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Abstract
In this paper, we establish some necessary and sufficient conditions for the validity of
a generalized dynamic Hardy-type inequality with higher-order derivatives with two
different weighted functions on time scales. The corresponding continuous and
discrete cases are captured when T =R and T =N, respectively. Finally, some
applications to our main result are added to conclude some continuous results
known in the literature and some other discrete results which are essentially new.
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1 Introduction
In [15] Hardy proved the classical continuous inequality

∫ ∞
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)p

dx ≤
(

p
p – 1

)p ∫ ∞

0
f p(x) dx

by using the calculus of variations in the twenties, where f (x) is a positive integrable func-
tion over any finite interval (0, x), f p is an integrable convergent function over (0,∞), and
p > 1. Due to the importance of this inequality in mathematical and harmonic analysis,
the extensions and generalizations have been studied by several authors, and various re-
sults have been established. We refer the reader to the papers [2, 3, 5, 10, 17] and books
[16, 24, 25, 28] that deal with these inequalities by discovering new proofs, generalizations,
and extensions. For example, Muckenhoupt in [26] proved that the inequality
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holds if and only if the following conditions hold:
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and K ≤ C ≤ K(p)1/p(p′)1/p′ , where 1/p + 1/p′ = 1 for 1 ≤ p ≤ ∞. Opic et al. in [28] proved
that the inequality holds

(∫ b

a
u(x)

(∫ x

a
f (t) dt

)q

dx
)1/q

≤ C
(∫ b

a
f p(x)υ(x) dx

)1/p

, (1.1)

where –∞ ≤ a < b ≤ ∞, u, υ are measurable positive functions in (a, b), and 1 < p ≤ q < ∞
if and only if

AM := sup
a<r<b

(∫ b

r
u(x) dx

)1/q(∫ b

a
υ1–p′

(x) dx
)1/p′

< ∞.

Moreover, the estimate for the constant C in (1.1) is given by

C ≤
(

1 +
q
p′

)1/q(
1 +

p′

q

)1/p′

AM.

In 1984 Gurka [11] proved that the following inequality, which contains the first-order
derivative of u,

(∫ b

a

∣∣u(x)
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)1/q

≤ CL

(∫ b

a
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(1.2)

holds for every u ∈ AC(a, b) such that u(a) = 0 if and only if

BL := sup
a<x<b

(∫ b

x
w(x) dx

)1/q(∫ x

a
υ1–p′

(t) dt
)1/p′

< ∞,

and for the best possible constant CL in (1.2), the following estimate was satisfied: BL ≤
CL ≤ p1/q(p′)1/q′BL.

The classical Wirtinger inequality, see Hardy et al. [16, Theorem 257], is given by

∫ b

a

(
u′(t)

)2 dt ≥
∫ b

a
u2(t) dt (1.3)

for any u ∈ C1([a, b]) satisfying u(a) = u(b) = 0. Wirtinger-type inequalities are studied in
the literature in both the continuous and discrete settings. In principle, it is an integral
or sum estimate between the function and its derivative or difference, respectively. These
types of inequalities have received a lot of attention because of their applications, for ex-
ample, in number theory, especially in studies concerning the distribution of the zeros
of the Riemann-zeta function [12–14]. In [4, 9, 11] the authors studied some inequalities
containing the first-order derivative with two different weighted functions. In [19], Hinton
and Lewis extended inequality (1.3) and proved by using the Schwarz inequality that

∫ b

a

M2(t)
|M′(t)|

(
u′(t)

)2 dt ≥ 1
4

∫ b

a

∣∣M′(t)
∣∣u2(t) dt (1.4)

for any positive function M ∈ C1([a, b]) with M′(t) �= 0, u ∈ C2([a, b]), and u(a) = u(b) = 0.
In [29], Pen̆a established the discrete analogue of (1.4) and proved the following result: For
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a positive sequence {Mn}0≤n≤N+1 satisfying either �M > 0 or �M < 0 on [0, N] ∩Z,

N∑
n=0

MnMn+1

|�Mn| (�un)2 ≥ 1
ψJ

N∑
n=0

|�Mn|u2
n+1 (1.5)

holds for any sequence {un}0≤n≤N+1 with u0 = uN+1 = 0, where

ψJ =
(

sup
0≤n≤N

Mn

Mn+1

)[
1 +

(
sup

0≤n≤N

|�Mn|
|�Mn+1|

)1/2]2

. (1.6)

