s)
∣∣ds,

Ii3 = e–ait
n∑

j=1

|cijβj|
∫ t

0
eais sup

s–τj(s)≤υ≤s

∣∣xj(υ)
∣∣ds, Ii4 = e–ait

∑

0<tk <t

{
Pik

∣∣xi(tk)
∣∣eaitk

}
.

Condition (iii) implies that there exists χ ∈ (0, 1) such that

3p–1

(1 – χ )p–1

{
a1–p

i

( n∑

j=1

|bijαj|
)p

+ a1–p
i

( n∑

j=1

|cijβj|
)p

+ a1–p
i Pp

i

}
< ai. (3.5)

By employing Holder’s inequality, we get

∣∣xi(t)
∣∣p ≤ χ1–pIp

i1 + (1 – χ )1–p(Ii2 + Ii3 + Ii4)p

≤ χ1–pIp
i1 + 3p–1(1 – χ )1–pIp

i2 + 3p–1(1 – χ )1–pIp
i3 + 3p–1(1 – χ )1–pIp

i4.

Moreover, it follows from Holder’s inequality that

Ip
i2 =

{ n∑

j=1

|bijαj|
p–1

p |bijαj|
1
p

∫ t

0
e–ai(t–s)∣∣xj(s)

∣∣ds

}p

≤
( n∑

j=1

|bijαj|
)p–1 n∑

j=1

|bijαj|
{∫ t

0
e–ai(t–s)∣∣xj(s)

∣∣ds
}p

=

( n∑

j=1

|bijαj|
)p–1 n∑

j=1

|bijαj|
{∫ t

0
e

–(p–1)ai(t–s)
p e

–ai(t–s)
p

∣∣xj(s)
∣∣ds

}p

≤
( n∑

j=1

|bijαj|
)p–1{∫ t

0
e–ai(t–s) ds

}p–1
( n∑

j=1

|bijαj|
∫ t

0
e–ai(t–s)∣∣xj(s)

∣∣p ds

)

≤ a1–p
i

( n∑

j=1

|bijαj|
)p–1( n∑

j=1

|bijαj|
∫ t

0
e–ai(t–s)∣∣xj(s)

∣∣p ds

)
.

Similarly, we get

Ip
i3 ≤ a1–p

i

( n∑

j=1

|cijβj|
)p–1( n∑

j=1

|cijβj|
∫ t

0
e–ai(t–s) sup

s–τj(s)≤υ≤s

∣∣xj(υ)
∣∣p ds

)
.



Zhang et al. Journal of Inequalities and Applications        (2021) 2021:113 Page 7 of 13

In addition, Lemma 2.1, conditions (i)–(ii), and Holder’s inequality yield

Ip
i4 ≤

{
Pi

∑

0<tk <t

{
θ (tk – tk–1)

∣∣xi(tk)
∣∣e–ai(t–tk )}

}p

≤
(

Pi

∫ t

0
e–ai(t–s)∣∣xi(s)

∣∣ds
)P

= Pp
i

{∫ t

0
e

–(p–1)ai(t–s)
p e

–ai(t–s)
p

∣∣xi(s)
∣∣ds

}p

≤ Pp
i

(∫ t

0
e–ai(t–s) ds

)p–1(∫ t

0
e–ai(t–s)∣∣xi(s)

∣∣p ds
)

≤ a1–p
i Pp

i

(∫ t

0
e–ai(t–s)∣∣xi(s)

∣∣p ds
)

.

Therefore,

∣∣xi(t)
∣∣p ≤ χ1–p∣∣ϕi(0)

∣∣pe–ait + 3p–1(1 – χ )1–pa1–p
i

( n∑

j=1

|bijαj|
)p–1

×
( n∑

j=1

|bijαj|
∫ t

0
e–ai(t–s)∣∣xj(s)

∣∣p ds

)

+ 3p–1(1 – χ )1–pa1–p
i

( n∑

j=1

|cijβj|
)p–1

×
( n∑

j=1

|cijβj|
∫ t

0
e–ai(t–s) sup

s–τj(s)≤υ≤s

∣∣xj(υ)
∣∣p ds

)

+ 3p–1(1 – χ )1–pa1–p
i Pp

i

(∫ t

0
e–ai(t–s)∣∣xi(s)

∣∣p ds
)

. (3.6)

For each i ∈N , define the following function:

Gi(λ) = (λ – ai) + 3p–1(ai(1 – χ )
)1–p

( n∑

j=1

|bijαj|
)p

+ 3p–1(ai(1 – χ )
)1–p

( n∑

j=1

|cijβj|
)p–1( n∑

j=1

|cijβj|eλτj

)
+ 3p–1(ai(1 – χ )

)1–pPp
i .

