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Abstract
In this article, we investigate the notion of the pre-quasi norm on a generalized
Cesàro backward difference sequence space of non-absolute type (�(�, r))ψ under
definite functionψ . We introduce the sufficient set-up on it to form a pre-quasi
Banach and a closed special space of sequences (sss), the actuality of a fixed point of
a Kannan pre-quasi norm contraction mapping on (�(�, r))ψ , it supports the
property (R) and has the pre-quasi normal structure property. The existence of a fixed
point of the Kannan pre-quasi norm nonexpansive mapping on (�(�, r))ψ and the
Kannan pre-quasi norm contraction mapping in the pre-quasi Banach operator ideal
constructed by (�(�, r))ψ and s-numbers has been determined. Finally, we support
our results by some applications to the existence of solutions of summable equations
and illustrative examples.
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1 Introduction
Ideal operator theorems are very important in mathematical models and have numerous
implementations, such as normal series theory, ideal transformations, geometry of Banach
spaces, approximation theory, fixed point theory, and so forth. Nakano sequence spaces
�(r) are contained in the variable exponent spaces L(r). Regarding the second half of the
twentieth century, it used to be fulfilled that these variable exponent spaces constituted
the proper framework for the mathematical components of numerous issues for which the
classical Lebesgue spaces have been inadequate. The relevancy of these spaces and their
effects made them a famous and environment friendly device in the remedy of a range
of situations. These days the region of L(r)(�) spaces is a prolific subject of lookup with
ramifications achieving into very numerous mathematical specialties [1]. Learning about
the variable exponent Lebesgue spaces L(r) gained in addition impetus from the mathe-
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matical description of the hydrodynamics of non-Newtonian fluids [2, 3]. Applications of
non-Newtonian fluids, additionally known as electrorheological, vary from their use in
army science to civil engineering and orthopedics. By RN , �∞, �r , and c0 we signify the
spaces of each bounded, r-absolutely summable, and convergent to zero sequences of real
numbers. We signify the space of all bounded linear operators from a Banach space Z into
a Banach space M by L(Z, M), and if Z = M, we write L(Z), and ed = {0, 0, . . . , 1, 0, 0, . . .},
while 1 presents the dth place for every d ∈N = {0, 1, 2, . . .}.

Definition 1.1 ([4]) An s-number function is a map defined on L(Z, M) which sort to
every map W ∈ L(Z, M) a nonnegative scaler sequence (sd(W ))∞d=0 satisfies the following
setting:

(a) ‖W‖ = s0(W ) ≥ s1(W ) ≥ s2(W ) ≥ · · · ≥ 0 for all W ∈L(Z, M);
(b) sl+d(W1 + W2) ≤ sl(W1) + sd(W2) for every W1, W2 ∈L(Z, M) and l, d ∈N ;
(c) Ideal property: sd(VYW ) ≤ ‖V‖sd(Y )‖W‖ for every W ∈L(Z0, Z), Y ∈L(Z, M) and

V ∈L(M, M0), where Z0 and M0 are discretionary Banach spaces;
(d) For W ∈L(Z, M) and γ ∈R, one has sd(γ W ) = |γ |sd(W );
(e) Rank property: Assume rank(W ) ≤ d, then sd(W ) = 0 for each W ∈L(Z, M);
(f ) Norming property: sl≥a(Ia) = 0 or sl<a(Ia) = 1, where Ia mirrors the unit map on the

a-dimensional Hilbert space �a
2 .

The dth approximation number, established by αd(W ), is defined as follows:

αd(W ) = inf
{‖W – Y‖ : Y ∈L(Z, M) and rank(Y ) ≤ d

}
.

Notations 1.2 The sets SA, SA(Z, M), Sapp
A , and Sapp

A (Z, M) (cf. [5]) are as follows:

SA :=
{

SA(Z, M)
}

, where SA(Z, M) :=
{

W ∈L(Z, M) : (
(
sd(W )

)∞
d=0 ∈ A

}
.

Also

Sapp
A :=

{
Sapp

A (Z, M)
}

, where Sapp
A (Z, M) :=

{
W ∈L(Z, M) : (

(
αd(W )

)∞
d=0 ∈ A

}
.

In [5], Faried and Bakery made known the theory of pre-quasi operator ideal that is
more conventional than the quasi operator ideal. Bakery and Abou Elmatty [6] gave the
sufficient (not necessary) conditions on �(r) such that S�(r) constructed a simple Banach
pre-quasi operator ideal. The pre-quasi operator ideal Sapp

�(r) was once strictly contained
for different exponents. It was once a small pre-quasi operator ideal. Since the booklet
of the Banach fixed point theorem [7], many mathematicians worked on feasible exten-
sions. Kannan [8] approved an instance of a class of operators with the identical fixed point
actions as contractions though that flop to be continuous. The only attempt to describe
Kannan operators in modular vector spaces was made by Ghoncheh [9]. The intention
of this paper is to learn about the thinking of pre-quasi norm on �(�, r). We explain the
sufficient conditions on �(�, r) equipped with the definite pre-quasi norm to structure
pre-quasi Banach and closed (sss), the existence of a fixed point of a Kannan pre-quasi
norm contraction mapping in the pre-quasi Banach (sss), (�(�, r))ψ satisfies the property
(R) and (�(�, r))ψ has the ψ-normal structure property. The existence of a fixed point of
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the Kannan pre-quasi norm nonexpansive mapping in the pre-quasi Banach (sss) is deter-
mined. In addition, we provide the idea of a Kannan pre-quasi norm contraction mapping
in the pre-quasi operator ideal. The existence of a fixed point of the Kannan pre-quasi
norm contraction mapping in the pre-quasi Banach operator ideal S(�(�,r))ψ is given. Fi-
nally, we give some applications to the existence of solutions of summable equations with
some examples to illustrate our results.

2 Definitions and preliminaries
Definition 2.1 ([5]) The linear space of sequences A is known as a special space of se-
quences (sss) if:

(1) {ea}a∈N ⊆A;
(2) A is solid, i.e., conceited v = (va) ∈ RN , t = (ta) ∈A, and |va| ≤ |ta| for each a ∈N ,

then v ∈A;
(3) (v[ a

2 ])∞a=0 ∈A, where [ a
2 ] illustrates the integral part of a

2 in case (va)∞a=0 ∈A.

By [0,∞)A, we denote the space of all functions φ : A −→ [0,∞).

Definition 2.2 ([5]) A subclassAψ ofA is called a pre-modular (sss) if there is ψ ∈ [0,∞)A

with the following:
(i) For v ∈ A, v = θ ⇔ ψ(v) = 0 with ψ(v) ≥ 0, where θ is the zero vector of A;

(ii) For all v ∈A and η ∈R, there is B ≥ 1 for which ψ(ηv) ≤ B|η|ψ(v);
(iii) ψ(v + t) ≤ J(ψ(v) + ψ(t)) for each v, t ∈A embodies for some J ≥ 1;
(iv) For a ∈N and |va| ≤ |ta|, we obtain ψ((va)) ≤ ψ((ta));
(v) The inequality ψ((va)) ≤ ψ((v[ a

2 ])) ≤ J0ψ((va)) holds for some J0 ≥ 1;
(vi) If F is the space of finite sequences, then F = Aψ ;
(vii) There is ς > 0 such that ψ(β , 0, 0, 0, . . .) ≥ ς |β|ψ(1, 0, 0, 0, . . .) for every β ∈R.

Definition 2.3 ([10]) Let A be a (sss). The function ψ ∈ [0,∞)A is named a pre-quasi
norm on A if it provides the following setting:

(i) For v ∈ A, v = θ ⇔ ψ(v) = 0 with ψ(v) ≥ 0, where θ is the zero vector of A;
(ii) For some B ≥ 1, the inequality ψ(ηv) ≤ B|η|ψ(v) holds for all v ∈ A and η ∈ R;

(iii) For some J ≥ 1, the inequality ψ(v + t) ≤ J(ψ(v) + ψ(t)) is satisfied for all v, t ∈A.

Theorem 2.4 ([10]) If A is a pre-modular (sss), then it is a pre-quasi normed (sss).

Theorem 2.5 ([10]) A is a pre-quasi normed (sss) if it is a quasi-normed (sss).

Definition 2.6 ([11]) If L is the class of bounded linear maps within any two Banach
spaces. A subclass U of L is named an operator ideal if every element U (Z, M) = U ∩
L(Z, M) fulfills the following setting:

(i) I� ∈ U throughout � characterizes a Banach space of one dimension.
(ii) The space U (Z, M) is linear over R.