Stepanov in [44] was interested in inequalities containing higher-order derivative. In par-
ticular, he proved that for 1 < p ≤ q < ∞ and k ≥ 1 the inequality

[∫ ∞

0

∣∣u(x)
∣∣q

ω(x) dx
]1/q

≤ C
[∫ ∞

0

∣∣u(k)(x)
∣∣p

ν(x) dx
]1/p

(1.7)

holds for all functions u with u(k–1) locally absolutely continuous on [0,∞) and satisfies
the condition

u(0) = u′(0) = · · · = u(k–1)(0) = 0

if and only if the following two conditions are fulfilled:

sup
0<x<∞

(∫ ∞

x
(t – x)(k–1)qω(t) dt

)1/q(∫ x

0
ν1–p′ (t) dt

)1/p′

< ∞

and

sup
0<x<∞

(∫ ∞
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ω(t) dt

)1/q(∫ x

0
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ν1–p′
(t) dt

)1/p′

< ∞.

Kufner et al. [23] studied inequality (1.7) when k = m + n, and considered the inequality

[∫ ∞

0

∣∣u(x)
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ω(x) dx
]1/q

≤ C
[∫ ∞

0

∣∣u(m+n)(x)
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(1.8)

for any finite constant C under the following conditions on u:

u(0) = u′(0) = · · · = u(m–1)(0) = 0,

u(m)(∞) = u(m+1)(∞) = · · · = u(m+n–1)(∞) = 0, m, n ≥ 1.

To be more precise, they derived the necessary and sufficient conditions for the validity of
this inequality (1.8) and proved that (1.8) holds if and only if

B1 = sup
0<x<∞

(∫ ∞

x
ω(t)t(m–1)q dt

)1/q(∫ x

0

(
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)1–p′
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and

B2 = sup
0<x<∞

(∫ x

0
ω(t)tmq dt

)1/q(∫ ∞

x

(
ν(t)

)1–p′
t(n–1)p′

dt
)1/p′

< ∞.

For more results on the study of inequalities of higher-order derivative, we refer the reader
to the papers [21–23, 43, 44] and the references they cite.

In recent years, the dynamic inequalities on time scales, when the domain of the un-
known function is a time scale T, have been studied by several authors; we refer the reader
to [1, 27, 30, 31, 34–42] and the references they cite. Some of these papers dealt with the
inequalities which have two weighted functions u(x) and v(x) and others dealt also with
special examples of u and v as in [32, 33]. Now we will recall some of these results that
motivated the main aim of this paper. In [33] Saker et al. established the time scale version
of dynamic inequality (1.1). They proved that the inequality

(∫ b

a
u(x)
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f (t)�t

)q

�x
)1/q
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(1.9)

holds if and only if
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a<x<b

(∫ b

x
u(t)�t

)1/q(∫ σ (x)

a
υ1–p′

(t)�t
)1/p′
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Moreover, for the constant C in (1.9), the following estimation is satisfied B ≤ C ≤ k(p, q)B,
where k(p, q) is defined by

k(p, q) =
(

1 +
q
p′

)1/q(
1 +

p′

q

)1/p′

and 1 < p ≤ q < ∞.

In [18], Hilscher proved a Wirtinger-type inequality on time scales, which gives a unifica-
tion of (1.4) and (1.5). In particular, he proved that if M is a positive function and satisfies
either M� > 0 or M� < 0, then

∫ b
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(
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�t ≥ 1

ψ2

∫ b

a

∣∣M�(t)
∣∣(yσ (t)

)2
�t

holds for a positive function y with y(a) = y(b) = 0, and

ψ =
(

sup
t∈Iκ

M(t)
M(σ (t))

)1/2

+
[(

sup
t∈Iκ

μ(t)|M�(t)|
M(σ (t))

)
+

(
sup
t∈Iκ

M(t)
M(σ (t))

)]1/2

.

Following these trends and to develop the study of dynamic inequalities of Hardy-type of
the differential forms on time scales, we prove the time scales version of the higher-order
derivative inequality (1.8) on an arbitrary time scale T.