From (3.5), we know Gi(0) < 0. Further, Gi(λ) is continuous on R+, Gi(+∞) = +∞, and
G′

i(λ) > 0 for λ ∈ R+, so for each i ∈N , the equation Gi(λ) = 0 has a unique solution λi ∈ R+.
Choosing ϑ = mini∈N {λi}, we get, for i ∈N ,

3p–1

(1 – χ )p–1

{
a1–p

i

( n∑

j=1

|bijαj|
)p

+ a1–p
i

( n∑

j=1

|cijβj|
)p–1( n∑

j=1

|cijβj|eϑτj

)
+ a1–p

i Pp
i

}

≤ ai – ϑ . (3.7)



Zhang et al. Journal of Inequalities and Applications        (2021) 2021:113 Page 8 of 13

Let u(t) = χ1–p maxi∈N {‖ϕi‖p}e–ϑt , t ∈ [–τ , +∞). Obviously, u(s) = u(t)eϑ(t–s) holds for
–τ ≤ s ≤ t, and supt–τj(t)≤s≤t u(s) ≤ u(t)eϑτj is true for each j ∈N and t ∈ R+. Denote

L1 = u(0)e–ait ,

L2 = 3p–1(1 – χ )1–pa1–p
i

( n∑

j=1

|bijαj|
)p–1( n∑

j=1

|bijαj|
∫ t

0
e–ai(t–s)u(s) ds

)
,

L3 = 3p–1(1 – χ )1–pa1–p
i

( n∑

j=1

|cijβj|
)p–1( n∑

j=1

|cijβj|
∫ t

0
e–ai(t–s) sup

s–τj(s)≤υ≤s
u(υ) ds

)
,

L4 = 3p–1(1 – χ )1–pa1–p
i Pp

i

(∫ t

0
e–ai(t–s)u(s) ds

)
.

As

L1 = u(0)e–ait = u(t)e(ϑ–ai)t ,

L2 = u(t)3p–1(1 – χ )1–pa1–p
i

( n∑

j=1

|bijαj|
)p

e(ϑ–ai)t
∫ t

0
e(ai–ϑ)s ds,

L3 ≤ u(t)3p–1(1 – χ )1–pa1–p
i

( n∑

j=1

|cijβj|
)p–1( n∑

j=1

|cijβj|eϑτj

)
e(ϑ–ai)t

∫ t

0
e(ai–ϑ)s ds,

L4 = u(t)3p–1(1 – χ )1–pa1–p
i Pp

i e(ϑ–ai)t
∫ t

0
e(ai–ϑ)s ds,

we obtain from (3.7) that

L1 + L2 + L3 + L4

≤ u(t)e(ϑ–ai)t

+ u(t)
(1 – eϑ–ait)

ai – ϑ

⎧
⎪⎨

⎪⎩

3p–1(1 – χ )1–pa1–p
i (

∑n
j=1 |bijαj|)p

+3p–1(1 – χ )1–pa1–p
i (

∑n
j=1 |cijβj|)p–1(

∑n
j=1 |cijβj|eϑτj )

+3p–1(1 – χ )1–pa1–p
i Pp

i

⎫
⎪⎬

⎪⎭

≤ u(t)e(ϑ–ai)t + u(t)
(
1 – eϑ–ait

)
= u(t). (3.8)

Finally, we prove that |xi(t)|p ≤ u(t) for all t ≥ –τ and i ∈ N by a contradiction. Obvi-
ously, |xi(t)|p ≤ u(t) holds for t ∈ [–τ , 0] and i ∈ N . For each i, assume that there exist
ti > 0 and ε > 0 such that |xi(t)|p < u(t) + ε as t ∈ [0, ti) and |xi(ti)|p = u(ti) + ε. Choose
t∗ �= ti∗ = mini∈N {ti}. Obviously, χ1–p|ϕi∗ (0)|p < u(0) + ε, from (3.6) and (3.8), we get

∣∣xi∗
(
t∗)∣∣p – u

(
t∗)

≤ 3p–1(1 – χ )1–pa1–p
i∗

( n∑

j=1

|bi∗jαj|
)p–1

×
( n∑

j=1

|bi∗jαj|
∫ t∗

0
e–ai∗ (t∗–s)[∣∣xj(s)