(iii) If W ∈L(Z0, Z), X ∈ U (Z, M), and Y ∈L(M, M0), then YXW ∈ U (Z0, M0), where
Z0 and M0 are normed spaces.

The notion of pre-quasi operator ideal is more regular than the quasi operator ideal.
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Definition 2.7 ([5]) A function � ∈ [0,∞)U is named a pre-quasi norm on the ideal U if
the following setting holds:

(1) Assume W ∈ U (Z, M), �(W ) ≥ 0, and �(W ) = 0 if and only if W = 0;
(2) There is D ≥ 1 so as to �(ηW ) ≤ D|η|�(W ) for all W ∈ U (Z, M) and η ∈ R;
(3) There is J ≥ 1 so that �(W1 + W2) ≤ J[�(W1) + �(W2)] for all W1, W2 ∈ U (Z, M);
(4) There is σ ≥ 1 if W ∈L(Z0, Z), X ∈ U (Z, M), and Y ∈L(M, M0), then

�(YXW ) ≤ σ‖Y‖�(X)‖W‖.

Theorem 2.8 ([12]) Pick up Aψ to be a pre-modular (sss), then �(W ) = ψ(sa(W ))∞a=0 is a
pre-quasi norm on SAψ

.

Theorem 2.9 ([6]) Let Z and M be Banach spaces and Aψ be a pre-modular (sss), then
(SAψ

,�) is a pre-quasi Banach operator ideal, so that �(W ) = ψ((sa(W ))∞a=0).

Theorem 2.10 ([5]) � is a pre-quasi norm on the ideal U if � is a quasi norm on the ideal
U .

Lemma 2.11 The given inequalities will be used in the sequel:
(i) [13] Let r ≥ 2 and for every v, t ∈R, then

∣∣∣∣
v + t

2

∣∣∣∣

r

+
∣∣∣∣
v – t

2

∣∣∣∣

r

≤ 1
2
(|v|r + |t|r).

(ii) [14] Assume 1 < r ≤ 2 and for all v, t ∈R so that |v| + |t| �= 0, then

∣∣∣∣
v + t

2

∣∣∣∣

r

+
r(r – 1)

2

∣∣∣∣
v – t

|v| + |t|
∣∣∣∣

2–r∣∣∣∣
v – t

2

∣∣∣∣

r

≤ 1
2
(|v|r + |t|r).

(iii) [15] Suppose ra > 0 and va, ta ∈ R for every a ∈N , then
|va + ta|ra ≤ 2K–1(|va|ra + |ta|ra ), where K = max{1, supa ra}.

3 The sequence space (�(�, r))ψ
We introduce in this section the definition of generalized Cesàro backward difference se-
quence space of non-absolute type (�(�, r))ψ under the function ψ and some inclusion
relations.

The Cesàro matrix �1 of order 1 is represented explicitly as

�1 =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

1 0 0 0 . . .
1
2

1
2 0 0 . . .

1
3

1
3

1
3 0 . . .

1
4

1
4

1
4

1
4 . . .

...
...

...
...

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

Definition 3.1 For all (rl) ∈ R+N , the sequence spaces (�∞(r))ψ , (c0(r))ψ , and (�(r))ψ are
defined as follows:

(
�∞(r)

)
ψ∞ =

{
f = (fk) ∈R

N : ψ∞(ρf ) < ∞ for some ρ > 0
}

,
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where ψ∞(f ) = sup
l

|fl|rl .

(
c0(r)

)
ψ∞ =

{
f = (fk) ∈ R

N : lim
l→∞

|ρfl|rl = 0 for some ρ > 0
}

,

where ψ∞(f ) = sup
l

|fl|rl .

(
�(r)

)
ψ

=
{

f = (fk) ∈R
N : ψ(ρf ) < ∞ for some ρ > 0

}
,

where ψ(f ) =
∞∑

l=0

|fl|rl .

Definition 3.2 For all (rl) ∈R+N , we define the following sequence spaces:

�∞(�, r) =
{

f = (fk) ∈ R
N : �1�f ∈ �∞(r)

}
.

�0(�, r) =
{

f = (fk) ∈ R
N : �1�f ∈ c0(r)

}
.

�(�, r) =
{

f = (fk) ∈R
N : �1�f ∈ �(r)

}
.

Theorem 3.3 If (rl) ∈R+N , then �(�, r) ��0(�, r) � �∞(�, r).

Definition 3.4 For all (rl) ∈R+N , the sequence space (�(�, r))ψ under the function ψ is
defined as follows:

(
�(�, r)

)
ψ

=
{

f = (fk) ∈ R
N : ψ(ρf ) < ∞ for some ρ > 0

}
,

where ψ(f ) =
∑∞

l=0( |∑l
z=0 �fz|
l+1 )rl and �fz = fz – fz–1 with fz = 0 for z < 0.

Theorem 3.5 If (rl) ∈R+N ∩ �∞, then

(
�(�, r)

)
ψ

=
{

f = (fk) ∈ R
N : ψ(ρf ) < ∞ for any ρ > 0

}
.

Proof Assume (rl) ∈R+N ∩ �∞, one has

(
�(�, r)

)
ψ

=
{

f = (fk) ∈ R
N : ψ(ρf ) < ∞ for some ρ > 0

}

=

{

f = (fk) ∈R
N :

∞∑

l=0

( |∑l
z=0 �ρfz|
l + 1

)rl

< ∞ for some ρ > 0

}

=

{

f = (fk) ∈R
N : inf

l
ρrl

∞∑

l=0

( |∑l
z=0 �fz|
l + 1

)rl

< ∞ for some ρ > 0

}

=

{

f = (fk) ∈R
N :

∞∑

l=0

( |∑l
z=0 �fz|
l + 1

)rl

< ∞
}

=
{

f = (fk) ∈ R
N : ψ(ρf ) < ∞ for any ρ > 0

}
. �

Theorem 3.6 If (rl) ∈R+N ∩ �∞, then (�(�, r))ψ is of absolute type.
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Proof We have

ψ(f ) =
∞∑

l=0

( |∑l
z=0 �fz|
l + 1

)rl

=
∞∑

l=0

( |fl|
l + 1

)rl

=
∞∑

l=0

( |∑l
z=0 �|fz||
l + 1

)rl

= ψ(|f |).

Therefore, the sequence space (�(�, r))ψ is of absolute type. �

Theorem 3.7 If (rl) ∈R+N ∩ �∞, then (�(r))ψ � (�(�, r))ψ .

Proof Let f ∈ (�(r))ψ , since

∞∑

l=0

( |∑l
z=0 �fz|
l + 1

)rl

=
∞∑

l=0

( |fl|
l + 1

)rl

≤
∞∑

l=0

|fl|rl < ∞,

then f ∈ (�(�, r))ψ . For (rl) ∈ (1,∞)N ∩ �∞, we choose f = (1, 1, 1, . . .), one has f ∈
(�(�, r))ψ and f /∈ �(r). For (rl) ∈ (0, 1]N , we choose f = ( 1

l+1 )r–1
l , one has f ∈ (�(�, r))ψ

and f /∈ �(r). �

Definition 3.8 For all (rl) ∈ R+N ∩ �∞, the generalized Cesàro backward difference se-
quence space of absolute type (ces(�, r))ϕ is defined as follows:

(
ces(�, r)

)
ϕ

=
{

f = (fk) ∈R
N : ϕ(ρf ) < ∞ for some ρ > 0

}
,

where ϕ(f ) =
∞∑

l=0

(∑l
z=0 |�fz|
l + 1

)rl

.

Theorem 3.9 If (rl) ∈R+N ∩ �∞, then (ces(�, r))ϕ � (�(�, r))ψ .

Proof Let f ∈ (ces(�, r))ϕ , since

∞∑

l=0

( |∑l
z=0 �fz|
l + 1

)rl

≤
∞∑

l=0

(∑l
z=0 |�fz|
l + 1

)rl

< ∞.

Then f ∈ (�(�, r))ψ . For (rl) ∈ (1,∞)N ∩ �∞, we choose f = ((–1)z)z∈N , one has f ∈
(�(�, r))ψ and f /∈ (ces(�, r))ϕ . For (rl) ∈ (0, 1]N , we choose f = (1, 0, 0, . . .), one has f ∈
(�(�, r))ψ and f /∈ (ces(�, r))ϕ . �

4 Pre-quasi norm on �(�, r)
We investigate in this section the sufficient set-up on �(�, r) with a pre-quasi norm ψ

to form a pre-quasi Banach and a closed (sss). The Fatou property for different pre-quasi
norm ψ on �(�, r) is studied.