The rest of the paper is organized as follows: In Sect. 2, we present some preliminaries
about the theory of time scales and the time scales version of Fubini’s theorem which is
the cornerstone of our main proof. Also, we prove some essential prerequisite lemmas.
In Sect. 3, we prove the main result of this paper (Theorem 3.1) which is a generalization
of the weighted Hardy-type inequality with two different weights for a function which
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possesses higher-order derivatives. Next, we give some applications to our main results to
capture some known results and to derive some new ones.

2 Preliminaries and basic lemmas
We suppose that the reader is familiar with time scales as presented in the monographs
[7, 8]. For the present paper to be self-contained, we only give here basic facts that are
essentially used in the proofs of our results. For any function f : T→R, where T is a time
scale, the notation f σ (t) = f ◦σ (t) denotes the forward shift, where σ stands for the forward
jump operator and f � denotes the delta derivative. For two �-differentiable functions f
and g , their �-derivative for the product is given by

(fg)�(t) = f �(t)g(t) + f
(
σ (t)

)
g�(t).

The chain rule formula on time scales (Keller’s chain rule) [7] is given by

(
xγ (t)

)� = γ

∫ 1

0

[
hxσ + (1 – h)x

]γ –1 dhx�(t). (2.1)

Throughout the paper, we assume that the functions in the statements of the theorems
are nonnegative, rd-continuous functions and the integrals are assumed to exist. We next
state Fubini’s theorem due to Bibi et al. [6].

Theorem 2.1 Let X and Y be two time scales. If f : X × Y →R is a �-integrable function
and if we define the functions

ϕ(y) =
∫

X
f (x, y)�x for a.e. y ∈ Y

and

ψ(x) =
∫

Y
f (x, y)�y for a.e. x ∈ X,

then ϕ is �-integrable on Y and ψ is �-integrable on X and

∫
X

�x
∫

Y
f (x, y)�y =

∫
Y

�y
∫

X
f (x, y)�x. (2.2)

In the following, we prove the basic inequalities that will be used to prove the main
results by using Keller’s chain rule and some concepts on time scales.

Lemma 2.1 If m, n ≥ 1 and

k1(x, s) =
∫ s

0
(x – t)m–1(s – t)n–1�t, (2.3)

then

1
(m + n – 1)

≤ x–m+1s–nk1(x, s) ≤ 1
n

, (2.4)

where 0 < t ≤ σ (t) < s < x.
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Proof From the definition of k1(x, s) and since 0 < t ≤ σ (t) < s < x, we see that

k1(x, s) =
∫ s

0
(x – t)m–1(s – t)n–1�t ≤

∫ s

0
xm–1(s – t)n–1�t

= xm–1
∫ s

0
(s – t)n–1�t. (2.5)

Applying Keller’s chain rule (2.1) on the right-hand side of equation (2.5), we obtain that

(
(s – t)n)� = n

∫ 1

0

(
(1 – h)(s – t) + h

(
s – σ (t)

))n–1 dh(s – t)�.

Using the definition of forward jump operator, we see that

(
(s – t)n)� ≤ –n

∫ 1

0

(
(1 – h + h)(s – t)

)n–1 dh = –n[s – t]n–1.

Dividing both sides by (–n), we find that

(s – t)n–1 ≤ –
1
n

(
(s – t)n)�. (2.6)

Substituting (2.6) into (2.5), we obtain that

k1(x, s) ≤ xm–1
(

–1
n

∫ s

0

(
(s – t)n)�

�t
)

= –
1
n

xm–1[(s – t)n]t=s
t=0

= –
1
n

xm–1[(s – s)n – (s – 0)n] =
1
n

xm–1sn,

which leads directly to

x–m+1s–nk1(x, s) ≤ 1
n

. (2.7)

Since t ≤ σ (t) < s < x, we can write that

t
s

>
t
x

�⇒ 1 –
t
s

< 1 –
t
x

. (2.8)

We will deal now with the lower bound of k1(x, s). Multiplying both sides of (2.3) by the
term x–m+1s–n, we obtain that

x–m+1s–nk1(x, s) =
∫ s

0
(x – t)m–1(s – t)n–1x–m+1s–n�t

=
1
s

∫ s

0

(
x – t

x

)m–1( s – t
s

)n–1

�t

=
1
s

∫ s

0

(
1 –

t
x

)m–1(
1 –

t
s

)n–1

�t. (2.9)