∣∣p – u(s)
]

ds

)
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+ 3p–1(1 – χ )1–pa1–p
i∗

( n∑

j=1

|ci∗jβj|
)p–1

×
( n∑

j=1

|ci∗jβj|
∫ t∗

0
e–ai∗ (t∗–s) sup

s–τj(s)≤υ≤s

[∣∣xj(υ)
∣∣p – u(υ)

]
ds

)

+ 3p–1(1 – χ )1–pa1–p
i∗ Pp

i∗

(∫ t∗

0
e–ai∗ (t∗–s)[∣∣xi∗ (s)

∣∣p – u(s)
]

ds
)

+
[
χ1–p∣∣ϕi∗ (0)

∣∣p – u(0)
]
e–ai∗ t∗

≤ εe–ait + ε3p–1(1 – χ )1–pa1–p
i∗

( n∑

j=1

|bi∗jαj|
)p ∫ t∗

0
e–ai∗ (t∗–s) ds

+ ε3p–1(1 – χ )1–pa1–p
i∗

( n∑

j=1

|ci∗jβj|
)p ∫ t∗

0
e–ai∗ (t∗–s) ds

+ ε3p–1(1 – χ )1–pa1–p
i∗ Pp

i∗

(∫ t∗

0
e–ai∗ (t∗–s) ds

)

= εe–ai∗ t∗ + ε3p–1(1 – χ )1–pa1–p
i∗

( n∑

j=1

|bi∗jαj|
)p

(1 – e–ai∗ t∗ )
ai∗

+ ε3p–1(1 – χ )1–pa1–p
i∗

( n∑

j=1

|ci∗jβj|
)p

(1 – e–ai∗ t∗ )
ai∗

+ ε3p–1(1 – χ )1–pa1–p
i∗ Pp

i∗
(1 – e–ai∗ t∗ )

ai∗

= εe–ai∗ t∗ +
3p–1(1 – χ )1–p{a1–p

i∗ (
∑n

j=1 |bi∗jαj|)p + a1–p
i∗ (

∑n
j=1 |ci∗jβj|)p + a1–p

i∗ Pp
i∗}

ai∗

× (
1 – e–ai∗ t∗)ε

< ε,

which is a contradiction. This shows that |xi(t)|p ≤ u(t) for all t ≥ –τ and i ∈ N , which
means that |xi(t;ϕ)|p ≤ χ1–p maxi∈N {‖ϕi‖p}e–ϑt for t ∈ [–τ , +∞). �

As a special case, we give the following theorem.

Theorem 3.2 Suppose that
(i) there exists constant μ > 0 such that infk=1,2,...{ tk –tk–1

2 } ≥ μ and maxk=1,2,...{tk –tk–1} < 1
ai

,
(ii) there exist constants Pi such that Pik ≤ Piμ for i ∈N and k = 1, 2, . . . ,
(iii) –ai +

∑n
j=1 |bijαj| +

∑n
j=1 |cijβj| + Pi < 0.

Then system (2.1) is globally exponentially stable.

Proof Let p = 1 and θ = 1
2 in Theorem 3.1. �

Remark 3.1 In [25], the fixed point theory was employed to study system (2.1), and the
research shows that system (2.1) is globally exponentially stable on the condition that∑n

i=1{ 1
ai

maxj∈N |bijlj| + 1
ai

maxj∈N |cijkj|} + maxi∈N {pi(μ + 1
ai

)} < 1. Obviously, condition
(iii) in Theorem 3.2 is weaker.
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4 Exponential stability of impulsive integral inequalities
Consider the following impulsive integral inequalities:

yi(t) ≤ Cφi(0)e–ait +
n∑

j=1

αij

∫ t

0
e–ai(t–s)yj(s) ds +

n∑

j=1

βij

∫ t

0
e–ai(t–s) sup

s–τj(s)≤υ≤s
yj(υ) ds

+
∑

0<tk<t

{
Pikyi(tk)e–ai(t–tk )}, t ≥ 0,

yi(t) = φi(0) ∈ C
(
[–τ , 0], R+)

, t ∈ [–τ , 0], (4.1)

where C ≥ 1, and for each i, j ∈ N , yi(t) ≥ 0 for t ≥ –τ , 0 ≤ τj(s) ≤ τj ≤ τ for s ≥ 0, and
ai > 0, αij ≥ 0, βij ≥ 0, Pik ≥ 0, k = 1, 2, . . . .