Definition 4.1
(a) The function ψ on �(�, r) is called ψ-convex if

ψ
(
ωv + (1 – ω)t

)≤ ωψ(v) + (1 – ω)ψ(t)

for each ω ∈ [0, 1] and v, t ∈ �(�, r).
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(b) {va}a∈N ⊆ (�(�, r))ψ is ψ-convergent to v ∈ (�(�, r))ψ if and only if
lima→∞ ψ(va – v) = 0. If the ψ-limit exists, then it is unique.

(c) {va}a∈N ⊆ (�(�, r))ψ is ψ-Cauchy, when lima,b→∞ ψ(va – vb) = 0.
(d) � ⊂ (�(�, r))ψ is ψ-closed, if for all ψ-converging {va}a∈N ⊂ � to v, then v ∈ �.
(e) � ⊂ (�(�, r))ψ is ψ-bounded, when δψ (�) = sup{ψ(v – t) : v, t ∈ �} < ∞.
(f ) The ψ-ball of radius d ≥ 0 and center v, for every v ∈ (�(�, r))ψ , is detailed

Bψ (v, d) =
{

t ∈ (
�(�, r)

)
ψ

: ψ(v – t) ≤ d
}

.

(g) A pre-quasi norm ψ on �(�, r) satisfies the Fatou property if for any sequence
{ta} ⊆ (�(�, r))ψ with lima→∞ ψ(ta – t) = 0 and any v ∈ (�(�, r))ψ , then
ψ(v – t) ≤ supj infa≥j ψ(v – ta).

Note that the Fatou property gives the ψ-closedness of the ψ-balls.

Theorem 4.2 If (ra) ∈R+N ∩ �∞ is increasing, then the space (�(�, r))ψ is a pre-modular
(sss), where ψ(v) = [

∑∞
a=0( |∑a

z=0 �vz|
a+1 )ra ]

1
K for each v ∈ �(�, r).

Proof Firstly, we have to prove �(�, r) is a (sss):
(1-i) Suppose v, t ∈ �(�, r). Since (ra) is bounded, we obtain

ψ(v + t) =

[ ∞∑

a=0

( |va + ta|
a + 1

)ra
] 1

K

≤
[ ∞∑

a=0

( |va|
a + 1

)ra
] 1

K

+

[ ∞∑

a=0

( |ta|
a + 1

)ra
] 1

K

= ψ(v) + ψ(t) < ∞,

so v + t ∈ �(�, r).
(1-ii) Assume η ∈R and v ∈ �(�, r). As (ra) is bounded, we have

ψ(ηv) =

[ ∞∑

a=0

( |ηva|
a + 1

)ra
] 1

K

≤ sup
a

|η| ra
K

[ ∞∑

a=0

( |va|
a + 1

)ra
] 1

K

≤ D|η|ψ(v) < ∞.

Hence ηv ∈ �(�, r). Then, by using Parts (1-i) and (1-ii), we get �(�, r) is a linear space.
Also ea ∈ �(�, r) for all a ∈N since

ψ(ea) =

[ ∞∑

j=0

( |ea(j)|
j + 1

)rj
] 1

K

=
(

1
a + 1

) ra
K

.

(2) Let |va| ≤ |ta| for all a ∈N and t ∈ �(�, r). One has

ψ(v) =

[ ∞∑

a=0

( |va|
a + 1

)ra
] 1

K

≤
[ ∞∑

a=0

( |ta|
a + 1

)ra
] 1

K

= ψ(t) < ∞,

we get v ∈ �(�, r).
(3) Let (va) ∈ �(�, r), one can see

ψ
(
(v[ a

2 ])
)

=

[ ∞∑

a=0

( |v[ a
2 ]|

a + 1

)ra
] 1

K

=

[ ∞∑

a=0

( |va|
2a + 1

)r2a

+
∞∑

a=0

( |va|
2a + 2

)r2a+1
] 1

K
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≤ 2
1
K

[ ∞∑

a=0

( |va|
a + 1

)ra
] 1

K

= 2
1
K ψ

(
(va)

)
,

then (v[ a
2 ]) ∈ �(�, r). Secondly, we show that the function ψ on �(�, r) is pre-modular:

(i) Evidently, ψ(v) ≥ 0 and ψ(v) = 0 ⇔ v = θ .
(ii) We have D = max{1, supa |η| ra

K –1} ≥ 1 so that ψ(ηv) ≤ D|η|ψ(v) for every v ∈ �(�, r)
and η ∈R.

(iii) There is J ≥ 1 such that ψ(v + t) ≤ J(ψ(v) + ψ(t)) for all v, t ∈ �(�, r).
(iv) Clearly from (2).
(v) It is obtained from (3) that J0 = 2

1
K ≥ 1.

(vi) Patently F = �(�, r).
(vii) There is ς so that 0 < ς ≤ |β| r0

K –1 for β �= 0 or ς > 0, for β = 0 such that

ψ(β , 0, 0, 0, . . .) ≥ ς |β|ψ(1, 0, 0, 0, . . .). �

Theorem 4.3 If (ra) ∈R+N ∩�∞ is increasing, then (�(�, r))ψ is a pre-quasi Banach (sss),
where ψ(v) = [

∑∞
a=0( |∑a

z=0 �vz|
a+1 )ra ]

1
K for each v ∈ �(�, r).

Proof Assume that the set-up is verified. From Theorem 4.2, the space (�(�, r))ψ is a
pre-modular (sss). By Theorem 2.4, the space (�(�, r))ψ is a pre-quasi normed (sss). To
demonstrate that (�(�, r))ψ is a pre-quasi Banach (sss), assume vp = (vp

a)∞a=0 to be a Cauchy
sequence in (�(�, r))ψ . Hence, for every ε ∈ (0, 1), there is p0 ∈N so that, for all p, q ≥ p0,
one has

ψ
(
vp – vq) =

[ ∞∑

a=0

( |vp
a – vq

a|
a + 1

)ra
] 1

K

< ε.

Therefore, for p, q ≥ p0 and a ∈N , we obtain |vp
a – vq

a| < ε. So (vq
a) is a Cauchy sequence in

R for constant a ∈N , which implies limq→∞ vq
a = v0

a for fixed a ∈N . Hence ψ(vp – v0) < ε

for each p ≥ p0. Conclusively to show that v0 ∈ �(�, r), we have ψ(v0) = ψ(v0 – vp + vp) ≤
ψ(vp – v0) + ψ(vp) < ∞, so v0 ∈ �(�, r). This means that (�(�, r))ψ is a pre-quasi Banach
(sss). �

Theorem 4.4 If (ra) ∈ R+N ∩ �∞ is increasing, then (�(�, r))ψ is a pre-quasi closed (sss),
where ψ(v) = [

∑∞
a=0( |∑a

z=0 �vz|
a+1 )ra ]

1
K for each v ∈ �(�, r).

Proof Assume that the set-up is verified. From Theorem 4.2, the space (�(�, r))ψ is a
pre-modular (sss). By Theorem 2.4, the space (�(�, r))ψ is a pre-quasi normed (sss).
To show that (�(�, r))ψ is a pre-quasi closed (sss), assume vp = (vp

a)∞a=0 ∈ (�(�, r))ψ and
limp→∞ ψ(vp – v0) = 0, then for every ε ∈ (0, 1), there is p0 ∈ N such that, for all p ≥ p0,
one has

ψ
(
vp – v0) =

[ ∞∑

a=0

( |vp
a – v0

a|
a + 1

)ra
] 1

K

< ε.

Hence, for p ≥ p0 and a ∈N , we get |vp
a – v0

a| < ε. So (vp
a) is a convergent sequence in R for

fixed a ∈N . Therefore, limp→∞ vp
a = v0

a for fixed a ∈N . Finally, to prove that v0 ∈ �(�, r),
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we have

ψ
(
v0) = ψ

(
v0 – vp + vp)≤ ψ

(
vp – v0) + ψ

(
vp) < ∞,

so v0 ∈ �(�, r). This means that (�(�, r))ψ is a pre-quasi closed (sss). �

Theorem 4.5 If (ra) ∈ R+N ∩ �∞ is increasing, then ψ(v) = [
∑∞

a=0( |∑a
z=0 �vz|
a+1 )ra ]

1
K verifies

the Fatou property.