Using condition (2.8) into equation (2.9), we have that

x–m+1s–nk1(x, s) ≥ 1
s

∫ s

0

(
1 –

t
s

)m–1(
1 –

t
s

)n–1

�t
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=
1
s

∫ s

0

(
1 –

t
s

)m+n–2

�t. (2.10)

Applying Keller’s chain rule (2.1) on the right-hand side of equation (2.10), we get that

((
1 –

t
s

)m+n–1)�

= (m + n – 1)
∫ 1

0

[
(1 – h)

(
1 –

t
s

)
+ h

(
1 –

σ (t)
s

)]m+n–2

dh
(

1 –
t
s

)�

≥ –
1
s

(m + n – 1)
∫ 1

0

(
(1 – h + h)

(
1 –

t
s

))m+n–2

dh,

which gives that

((
1 –

t
s

)m+n–1)�

≥ –
1
s

(m + n – 1)
(

1 –
t
s

)m+n–2

, (2.11)

–
1

m + n – 1

[(
1 –

t
s

)m+n–1]�

≤ 1
s

(
1 –

t
s

)m+n–2

.

Integrating both sides of inequality (2.11) and taking into account the fact (2.10), we have
that

–
1

m + n – 1

[(
1 –

t
s

)m+n–1]t=s

t=0
≤ 1

s

∫ s

0

(
1 –

t
s

)m+n–2

�t,

and therefore

x–m+1s–nk1(x, s) ≥ 1
m + n – 1

. (2.12)

Consequently, from (2.7) and (2.12), we get the desired result (2.4). This completes the
proof. �

Lemma 2.2 If m, n ≥ 1, and

k2(x, s) =
∫ x

0
(x – t)m–1(s – t)n–1�t, (2.13)

then

1
m + n – 1

≤ x–ms–n+1k2(x, s) ≤ 1
m

, (2.14)

where 0 < t ≤ σ (t) < x < s.

Proof From the definition of k2(x, s) and since 0 < t ≤ σ (t) < x < s, we have that

k2(x, s) =
∫ x

0
(x – t)m–1(s – t)n–1�t ≤

∫ x

0
(x – t)m–1sn–1�t

= sn–1
∫ x

0
(x – t)m–1�t. (2.15)
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Applying Keller’s chain rule (2.1) on the right-hand side of equation (2.15), we obtain that

(
(x – t)m)� = m

∫ 1

0

(
(1 – h)(x – t) + h

(
x – σ (t)

))m–1 dh(–1).

This implies that

(
(x – t)m)� ≤ –m

∫ 1

0

(
(1 – h + h)(x – t)

)m–1 dh

= –m(x – t)m–1 ≥ (
(x – t)m)�.

So that

(x – t)m–1 ≤ –
1
m

(
(x – t)m)�. (2.16)

Substituting (2.16) into (2.15), we obtain

k2(x, s) ≤ –
sn–1

m

∫ x

0

(
(x – t)m)�

�t = –
1
m

sn–1[(x – t)m]t=x
t=0

= –
1
m

sn–1(0 – xm)
=

1
m

sn–1xm,

that is,

x–ms–n+1k2(x, s) ≤ 1
m

. (2.17)

By using the fact that t ≤ σ (t) < x < s, we get that

1 –
t
x

< 1 –
t
s

. (2.18)

We will deal with equation (2.13), since

k2(x, s) =
∫ x

0
(x – t)m–1(s – t)n–1�t,

then multiplying both sides of the last equation by the term x–ms–n+1, we obtain that

x–ms–n+1k2(x, s) =
∫ x

0
(x – t)m–1(s – t)n–1s–n+1x–m�t

=
1
x

∫ x

0

(
x – t

x

)m–1( s – t
s

)n–1

�t

=
1
x

∫ x

0

(
1 –

t
x

)m–1(
1 –

t
s

)n–1

�t. (2.19)

By substituting (2.18) into equation (2.19), we have that

x–ms–n+1k2(x, s) ≥ 1
x

∫ x

0

(
1 –

t
x

)m–1(
1 –

t
x

)n–1

�t,
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which gives that

x–ms–n+1k2(x, s) ≥ 1
x

∫ x

0

(
1 –

t
x

)m+n–2

�t. (2.20)

Applying Keller’s chain rule (2.1) on the right-hand side of equation (2.20), we obtain that

((
1 –

t
x

)m+n–1)�

= (m + n – 1)
∫ 1

0

(
(1 – h)

(
1 –

t
x

)
+ h

(
1 –

σ (t)
x

))m+n–2

dh
(

–
1
x

)

≥ –
1
x

(m + n – 1)
∫ 1

0

(
(1 – h + h)

(
1 –

t
x

))m+n–2

dh

= –
1
x

(m + n – 1)
(

1 –
t
x

)m+n–2

.