Theorem 4.1 Suppose that
(i) there exist constants μ > 0 and θ ∈ (0, 1) such that infk=1,2,...{θ (tk – tk–1)} ≥ μ and

maxk=1,2,...{tk – tk–1} < 1–θ
θai

,
(ii) there exist nonnegative constants Pi such that Pik ≤ Piμ for i ∈N and k = 1, 2, . . . ,
(iii) –ai +

∑n
j=1 αij +

∑n
j=1 βij + Pi < 0.

Then there exist positive constant C and λ∗ such that

max
i∈N

yi(t) ≤ C max
i∈N

{‖φi‖
}

e–λ∗t , t ∈ [–τ , +∞),

where λ∗ is the minimum solution of the following equations:

λ – ai +
n∑

j=1

αij +
n∑

j=1

βijeλτj + Pi = 0.

Proof For each i ∈N , define the following function:

Fi(λ) = λ – ai +
n∑

j=1

αij +
n∑

j=1

βijeλτj + Pi.

Note that Fi(λ) is continuous on R+, Fi(0) = –ai +
∑n

j=1 αij +
∑n

j=1 βij + Pi < 0, Fi(+∞) =
+∞, and F ′

i (λ) > 0 for λ ∈ R+, so for each i ∈N , the equation Fi(λ) = 0 has a unique solution
λi ∈ R+. Choosing λ∗ = mini∈N {λi}, we get

λ∗ – ai +
n∑

j=1

|bijαj| +
n∑

j=1

|cijβj|eλ∗τj + Pi ≤ 0, i ∈N .

Let u(t) = C maxi∈N {‖φi‖}e–λ∗t , t ∈ [–τ , +∞). Similar to Theorem 3.1, we get

e–aitu(0) + e–ait
n∑

j=1

αij

∫ t

0
eaisu(s) ds + e–ait

n∑

j=1

βij

∫ t

0
eais sup

s–τj(s)≤υ≤s
u(υ) ds

+ e–ait
∑

0<tk <t

{
Piku(tk)eaitk

} ≤ u(t), t ≥ 0.



Zhang et al. Journal of Inequalities and Applications        (2021) 2021:113 Page 11 of 13

Figure 1 The simulation in the example

Finally, we prove that yi(t) ≤ u(t) for all t ≥ –τ and i ∈ N by a contradiction. This is
similar to the proof of Theorem 3.1, so we omit it here now. This shows that yi(t) ≤ u(t)
for all t ≥ –τ and i ∈ N , which means that maxi∈N yi(t) ≤ C maxi∈N {‖φi‖}e–λ∗t for t ∈
[–τ , +∞). �

Remark 4.1 Inequalities (4.1) can be considered as multidimensional Halanay inequali-
ties with impulses. In [30–32], the authors used the one-dimensional Halanay inequality
to consider the stability of delayed neural networks. However, they did not consider the
impulse effect, and they needed to construct a complicated Lyapunov function [30, 31]
or define a complicated matrix norm [32]; in addition, their results are not easy to verify
in practice. The advantages of our multidimensional Halanay inequalities with impulses
are that we take into account the impulse effects, and we neither require to construct a
complicated Lyapunov function nor to define the adaptive matrix form; furthermore, our
results are easy to verify.

5 Example
Consider the following two-dimensional impulsive delayed Hopfield neural network:

dxi(t)
dt

= –aixi(t) +
2∑

j=1

bijfj
(
xj(t)

)
+

2∑

j=1

cijgj
(
xj

(
t – τj(t)

))
, t ≥ 0, t �= tk ,

�xi(tk) = xi(tk + 0) – xi(tk) = Iik
(
xi(tk)

)
, tk = 0.25k, k = 1, 2, . . . ,

with the initial conditions x1(s) = cos(s), x2(s) = sin(s) on –τ ≤ s ≤ 0, where a1 = a2 = 4,
b11 = 0, b12 = 0.1, b21 = –0.2, b22 = 0, c11 = 0.2, c12 = 0, c21 = 0, c22 = –0.1, fj(s) = gj(s) = (|s +
1| – |s – 1|)/2 (j = 1, 2), Iik(xi(tk)) = arctan(0.45xi(tk)) for i = 1, 2 and k = 1, 2, . . . (k = 1, 2, . . .).
It is easy to find that μ = 0.125, αj = βj = 1, and Pik = 0.45. Select Pi = 3.6 and then compute
–ai +

∑n
j=1 |bijαj| +

∑n
j=1 |cijβj| + Pi = –0.1 < 0. From Theorem 3.2, we know this system is

globally exponentially stable (Fig. 1).
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