Proof Suppose that the set-up is fulfilled and {tb} ⊆ (�(�, r))ψ with limb→∞ ψ(tb – t) =
0. Since the space (�(�, r))ψ is pre-quasi closed, then t ∈ (�(�, r))ψ . Then, for any v ∈
(�(�, r))ψ , one can see

ψ(v – t) =

[ ∞∑

a=0

( |va – ta|
a + 1

)ra
] 1

K

≤
[ ∞∑

a=0

( |va – tb
a|

a + 1

)ra
] 1

K

+

[ ∞∑

a=0

( |tb
a – ta|
a + 1

)ra
] 1

K

≤ sup
j

inf
b≥j

ψ
(
v – tb). �

Theorem 4.6 If (ra) ∈ R+N ∩ �∞ is increasing with r0 > 1, then ψ(v) =
∑∞

a=0( |∑a
z=0 �vz|
a+1 )ra

does not satisfy the Fatou property for all v ∈ �(�, r).

Proof Let the conditions be fulfilled and {tb} ⊆ (�(�, r))ψ with limb→∞ ψ(tb – t) = 0. Since
the space (�(�, r))ψ is a pre-quasi closed space, then t ∈ (�(�, r))ψ . Then, for any v ∈
(�(�, r))ψ , we have

ψ(v – t) =
∞∑

a=0

( |va – ta|
a + 1

)ra

≤ 2supa ra–1

[ ∞∑

a=0

( |va – tb
a|

a + 1

)ra

+
∞∑

a=0

( |tb
a – ta|
a + 1

)ra
]

≤ 2supa ra–1 sup
j

inf
b≥j

ψ
(
v – tb).

Hence, ψ does not satisfy the Fatou property. �

Theorem 4.7 If (ra) ∈ (0, 1)N is increasing, then ψ(v) = [
∑∞

a=0( |∑a
z=0 �vz|
a+1 )ra ]

1
r0 does not

satisfy the Fatou property for all v ∈ �(�, r).

Proof Let the conditions be fulfilled and {tb} ⊆ (�(�, r))ψ with limb→∞ ψ(tb – t) = 0. Since
the space (�(�, r))ψ is a pre-quasi closed space, then t ∈ (�(�, r))ψ . Then, for any v ∈
(�(�, r))ψ , we have

ψ(v – t) =

[ ∞∑

a=0

( |va – ta|
a + 1

)ra
] 1

r0

≤ 2
1
r0

–1

([ ∞∑

a=0

( |va – tb
a|

a + 1

)ra
] 1

r0

+

[ ∞∑

a=0

( |tb
a – ta|
a + 1

)ra
] 1

r0
)

≤ 2
1
r0

–1 sup
j

inf
b≥j

ψ
(
v – tb).

Hence, ψ does not satisfy the Fatou property. �
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Example 4.8 The function ψ(v) = [
∑∞

a=0( |∑a
z=0 �vz|
a+1 )ra ]

1
K is a pre-quasi norm, not quasi,

and not a norm for each v ∈ �(�, r).

Example 4.9 The function ψ(v) = [
∑∞

a=0( |∑a
z=0 �vz|
a+1 )r] 1

r is a pre-quasi norm, a quasi norm,
and not a norm on �(�, (r)) for 0 < r < 1.

Example 4.10 The function ψ(v) = inf{κ > 0 :
∑∞

a=0( |∑a
z=0 �vz|

(a+1)κ )ra ≤ 1} is a pre-quasi norm,
a quasi norm, and a norm on �(�, r).

5 Fixed points of Kannan pre-quasi contraction mapping
Now, we give the definition of Kannan ψ-Lipschitzian mapping in the pre-quasi normed
(sss). We examine the sufficient conditions on (�(�, r))ψ equipped with definite pre-quasi
norm such that there is a unique fixed point of the Kannan pre-quasi norm contraction
mapping.

Definition 5.1 An operator W : Aψ → Aψ is called Kannan ψ-Lipschitzian if there is
ξ ≥ 0 such that

ψ(Wv – Wt) ≤ ξ
(
ψ(Wv – v) + ψ(Wt – t)

)

for all v, t ∈Aψ . The operator W is called:
(1) Kannan ψ-contraction if ξ ∈ [0, 1

2 ).
(2) Kannan ψ-nonexpansive if ξ = 1

2 .
A vector v ∈Aψ is named a fixed point of W when W (v) = v.

Theorem 5.2 If (ra) ∈R+N ∩ �∞ is increasing and W : (�(�, r))ψ → (�(�, r))ψ is a Kan-
nan ψ-contraction mapping, where ψ(v) = [

∑∞
a=0( |∑a

z=0 �vz|
a+1 )ra ]

1
K for all v ∈ �(�, r), hence

W has a unique fixed point.

Proof Suppose that the conditions are satisfied. For any v ∈ �(�, r), then W pv ∈ �(�, r).
As W is a Kannan ψ-contraction mapping, one has

ψ
(
W p+1v – W pv

)≤ ξ
(
ψ
(
W p+1v – W pv

)
+ ψ

(
W pv – W p–1v

))

⇒ ψ
(
W p+1v – W pv

)≤ ξ

1 – ξ
ψ
(
W pv – W p–1v

)

≤
(

ξ

1 – ξ

)2

ψ
(
W p–1v – W p–2v

)

≤ . . . ≤
(

ξ

1 – ξ

)p

ψ(Wv – v).

Hence, for all p, q ∈N with q > p, we get

ψ
(
W pv – W qv

)≤ ξ
(
ψ
(
W pv – W p–1v

)
+ ψ

(
W qv – W q–1v

))

≤ ξ

((
ξ

1 – ξ

)p–1

+
(

ξ

1 – ξ

)q–1)
ψ(Wv – v).
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So, {W pv} is a Cauchy sequence in (�(�, r))ψ . As the space (�(�, r))ψ is a pre-quasi Ba-
nach space, there is t ∈ (�(�, r))ψ such that limp→∞ W pv = t. To prove that Wt = t, since
ψ has the Fatou property, one can see

ψ(Wt – t) ≤ sup
i

inf
p≥i

ψ
(
W p+1v – W pv

)≤ sup
i

inf
p≥i

(
ξ

1 – ξ

)p

ψ(Wv – v) = 0,

hence Wt = t. Then t is a fixed point of W . To show that the fixed point is unique, let us
have two different fixed points b, t ∈ (�(�, r))ψ of W . Hence, we obtain

ψ(b – t) ≤ ψ(Wb – Wt) ≤ ξ
(
ψ(Wb – b) + ψ(Wt – t)

)
= 0.

Therefore, b = t. �

Corollary 5.3 Let (ra) ∈ R+N ∩ �∞ be increasing and W : (�(�, r))ψ → (�(�, r))ψ be a
Kannan ψ-contraction mapping, where ψ(v) = [

∑∞
a=0( |∑a

z=0 �vz|
a+1 )ra ]

1
K for all v ∈ �(�, r),

then W has one and only one fixed point b with ψ(W pv – b) ≤ ξ ( ξ

1–ξ
)p–1ψ(Wv – v).

Proof Let the conditions be satisfied. By Theorem 5.2, there is a unique fixed point b of
W . Consequently, we have

ψ
(
W pv – b

)
= ψ

(
W pv – Wb

)≤ ξ
(
ψ
(
W pv – W p–1v

)
+ ψ(Wb – b)

)

= ξ

(
ξ

1 – ξ

)p–1

ψ(Wv – v). �

Definition 5.4 Assume that Aψ is a pre-quasi normed (sss) and W : Aψ →Aψ . The oper-
ator W is called ψ-sequentially continuous at b ∈ Aψ if and only if, when lima→∞ ψ(va –
b) = 0, then lima→∞ ψ(Wva – Wb) = 0.

Theorem 5.5 Let (ra) ∈ R+N ∩ �∞ be increasing with r0 > 1, and let W : (�(�, r))ψ →
(�(�, r))ψ , where ψ(v) =

∑∞
a=0( |∑a

z=0 �vz|
a+1 )ra for all v ∈ �(�, r). The point g ∈ (�(�, r))ψ is

the only fixed point of W if the following conditions are satisfied:
(a) W is a Kannan ψ-contraction mapping;
(b) W is ψ-sequentially continuous at a point g ∈ (�(�, r))ψ ;
(c) There is v ∈ (�(�, r))ψ so that the sequence of iterates {W pv} has a subsequence

{W pi v} converging to g .

Proof Let the conditions be verified. If g is not a fixed point of W , then Wg �= g . By condi-
tions (b) and (c), we have

lim
pi→∞ψ

(
W pi v – g

)
= 0 and lim

pi→∞ψ
(
W pi+1v – Wg

)
= 0.