That is,

((
1 –

t
x

)m+n–1)�

≥ –
1
x

(m + n – 1)
(

1 –
t
x

)m+n–2

, (2.21)

and then

–
1

m + n – 1

[(
1 –

t
x

)m+n–1]�

≤ 1
x

(
1 –

t
x

)m+n–2

.

Integrating both sides of inequality (2.21), we have that

–
1

m + n – 1

[(
1 –

t
x

)m+n–1]t=x

t=0
≤ 1

x

∫ x

0

(
1 –

t
x

)m+n–2

�t.

Substituting into (2.20), we obtain that

x–ms–n+1k2(x, s) ≥ 1
m + n – 1

. (2.22)

Consequently, from (2.17) and (2.22), we obtain the required result (2.14). This completes
the proof. �

3 Main results and applications
Now, we are in a position to state and prove our main results which assert the validity of the
dynamic Hardy-type inequality for functions with higher-order �-derivatives embedded
with two different weighted functions. For simplicity, we will use the notations

B1 = sup
x∈[0,∞)T

(∫ ∞

x
ω(t)t(m–1)q�t

)1/q(∫ σ (x)

0
ν1–p′

tnp′
�t

)1/p′

, (3.1)

B2 = sup
x∈[0,∞)T

(∫ σ (x)

0
ω(t)tmq�t

)1/q(∫ ∞

x
ν1–p′

t(n–1)p′
�t

)1/p′

, (3.2)
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and the boundary conditions

u(0) = u�(0) = · · · = u�(m–1)
(0) = 0, (3.3)

u�(m)
(∞) = u�(m+1)

(∞) = · · · = u�(k–1)
(∞) = 0,

where k = m + n, m and n are nonnegative integers.

Theorem 3.1 Let T be a time scale with 1 < p ≤ q < ∞, u ∈ Crd([0,∞)T,R+), and ω, ν are
positive rd-continuous functions defined on [0,∞)T. Then there exists a positive constant
C such that the inequality

[∫ ∞

0

∣∣u(x)
∣∣q

ω(x)�x
]1/q

≤ C
[∫ ∞

0

∣∣u�(m+n)
(x)

∣∣p
ν(x)�x

]1/p

(3.4)

holds for every u ∈ C(m+n)
rd ([0,∞)T,R+) if and only if B1 < ∞ and B2 < ∞.

Proof We shall show that conditions (3.1) and (3.2) are necessary and sufficient for (3.4)
to hold. For simplicity, inequality (3.4) can take the following form, where u = Tf and
f = u�(m+n) :

[∫ ∞

0

∣∣(Tf )(x)
∣∣q

ω(x)�x
]1/q

≤ C
[∫ ∞

0

∣∣f (x)
∣∣p

ν(x)�x
]1/p

. (3.5)

Now, we will fix m, n ≥ 1 and take (Tf )(x) as the form

(Tf )(x) =
1

(m – 1)!(n – 1)!

∫ σ (x)

0
(x – t)m–1

[∫ ∞

t
(s – t)n–1f (s)�s

]
�t. (3.6)

Set Cm,n = (m – 1)!(n – 1)!, then we have

Cm,n(Tf )(x) =
∫ σ (x)

0
(x – t)m–1

[∫ ∞

t
(s – t)n–1f (s)�s

]
�t.

=
∫ σ (x)

0
(x – t)m–1

[∫ x

t
(s – t)n–1f (s)�s

+
∫ ∞

x
(s – t)n–1f (s)�s

]
�t

=
∫ σ (x)

0
(x – t)m–1

[∫ x

t
(s – t)n–1f (s)�s

]
�t

+
∫ x

0
(x – t)m–1

[∫ ∞

x
(s – t)n–1f (s)�s

]
�t.