As the operator W is a Kannan ψ-contraction, one can see

0 < ψ(Wg – g) = ψ
((

Wg – W pi+1v
)

+
(
W pi v – g

)
+
(
W pi+1v – W pi v

))

≤ 22 supi ri–2ψ
(
W pi+1v – Wg

)
+ 22 supi ri–2ψ

(
W pi v – g

)

+ 2supi ri–1ξ

(
ξ

1 – ξ

)pi–1

ψ(Wv – v).
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As pi → ∞, we have a contradiction. Therefore, g is a fixed point of W . To explain that
the fixed point g is unique, let us have two different fixed points g, b ∈ (�(�, r))ψ of W .
Hence, we obtain

ψ(g – b) ≤ ψ(Wg – Wb) ≤ ξ
(
ψ(Wg – g) + ψ(Wb – b)

)
= 0.

Therefore, g = b. �

Theorem 5.6 Let (ra) ∈ (0, 1)N be increasing, and let W : (�(�, r))ψ → (�(�, r))ψ , where
ψ(v) = [

∑∞
a=0( |∑a

z=0 �vz|
a+1 )ra ]

1
r0 for all v ∈ �(�, r). The point g ∈ (�(�, r))ψ is the only fixed

point of W if the following conditions are satisfied:
(a) W is a Kannan ψ-contraction mapping;
(b) W is ψ-sequentially continuous at g ∈ (�(�, r))ψ ;
(c) There is v ∈ (�(�, r))ψ such that the sequence of iterates {W pv} has a subsequence

{W pi v} converging to g .

Proof Let the conditions be verified. If g is not a fixed point of W , then Wg �= g . By condi-
tions (b) and (c), we have

lim
pi→∞ψ

(
W pi v – g

)
= 0 and lim

pi→∞ψ
(
W pi+1v – Wg

)
= 0.

As the operator W is a Kannan ψ-contraction, one can see

0 < ψ(Wg – g) = ψ
((

Wg – W pi+1v
)

+
(
W pi v – g

)
+
(
W pi+1v – W pi v

))

≤ 22r–1
0 –2ψ

(
W pi+1v – Wg

)
+ 22r–1

0 –2ψ
(
W pi v – g

)

+ 2r–1
0 –1ξ

(
ξ

1 – ξ

)pi–1

ψ(Wv – v).

As pi → ∞, we have a contradiction. Therefore, g is a fixed point of W . To explain that
the fixed point g is unique, let us have two different fixed points g, b ∈ (�(�, r))ψ of W .
Hence, we obtain

ψ(g – b) ≤ ψ(Wg – Wb) ≤ ξ
(
ψ(Wg – g) + ψ(Wb – b)

)
= 0.

Therefore, g = b. �

Example 5.7 Let W : (�(�, ( a+1
2a+4 )∞a=0))ψ → (�(�, ( a+1

2a+4 )∞a=0))ψ , where ψ(v) =
∑

a∈N | va
a+1 | a+1

2a+4 for all v ∈ �(�, ( a+1
2a+4 )∞a=0) and

W (v) =

⎧
⎨

⎩

v
18 , ψ(v) ∈ [0, 1),
v

20 , ψ(v) ∈ [1,∞).

Since for all v1, v2 ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ with ψ(v1),ψ(v2) ∈ [0, 1), we have

ψ(Wv1 – Wv2) = ψ

(
v1

18
–

v2

18

)
≤ 1

4√17

(
ψ

(
17v1

18

)
+ ψ

(
17v2

18

))
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=
1

4√17
(
ψ(Wv1 – v1) + ψ(Wv2 – v2)

)
.

For all v1, v2 ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ with ψ(v1),ψ(v2) ∈ [1,∞), we have

ψ(Wv1 – Wv2) = ψ

(
v1

20
–

v2

20

)
≤ 1

4√19

(
ψ

(
19v1

20

)
+ ψ

(
19v2

20

))

=
1

4√19
(
ψ(Wv1 – v1) + ψ(Wv2 – v2)

)
.

For all v1, v2 ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ with ψ(v1) ∈ [0, 1) and ψ(v2) ∈ [1,∞), we have

ψ(Wv1 – Wv2) = ψ

(
v1

18
–

v2

20

)
≤ 1

4√17
ψ

(
17v1

18

)
+

1
4√19

ψ

(
19v2

20

)

≤ 1
4√17

(
ψ

(
17v1

18

)
+ ψ

(
19v2

20

))

=
1

4√17
(
ψ(Wv1 – v1) + ψ(Wv2 – v2)

)
.

Therefore, the map W is a Kannan ψ-contraction mapping. Since ψ satisfies the Fatou
property, by Theorem 5.2, the map W has a unique fixed point θ ∈ (�(�, ( a+1

2a+4 )∞a=0))ψ .
Let {v(n)} ⊆ (�(�, ( a+1

2a+4 )∞a=0))ψ be such that limn→∞ ψ(v(n) – v(0)) = 0, where v(0) ∈
(�(�, ( a+1

2a+4 )∞a=0))ψ with ψ(v(0)) = 1. Since the pre-quasi norm ψ is continuous, we have

lim
n→∞ψ

(
Wv(n) – Wv(0)) = lim

n→∞ψ

(
v(n)

18
–

v(0)

20

)
= ψ

(
v(0)

180

)
> 0.

Hence W is not ψ-sequentially continuous at v(0). So, the map W is not continuous at v(0).
If ψ(v) = [

∑
a∈N | va

a+1 | a+1
2a+4 ]4 for all v ∈ �(�, ( a+1

2a+4 )∞a=0). Since for all v1, v2 ∈ (�(�,
( a+1

2a+4 )∞a=0))ψ with ψ(v1),ψ(v2) ∈ [0, 1), we have

ψ(Wv1 – Wv2) = ψ

(
v1

18
–

v2

18

)
≤ 8

17

(
ψ

(
17v1

18

)
+ ψ

(
17v2

18

))

=
8

17
(
ψ(Wv1 – v1) + ψ(Wv2 – v2)

)
.

For all v1, v2 ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ with ψ(v1),ψ(v2) ∈ [1,∞), we have

ψ(Wv1 – Wv2) = ψ

(
v1

20
–

v2

20

)
≤ 8

19

(
ψ

(
19v1

20

)
+ ψ

(
19v2

20

))

=
8

19
(
ψ(Wv1 – v1) + ψ(Wv2 – v2)

)
.

For all v1, v2 ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ with ψ(v1) ∈ [0, 1) and ψ(v2) ∈ [1,∞), we have

ψ(Wv1 – Wv2) = ψ

(
v1

18
–

v2

20

)
≤ 8

17
ψ

(
17v1

18

)
+

8
19

ψ

(
19v2

20

)

≤ 8
17

(
ψ

(
17v1

18

)
+ ψ

(
19v2

20

))
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=
8

17
(
ψ(Wv1 – v1) + ψ(Wv2 – v2)

)
.

Therefore, the map W is a Kannan ψ-contraction mapping and

W p(v) =

⎧
⎨

⎩

v
18p , ψ(v) ∈ [0, 1),

v
20p , ψ(v) ∈ [1,∞).

It is clear that W is ψ-sequentially continuous at θ ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ and {W pv} has

a subsequence {W pi v} converging to θ . By Theorem 5.5, the point θ ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ

is the only fixed point of W .

Example 5.8 Let W : (�(�, ( 2a+3
a+2 )∞a=0))ψ → (�(�, ( 2a+3

a+2 )∞a=0))ψ , where ψ(v) =√∑
a∈N | va

a+1 | 2a+3
a+2 for all v ∈ �(�, ( 2a+3

a+2 )∞a=0) and

W (v) =

⎧
⎨

⎩

v
4 , ψ(v) ∈ [0, 1),
v
5 , ψ(v) ∈ [1,∞).

Since for all v1, v2 ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ with ψ(v1),ψ(v2) ∈ [0, 1), we have

ψ(Wv1 – Wv2) = ψ

(
v1

4
–

v2

4

)
≤ 1

4√27

(
ψ

(
3v1

4

)
+ ψ

(
3v2

4

))

=
1

4√27
(
ψ(Wv1 – v1) + ψ(Wv2 – v2)

)
.

For all v1, v2 ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ with ψ(v1),ψ(v2) ∈ [1,∞), we have

ψ(Wv1 – Wv2) = ψ

(
v1

5
–

v2

5

)
≤ 1

4√64

(
ψ

(
4v1

5

)
+ ψ

(
4v2

5

))

=
1

4√64
(
ψ(Wv1 – v1) + ψ(Wv2 – v2)

)
.

For all v1, v2 ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ with ψ(v1) ∈ [0, 1) and ψ(v2) ∈ [1,∞), we have

ψ(Wv1 – Wv2) = ψ

(
v1

4
–

v2

5

)
≤ 1

4√27
ψ

(
3v1

4

)
+

1
4√64

ψ

(
4v2

5

)

≤ 1
4√27

(
ψ

(
3v1

4

)
+ ψ

(
4v2

5

))

=
1

4√27
(
ψ(Wv1 – v1) + ψ(Wv2 – v2)

)
.

Therefore, the map W is a Kannan ψ-contraction mapping. Since ψ satisfies the Fatou
property, by Theorem 5.2, the map W has a unique fixed point θ ∈ (�(�, ( 2a+3

a+2 )∞a=0))ψ .
Let {v(n)} ⊆ (�(�, ( 2a+3

a+2 )∞a=0))ψ be such that limn→∞ ψ(v(n) – v(0)) = 0, where v(0) ∈
(�(�, ( 2a+3

a+2 )∞a=0))ψ with ψ(v(0)) = 1. Since the pre-quasi norm ψ is continuous, we have

lim
n→∞ψ

(
Wv(n) – Wv(0)) = lim

n→∞ψ

(
v(n)

4
–

v(0)

5

)
= ψ

(
v(0)

20

)
> 0.
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Hence W is not ψ-sequentially continuous at v(0). So, the map W is not continuous at
v(0).

If ψ(v) =
∑

a∈N | va
a+1 | 2a+3

a+2 for all v ∈ �(�, ( 2a+3
a+2 )∞a=0). Since for all v1, v2 ∈ (�(�, ( 2a+3

a+2 )∞a=0))ψ
with ψ(v1),ψ(v2) ∈ [0, 1), we have

ψ(Wv1 – Wv2) = ψ

(
v1

4
–

v2

4

)
≤ 2√

27

(
ψ

(
3v1

4

)
+ ψ

(
3v2

4

))

=
2√
27

(
ψ(Wv1 – v1) + ψ(Wv2 – v2)

)
.

For all v1, v2 ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ with ψ(v1),ψ(v2) ∈ [1,∞), we have

ψ(Wv1 – Wv2) = ψ

(
v1

5
–

v2

5

)
≤ 1

4

(
ψ

(
4v1

5

)
+ ψ

(
4v2

5

))

=
1
4
(
ψ(Wv1 – v1) + ψ(Wv2 – v2)

)
.

For all v1, v2 ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ with ψ(v1) ∈ [0, 1) and ψ(v2) ∈ [1,∞), we have

ψ(Wv1 – Wv2) = ψ

(
v1

4
–

v2

5

)
≤ 2√

27
ψ

(
3v1

4

)
+

1
4
ψ

(
4v2

5

)

≤ 2√
27

(
ψ

(
3v1

4

)
+ ψ

(
4v2

5

))

=
2√
27

(
ψ(Wv1 – v1) + ψ(Wv2 – v2)

)
.

Therefore, the map W is a Kannan ψ-contraction mapping and

W p(v) =

⎧
⎨

⎩

v
4p , ψ(v) ∈ [0, 1),
v

5p , ψ(v) ∈ [1,∞).

It is clear that W is ψ-sequentially continuous at θ ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ and {W pv} has

a subsequence {W pi v} converging to θ . By Theorem 5.5, the point θ ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ

is the only fixed point of W .

Example 5.9 Let W : (�(�, ( a+1
2a+4 )∞a=0))ψ → (�(�, ( a+1

2a+4 )∞a=0))ψ , where ψ(v) =
[
∑

a∈N | va
a+1 | a+1

2a+4 ]4 for all v ∈ �(�, ( a+1
2a+4 )∞a=0) and

W (v) =

⎧
⎪⎪⎨

⎪⎪⎩

1
18 (e0 + v), v0 ∈ (–∞, 1

17 ),
1

17 e0, v0 = 1
17 ,

1
18 e0, v0 ∈ ( 1

17 ,∞).

Since for all v, t ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ with v0, t0 ∈ (–∞, 1

17 ), we have

ψ(Wv – Wt) = ψ

(
1

18
(v0 – t0, v1 – t1, v2 – t2, . . .)

)
≤ 8

17

(
ψ

(
17v
18

)
+ ψ

(
17t
18

))
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≤ 8
17

(
ψ(Wv – v) + ψ(Wt – t)

)
.

For all v, t ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ with v0, t0 ∈ ( 1

17 ,∞), then for any ε > 0 we have

ψ(Wv – Wt) = 0 ≤ ε
(
ψ(Wv – v) + ψ(Wt – t)

)
.

For all v, t ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ with v0 ∈ (–∞, 1

17 ) and t0 ∈ ( 1
17 ,∞), we have

ψ(Wv – Wt) = ψ

(
v

18

)
≤ 1

17
ψ

(
17v
18

)
=

1
17

ψ(Wv – v)

≤ 1
17

(
ψ(Wv – v) + ψ(Wt – t)

)
.

Therefore, the map W is a Kannan ψ-contraction mapping. It is clear that W is ψ-
sequentially continuous at 1

17 e0 ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ , and there is v ∈ (�(�, ( a+1

2a+4 )∞a=0))ψ
with v0 ∈ (–∞, 1

17 ) such that the sequence of iterates {W pv} = {∑p
n=1

1
18n e0 + 1

18p v} has
a subsequence {W pi v} = {∑pi

n=1
1

18n e0 + 1
18pi v} converging to 1

17 e0. By Theorem 5.5, the
map W has one fixed point 1

17 e0 ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ . Note that W is not continuous at

1
17 e0 ∈ (�(�, ( a+1

2a+4 )∞a=0))ψ .
If ψ(v) =

∑
a∈N | va

a+1 | a+1
2a+4 for all v ∈ �(�, ( a+1

2a+4 )∞a=0). Since for all v, t ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ

with v0, t0 ∈ (–∞, 1
17 ), we have

ψ(Wv – Wt) = ψ

(
1

18
(v0 – t0, v1 – t1, v2 – t2, . . .)

)
≤ 1

4√17

(
ψ

(
17v
18

)
+ ψ

(
17t
18

))

≤ 1
4√17

(
ψ(Wv – v) + ψ(Wt – t)

)
.

For all v, t ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ with v0, t0 ∈ ( 1

17 ,∞), then for any ε > 0 we have

ψ(Wv – Wt) = 0 ≤ ε
(
ψ(Wv – v) + ψ(Wt – t)

)
.

For all v, t ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ with v0 ∈ (–∞, 1

17 ) and t0 ∈ ( 1
17 ,∞), we have

ψ(Wv – Wt) = ψ

(
v

18

)
≤ 1

4√17
ψ

(
17v
18

)
=

1
4√17

ψ(Wv – v)

≤ 1
4√17

(
ψ(Wv – v) + ψ(Wt – t)

)
.

Therefore, the map W is a Kannan ψ-contraction mapping. Since ψ satisfies the Fatou
property, by Theorem 5.2, the map W has a unique fixed point 1

17 e0 ∈ (�(�, ( a+1
2a+4 )∞a=0))ψ .

Example 5.10 Let W : (�(�, ( 2a+3
a+2 )∞a=0))ψ → (�(�, ( 2a+3

a+2 )∞a=0))ψ , where ψ(v) =
∑

a∈N | va
a+1 | 2a+3

a+2 for all v ∈ �(�, ( 2a+3
a+2 )∞a=0) and

W (v) =

⎧
⎪⎪⎨

⎪⎪⎩

1
4 (e1 + v), v0 ∈ (–∞, 1

3 ),
1
3 e1, v0 = 1

3 ,
1
4 e1, v0 ∈ ( 1

3 ,∞).
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Since for all v, t ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ with v0, t0 ∈ (–∞, 1

3 ), we have

ψ(Wv – Wt) = ψ

(
1
4

(v0 – t0, v1 – t1, v2 – t2, . . .)
)

≤ 2√
27

(
ψ

(
3v
4

)
+ ψ

(
3t
4

))

≤ 2√
27

(
ψ(Wv – v) + ψ(Wt – t)

)
.

For all v, t ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ with v0, t0 ∈ ( 1

3 ,∞), then for any ε > 0 we have

ψ(Wv – Wt) = 0 ≤ ε
(
ψ(Wv – v) + ψ(Wt – t)

)
.

For all v, t ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ with v0 ∈ (–∞, 1

3 ) and t0 ∈ ( 1
3 ,∞), we have

ψ(Wv – Wt) = ψ

(
v
4

)
≤ 1√

27
ψ

(
3v
4

)
=

1√
27

ψ(Wv – v)

≤ 1√
27

(
ψ(Wv – v) + ψ(Wt – t)

)
.