Now, by using Fubini’s theorem on time scales (2.2), we have

Cm,n(Tf )(x) =
∫ σ (x)

0
f (s)

[∫ s

0
(x – t)m–1(s – t)n–1�t

]
�s

+
∫ ∞

x
f (s)

[∫ x

0
(x – t)m–1(s – t)n–1�t

]
�s,
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then

Cm,n(Tf )(x) := (J1f )(x) + (J2f )(x), (3.7)

where

(J1f )(x) =
∫ σ (x)

0
k1(x, s)f (s)�s (3.8)

and

(J2f )(x) =
∫ ∞

x
k2(x, s)f (s)�s. (3.9)

From (2.4) the function in (3.8) is equivalent to the function

∫ σ (x)

0
xm–1snf (s)�s.

Therefore from Hardy’s inequality (1.9), and replacing snf (s) with f̃ (s), x(m–1)qω(x) with
ω̃(x), x–npν(x) with ν̃(x), and xnf (x) with f̃ (x), we obtain that

(∫ ∞

0

(∫ σ (x)

0
f̃ (s)�s

)q

ω̃(x)�x
)1/q

=
(∫ ∞

0
ω(x)

(∫ σ (x)

0
xm–1snf (s)�s

)q

�x
)1/q

=
(∫ ∞

0

(∫ σ (x)

0
snf (s)�s

)q

x(m–1)qω(x)�x
)1/q

≤ C
(∫ ∞

0
f p(x)ν(x)�x

)1/p

= C
(∫ ∞

0
f p(x)xnpx–npν(x)�x

)1/p

= C
(∫ ∞

0

(
xnf (x)

)p
ν̃(x)�x

)1/p

= C
(∫ ∞

0

(̃
f (x)

)p
ν̃(x)�x

)1/p

.

Then

[∫ ∞

0

(∫ σ (x)

0
f̃ (s)�s

)q

ω̃(x)�x
]1/q

≤ C
(∫ ∞

0

(̃
f (x)

)p
ν̃(x)�x

)1/p

. (3.10)

According to the same inequality (1.9), inequality (3.10) holds if and only if

B1 = sup
0<x<∞

(∫ ∞

x
ω̃(t)�t

)1/q(∫ σ (x)

0

(̃
v(t)

)1–p′
(t)�t

)1/p′

= sup
0<x<∞

(∫ ∞

x
ω(t)t(m–1)q�t

)1/q(∫ σ (x)

0

(
t–npν

)1–p′
�t

)1/p′

= sup
0<x<∞

(∫ ∞

x
ω(t)t(m–1)q�t

)1/q(∫ σ (x)

0
ν1–p′

(t)tnp′
�t

)1/p′

< ∞,
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where p′ = p/(p – 1). From (2.14) the function in (3.9) is equivalent to the function

∫ ∞

x
sn–1xmf (s)�s.

Therefore from Hardy’s inequality (1.9) and replacing sn–1f (s) with f̄ (s), xmqω(x) with ω̄(x),
x–(n–1)pν(x) with ν̄(x), and xn–1f (x) with f̄ (x), we obtain

(∫ ∞

0

(∫ ∞

x
f̄ (s)�s

)q

ω̄(x)�x
)1/q

=
(∫ ∞

0

(∫ ∞

x
sn–1xmf (s)�s

)q

ω(x)�x
)1/q

=
(∫ ∞

0

∫ ∞

x

(
sn–1f (s)�s

)qxmqω(x)�x
)1/q

≤ C
(∫ ∞

0
f p(x)ν(x)�x

)1/p

= C
(∫ ∞

0
f p(x)x(n–1)px(–n+1)pν(x)�x

)1/p

= C
(∫ ∞

0

(
xn–1f (x)

)px(–n+1)pν(x)�x
)1/p

= C
(∫ ∞

0

(
f̄ (x)

)p
ν̄(x)�x

)1/p

.