Therefore, the map W is a Kannan ψ-contraction mapping. It is clear that W is ψ-
sequentially continuous at 1

3 e1 ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ , and there is v ∈ (�(�, ( 2a+3

a+2 )∞a=0))ψ
with v0 ∈ (–∞, 1

3 ) such that the sequence of iterates {W pv} = {∑p
n=1

1
4n e1 + 1

4p v} has a
subsequence {W pi v} = {∑pi

n=1
1

4n e1 + 1
4pi v} converging to 1

3 e1. By Theorem 5.5, the map
W has one fixed point 1

3 e1 ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ . Note that W is not continuous at 1

3 e1 ∈
(�(�, ( 2a+3

a+2 )∞a=0))ψ .

If ψ(v) =
√∑

a∈N | va
a+1 | 2a+3

a+2 for all v ∈ �(�, ( 2a+3
a+2 )∞a=0). Since for all v, t ∈ (�(�, ( 2a+3

a+2 )∞a=0))ψ
with v0, t0 ∈ (–∞, 1

3 ), we have

ψ(Wv – Wt) = ψ

(
1
4

(v0 – t0, v1 – t1, v2 – t2, . . .)
)

≤ 1
4√27

(
ψ

(
3v
4

)
+ ψ

(
3t
4

))

≤ 1
4√27

(
ψ(Wv – v) + ψ(Wt – t)

)
.

For all v, t ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ with v0, t0 ∈ ( 1

3 ,∞), then for any ε > 0 we have

ψ(Wv – Wt) = 0 ≤ ε
(
ψ(Wv – v) + ψ(Wt – t)

)
.

For all v, t ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ with v0 ∈ (–∞, 1

3 ) and t0 ∈ ( 1
3 ,∞), we have

ψ(Wv – Wt) = ψ

(
v
4

)
≤ 1

4√27
ψ

(
3v
4

)
=

1
4√27

ψ(Wv – v)

≤ 1
4√27

(
ψ(Wv – v) + ψ(Wt – t)

)
.

Therefore, the map W is a Kannan ψ-contraction mapping. Since ψ satisfies the Fatou
property, by Theorem 5.2, the map W has a unique fixed point 1

3 e1 ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ .
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6 Fixed points of Kannan pre-quasi nonexpansive mapping
In this part, we discuss the uniform convexity (UUC 2) defined in [16] of the pre-quasi
normed (sss) (�(�, r))ψ .

Definition 6.1 ([1, 17]) We define the coming uniform convexity type behavior of the
pre-quasi norm ψ :

(1) [18] Suppose a > 0 and b > 0. Denote

H1(a, b) =
{

(v, t) : v, t ∈Aψ ,ψ(v) ≤ a,ψ(t) ≤ b,ψ(v – t) ≥ ab
}

.

When H1(a, b) �= ∅, we put

H1(a, b) = inf

{
1 –

1
a
ψ

(
v + t

2

)
: (v, t) ∈ H1(a, b)

}
.

When H1(a, b) = ∅, we put H1(a, b) = 1. The function ψ supports the uniform
convexity (UC) if, for every a > 0 and b > 0, we have H1(a, b) > 0. Observe that for all
a > 0, then H1(a, b) �= ∅ for very small b > 0.

(2) [16] The function ψ provides (UUC) if, for all p ≥ 0 and b > 0, there is β1(p, b) based
on p and b > 0 such that

H1(a, b) > β1(p, b) > 0 for a > p.

(3) [16] Assume a > 0 and b > 0. Denote

H2(a, b) =
{

(v, t) : v, t ∈Aψ ,ψ(v) ≤ a,ψ(t) ≤ a,ψ
(

v – t
2

)
≥ ab

}
.

When H2(a, b) �= ∅, we put

H2(a, b) = inf

{
1 –

1
a
ψ

(
v + t

2

)
: (v, t) ∈ H2(a, b)

}
.

When H2(a, b) = ∅, we place H2(a, b) = 1. The function ψ supports (UC 2) if, for all
a > 0 and b > 0, we obtain H2(a, b) > 0. Observe that, for each a > 0, H2(a, b) �= ∅ for
very small b > 0.

(4) [16] The function ψ verifies (UUC 2) if, for every p ≥ 0 and b > 0, there is β2(p, b)
based on p and b > 0 such that

H2(a, b) > β2(p, b) > 0 for a > p.

(5) [18] The function ψ is strictly convex (SC) if, for all v, t ∈Aψ so that ψ(v) = ψ(t) and
ψ( v+t

2 ) = ψ(v)+ψ(t)
2 , we get v = t.

Here and after, we will need the comment: ψU (v) = [
∑

m∈U | vm
m+1 |rm ]

1
K for all U ⊂N and

v ∈ (�(�, r))ψ . When U = ∅, we put ψU (v) = 0.

Theorem 6.2 The pre-quasi norm ψ on �(�, r) is (UUC2), where ψ(v) =
[
∑∞

a=0( |∑a
z=0 �vz|
a+1 )ra ]

1
K for all v ∈ �(�, r) if (ra) ∈ R+N ∩ �∞ is increasing with r0 > 1.
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Proof Assume that the setting is satisfied, a > p ≥ 0 and b > 0. Suppose v, t ∈ �(�, r) so
that

ψ(v) ≤ a,ψ(t) ≤ a and ψ

(
v – t

2

)
≥ ab.

From the definition of ψ , we have

ab ≤ ψ

(
v – t

2

)
=

[ ∞∑

d=0

(d + 1)–rd

∣∣∣∣
vd – td

2

∣∣∣∣

rd
] 1

K

≤
[

2–r0
∞∑

d=0

(d + 1)–rd |vd – td|rd

] 1
K

≤ 2– r0
K

([ ∞∑

d=0

(d + 1)–rd |vd|rd

] 1
K

+

[ ∞∑

d=0

(d + 1)–rd |td|rd

] 1
K
)

= 2– r0
K
(
ψ(v) + ψ(t)

)≤ 2a,

this gives b ≤ 2. Consequently, put P = {d ∈ N : rd ≥ 2} and Q = {d ∈ N : 1 < rd < 2} =
N \ P. For all w ∈ �(�, r), one has ψK (w) = ψK

P (w) + ψK
Q (w). By using the conditions, we

get ψP( v–t
2 ) ≥ ab

2 or ψQ( v–t
2 ) ≥ ab

2 . Assume first ψP( v–t
2 ) ≥ ab

2 . Using Lemma 2.11, we obtain

ψK
P

(
v + t

2

)
+ ψK

P

(
v – t

2

)
≤ ψK

P (v) + ψK
P (t)

2
,

this explains

ψK
P

(
v + t

2

)
≤ ψK

P (v) + ψK
P (t)

2
–
(

ab
2

)K

.

As

ψK
Q

(
v + t

2

)
≤ ψK

Q (v) + ψK
Q (t)

2
,

one can see

ψK
(

v + t
2

)
≤ ψK (v) + ψK (t)

2
–
(

ab
2

)K

≤ aK
(

1 –
(

b
2

)K)
.

This gives

ψ

(
v + t

2

)
≤ a

(
1 –

(
b
2

)K) 1
K

.

Next, suppose ψQ( v–t
2 ) ≥ ab

2 . Set B = b
4 ,

Q1 =
{

d ∈ Q : |vd – td| ≤ B(|vd| + |td|)
}

and Q2 = Q \ Q1.

Since the power function is convex and B ≤ 1,

ψK
Q1

(
v – t

2

)
≤

∑

d∈Q1

Brd (d + 1)–rd

∣∣∣∣
|vd| + |td|

2

∣∣∣∣

rd

≤
(

B
2

)r0(
ψK

Q1 (v) + ψK
Q1 (t)

)
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≤ B
2
(
ψK

Q (v) + ψK
Q (t)

)≤ BaK .

Since ψQ( v–t
2 ) ≥ ab

2 , we get

ψK
Q2

(
v – t

2

)
= ψK

Q

(
v – t

2

)
– ψK

Q1

(
v – t

2

)
≥ aK

((
b
2

)K

–
(

b
4

)K)
.

For any d ∈ Q2, we have

r0 – 1 ≤ rd(rd – 1) and B ≤ B2–rd ≤
∣∣∣∣

vd – td

|vd| + |td|
∣∣∣∣

2–rd

.

By Lemma 2.11, we have that

(d + 1)–rd

∣∣∣∣
vd + td

2

∣∣∣∣

rd

+
(r0 – 1)B

2
(d + 1)–rd

∣∣∣∣
vd – td

2

∣∣∣∣

rd

≤ 1
2
(
(d + 1)–rd |vd|rd + (d + 1)–rd |td|rd

)
.

Hence

ψK
Q2

(
v + t

2

)
+

(r0 – 1)B
2

ψK
Q2

(
v – t

2

)
≤ ψK

Q2
(v) + ψK

Q2
(t)

2
,

this leads to

ψK
Q2

(
v + t

2

)
≤ ψK

Q2
(v) + ψK

Q2
(t)

2
–

(r0 – 1)
2

(
b
4

)1+K

aK(2K – 1
)
.