Then
(∫ ∞

0

(∫ ∞

x
f̄ (s)�s

)q

ω̄(x)�x
)1/q

≤ C
(∫ ∞

0

(
f̄ (x)

)p
ν̄(x)�x

)1/p

. (3.11)

According to the dual of inequality (1.9), this inequality holds if and only if

B2 = sup
0<x<∞

(∫ σ (x)

0
ω̄(t)�t

)1/q(∫ ∞

x

(
ν̄(t)

)1–p′
�t

)1/p′

= sup
0<x<∞

(∫ σ (x)

0
tmqω(t)�t

)1/q(∫ ∞

x

(
t–(n–1)pν(t)

)1–p′
�t

)1/p′

= sup
0<x<∞

(∫ σ (x)

0
tmqω(t)�t

)1/q(∫ ∞

x
ν1–p′

(t)t(n–1)p′
�t

)1/p′

< ∞.

So, we have shown that conditions (3.1) and (3.2) are necessary and sufficient for the va-
lidity of inequalities (3.10) and (3.11). As a result of (3.7), it follows directly that these
conditions are also necessary and sufficient for inequality (3.5) which is equivalent to the
required one (3.4). This completes the proof. �

Remark 3.1 In Theorem 3.1, if we take T = R, we get the following continuous weighted
Hardy inequality as mentioned in [23] and [28]:

[∫ ∞

0

∣∣u(x)
∣∣q

ω(x) dx
]1/q

≤ C
[∫ ∞

0

∣∣u(m+n)(x)
∣∣p

ν(x) dx
]1/p

, (3.12)

which will be satisfied if and only if the following conditions are satisfied:

B3 = sup
x∈[0,∞)

(∫ ∞

x
ω(t)t(m–1)q dt

)1/q(∫ x

0
ν1–p′

tnp′
dt

)1/p′

< ∞
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and

B4 = sup
x∈[0,∞)

(∫ x

0
ω(t)tmq dt

)1/q(∫ ∞

x
ν1–p′

t(n–1)p′
dt

)1/p′

< ∞.

Remark 3.2 In Theorem 3.1, if we take T = N, we get the discrete analogue of inequality
(3.4)

( ∞∑
n=1

ωn

( n∑
k=1

ak

)q) 1
q

≤ C

( ∞∑
n=1

vn
(
�(k)an

)p
)1/p

, (3.13)

which will be satisfied if and only if

B5 = sup
n

( ∞∑
n=k

ωnn(m–1)q

)1/q( n∑
k=1

ν
1–p′
k knp′

)1/p′

< ∞

and

B6 = sup
n

( n∑
k=1

ωkkmq

)1/q( ∞∑
n=k

ν1–p′
n n(n–1)p′

)1/p′

< ∞,

where �(k)an = �(�(k–1)an) and �an = an+1 – an. To the best of the authors’ knowledge,
this Hardy-type inequality for higher differences is essentially new.

In the rest of this section, we present some applications by making suitable substitutions
for the two weighted functions ω(x) and ν(x). In the sequel, the constant C may take dif-
ferent values not necessary to be the same. We start with the following consequence of the
dynamic Hardy-type inequality.

Corollary 3.1 Let T be a time scale with 1 < p ≤ q < ∞, u ∈ Crd([0,∞)T,R+). Then there
exists a positive constant C such that the inequality

[∫ ∞

0

∣∣u(x)
∣∣qxα�x

]1/q

≤ C
[∫ ∞

0

∣∣u�(m+n)
(x)

∣∣pxβ�x
]1/p

(3.14)

holds for every u if and only if

B7 = sup
x∈[0,∞)T

(∫ ∞

x
tα+(m–1)q�t

)1/q(∫ σ (x)

0
tβ(1–p′)+np′

�t
)1/p′

< ∞

and

B8 = sup
x∈[0,∞)T

(∫ σ (x)

0
tα+mq�t

)1/q(∫ ∞

x
tβ(1–p′)+(n–1)p′

�t
)1/p′

< ∞

for some positive constants α, β and m, n ≥ 1.
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Proof If we set ω(x) = xα and v(x) = xβ in Theorem 3.1, we get the required result. This
completes the proof. �

Remark 3.3 In inequality (3.14), if we take T = R, we get the following continuous
weighted inequality:

[∫ ∞

0

∣∣u(x)
∣∣qxα dx

]1/q

≤ C
[∫ ∞

0

∣∣u(m+n)(x)
∣∣pxβ dx

]1/p

due to Kufner [23], which will be satisfied if and only if

B9 = sup
x∈[0,∞)

(∫ ∞

x
tα+(m–1)q dt

)1/q(∫ x

0
tβ(1–p′)+np′

dt
)1/p′

< ∞

and

B10 = sup
x∈[0,∞)

(∫ x

0
tα+mq dt

)1/q(∫ ∞

x
tβ(1–p′)+(n–1)p′

dt
)1/p′

< ∞

for some positive constants α, β .

Remark 3.4 In inequality (3.14), if we takeT = N, we get the discrete analogue of inequality
(3.14)

( ∞∑
n=1

nα

( n∑
k=1

ak

)q)1/q

≤ C

( ∞∑
n=1

nβ
(
�(k)an

)p
)1/p

,

which will be satisfied if and only if

B11 = sup
n

( ∞∑
n=k

nα+(m–1)q

)1/q( n∑
k=1

kβ(1–p′)+np′
)1/p′

< ∞

and

B12 = sup
n

( n∑
k=1

kα+mq

)1/q( ∞∑
n=k

nβ(1–p′)+(n–1)p′
)1/p′

< ∞,

which is essentially new.

Corollary 3.2 Let T be a time scale with 1 < p < ∞ and u ∈ Crd([0,∞)T,R+). Then there
exists a positive constant C such that the inequality

∫ ∞

0

∣∣u(x)
∣∣pxα–2p�x ≤ C

∫ ∞

0

∣∣u(2)(x)
∣∣pxα�x (3.15)

holds for every function u if and only if

B13 = sup
x∈[0,∞)T

(∫ ∞

x
tα–2p�t

)1/p(∫ σ (x)

0
tα+p′(1–α)�t

)1/p′

< ∞
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and

B14 = sup
x∈[0,∞)T

(∫ σ (x)

0
tα–p�t

)1/p(∫ ∞

x
tα(1–p′)�t

)1/p′

< ∞

for some positive constant α and u(0) = u�(∞) = 0.

Proof If we take ω(x) = xα–2p, v(x) = xα , m = n = 1 for the case p = q in inequality (3.4), we
will obtain the required result. This completes the proof. �

Remark 3.5 In inequality (3.15), if we take T = R, we get the following continuous
weighted inequality due to Kufner [25] for the inequality

∫ ∞

0

∣∣u(x)
∣∣pxα–2p dx ≤ C

∫ ∞

0

∣∣u′′(x)
∣∣pxα dx,

which will be satisfied if and only if

B15 = sup
x∈[0,∞)

(∫ ∞

x
tα–2p dt

)1/p(∫ x

0
tα+p′(1–α) dt

)1/p′

< ∞

and

B16 = sup
x∈[0,∞)

(∫ x

0
tα–p dt

)1/p(∫ ∞

x
tα(1–p′) dt

)1/p′

< ∞

for some positive constant α and u(0) = u′(∞) = 0.

Remark 3.6 In inequality (3.14), if we takeT = N, we get the discrete analogue of inequality
(3.15)

∞∑
n=1

nα–2p

( n∑
k=1

ak

)p

≤ C
∞∑

n=1

nα
(
�(2)an

)p,

which will be satisfied if and only if

B17 = sup
n

( ∞∑
n=k

nα–2p

)1/p( n∑
k=1

kα+p′(1–α)

)1/p′

< ∞

and

B18 = sup
n

( n∑
k=1

kα–p

)1/p( ∞∑
n=k

nα(1–p′)
)1/p′

< ∞,

which is essentially new.

Remark 3.7 As a consequence to inequality (3.15), if we take T = R, ω(x) = v(x) = eαx for
the case p = q = 2 with boundary condition u(0) = u�(0) = 0 and for α < 0, we will obtain
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the the following continuous weighted inequality:

∫ ∞

0

∣∣u(x)
∣∣2eαx dx ≤ C

∫ ∞

0

∣∣u′′(x)
∣∣2eαx dx,

which will be satisfied if and only if

B20 = sup
x∈[0,∞)

(∫ ∞

x
eαt dt

)1/2(∫ x

0
eαt(1–p′) dt

)1/2

< ∞.

This result is due to Kufner [20] (see also Opic and Kufner [28]).
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29. Peňa, S.: Discrete spectra criteria for singular difference operators. Math. Bohem. 124(1), 35–44 (1999)
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