Since

ψK
Q1

(
v + t

2

)
≤ ψK

Q1
(v) + ψK

Q1
(t)

2
,

one has

ψK
Q

(
v + t

2

)
≤ ψK

Q (v) + ψK
Q (t)

2
–

(r0 – 1)
2

(
b
4

)1+K

aK(2K – 1
)
.

Since

ψK
P

(
v + t

2

)
≤ ψK

P (v) + ψK
P (t)

2
,

we obtain

ψ

(
v + t

2

)
≤ a

[
1 –

(r0 – 1)
2

(
b
4

)1+K(
2K – 1

)]
1
K

.

It is clear that

1 < r0 ≤ K < 2K ⇒ 0 <
r0 – 1
2K – 1

< 1.
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If we put

β2(p, b) = min

(
1 –

(
1 –

(
b
2

)K) 1
K

, 1 –
[

1 –
(r0 – 1)

2

(
b
4

)1+K(
2K – 1

)]
1
K
)

.

Therefore, we have H2(a, b) > β2(p, b) > 0, we conclude that ψ is (UUC2). �

In this part, we investigate the property (R) of the pre-quasi normed (sss) (�(�, r))ψ .

Theorem 6.3 If (ra) ∈R+N ∩ �∞ is increasing with r0 > 1, then:
(1) The space (�(�, r))ψ is a pre-quasi Banach (sss), where ψ(v) = [

∑∞
a=0( |∑a

z=0 �vz|
a+1 )ra ]

1
K

for all v ∈ �(�, r).
(2) Assume that � is a nonempty ψ-closed and ψ-convex subset of (�(�, r))ψ . Suppose

that v ∈ (�(�, r))ψ is such that

dψ (v,�) = inf
{
ψ(v – t) : t ∈ �

}
< ∞.

Then there is unique λ ∈ � such that dψ (v,�) = ψ(v – λ).
(3) (�(�, r))ψ satisfies the property (R), i.e., for all decreasing sequence {�j}j∈N of

ψ-closed and ψ-convex nonempty subsets of (�(�, r))ψ so that supj∈N dψ (v,�j) < ∞
for some v ∈ (�(�, r))ψ , hence we have

⋂
j∈N �j �= ∅.

Proof Let the conditions be satisfied. The proof of (1) follows from Theorem 4.3. To show
(2), let v /∈ � as � is ψ-closed. Hence, we get A := dψ (v,�) > 0. Therefore, for all p ∈ N ,
there is tp ∈ � such that ψ(v – tp) < A(1 + 1

p ). Suppose { tp
2 } is not ψ-Cauchy. Hence there is

a subsequence { tf (p)
2 } and b0 > 0 such that ψ( tf (p)–tf (q)

2 ) ≥ b0 for all p > q ≥ 0. Furthermore,
one has H2(A(1 + 1

p ), b0
2A ) > ξ := β2(A(1 + 1

p ), b0
2A ) > 0 for each p ∈N . As

max
(
f (v – tf (p)), f (v – tf (q))

)≤ A
(

1 +
1

f (q)

)

and

ψ

(
tf (p) – tf (q)

2

)
≥ b0 ≥ A

(
1 +

1
f (q)

)
b0

2A
,

for every p > q ≥ 0, one can see

ψ

(
v –

tf (p) + tf (q)

2

)
≤ A

(
1 +

1
f (q)

)
(1 – ξ ).

So

A = dψ (v,�) ≤ A
(

1 +
1

f (q)

)
(1 – ξ )

for any q ∈N . If we let q → ∞, we get

0 < A ≤ A
(

1 +
1

f (q)

)
(1 – ξ ) < A,
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this gives a contradiction. Hence, { tp
2 } is ψ-Cauchy. As (�(�, r))ψ is ψ-complete, so { tp

2 }
ψ-converges to some t. For all q ∈N , we have the sequence { tp+tq

2 } ψ-converges to t + tq
2 .

As � is ψ-closed and ψ-convex, we obtain t + tq
2 ∈ �. Surely t + tq

2 ψ-converges to 2t, this
gives 2t ∈ �. By putting λ = 2t and using Theorem 4.5, since ψ satisfies the Fatou property,
one has

dψ (v,�) ≤ ψ(v – λ) ≤ sup
i

inf
q≥i

ψ

(
v –

(
t +

tq

2

))
≤ sup

i
inf
q≥i

sup
i

inf
p≥i

ψ

(
v –

tp + tq

2

)

≤ 1
2

sup
i

inf
q≥i

sup
i

inf
p≥i

[
ψ(v – tp) + ψ(v – tq)

]
= dψ (v,�).

Therefore, ψ(v –λ) = dψ (v,�). Since the function ψ is (UUC2), hence it is (SC), which im-
plies the uniqueness of λ. To show (3), let v /∈ �p0 for some p0 ∈N . Since (dψ (v,�p))p∈N ∈
�∞ is increasing, put limp→∞ dψ (v,�p) = A if A > 0. Else v ∈ �p for all p ∈ N . From (2),
there is one point tp ∈ �p such that dψ (v,�p) = ψ(v – tp) for every p ∈ N . A consistent
proof will prove that { tp

2 } ψ-converges to some t ∈ (�(�, r))ψ . As {�p} is ψ-convex, de-
creasing, and ψ-closed, one has 2t ∈⋂

p∈N �p. �

In this part, we explain the ψ-normal structure property of the pre-quasi normed (sss)
(�(�, r))ψ .

Definition 6.4 (�(�, r))ψ satisfies the ψ-normal structure property if, for all nonempty
ψ-bounded, ψ-convex, and ψ-closed subset � of (�(�, r))ψ not decreased to one point,
there is v ∈ � such that

sup
t∈�

ψ(v – t) < δψ (�) := sup
{
ψ(v – t) : v, t ∈ �

}
< ∞.

Theorem 6.5 If (ra) ∈ R+N ∩ �∞ is increasing with r0 > 1, then (�(�, r))ψ has the ψ-
normal structure property, where ψ(v) = [

∑∞
a=0( |∑a

z=0 �vz|
a+1 )ra ]

1
K for every v ∈ �(�, r).

Proof Let the conditions be satisfied. Theorem 6.2 gives that ψ is (UUC2). Suppose that �

is a ψ-bounded, ψ-convex, and ψ-closed subset of (�(�, r))ψ not decreasing to the unique
point. Therefore, δψ (�) > 0. Put A = δψ (�). Assume v, t ∈ � so that v �= t. So ψ( v–t

2 ) = b > 0.
For all λ ∈ �, one has ψ(v – λ) ≤ A and ψ(t – λ) ≤ A. As � is ψ-convex, we get v+t

2 ∈ �.
Hence

ψ

(
v + t

2
– λ

)
= ψ

(
(v – λ) + (t – λ)

2

)
≤ A

(
1 – H2

(
A,

b
A

))

for all λ ∈ �. Then

sup
λ∈�

ψ

(
v + t

2
– λ

)
≤ A

(
1 – H2

(
A,

b
A

))
< A = δψ (�). �

Lemma 6.6 Let the pre-quasi normed (sss) (�(�, r))ψ verify the (R) property and the ψ-
quasi-normal property. Suppose that � is a nonempty ψ-bounded, ψ-convex, and ψ-
closed subset of (�(�, r))ψ . Assume that W : � → � is a Kannan ψ-nonexpansive map-
ping. For a > 0, let Ga = {v ∈ � : ψ(v – W (v)) ≤ a} �= ∅. Put

�a = ∩{Bψ (p, q) : W (Ga) ⊂ Bψ (p, q)
}∩ �.
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Then �a is a nonempty, ψ-convex, ψ-closed subset of � and

W (�a) ⊂ �a ⊂ Ga and δψ (�a) ≤ a.

Proof Since W (Ga) ⊂ �a, this gives �a �= ∅. As the ψ-balls are ψ-convex and ψ-closed,
hence �a is a ψ-closed and ψ-convex subset of �. To show that �a ⊂ Ga. Assume v ∈ �a.
If ψ(v – W (v)) = 0, one has v ∈ Ga. Else, suppose ψ(v – W (v)) > 0. Put

p = sup
{
ψ
(
W (w) – W (v)

)
: w ∈ Ga

}
.

By using the definition of p, then W (Ga) ⊂ Bψ (W (v), p). Therefore, �a ⊂ Bψ (W (v), p), this
gives ψ(v – W (v)) ≤ p. Assume b > 0. So there is w ∈ Ga so that p – b ≤ ψ(W (w) – W (v)).
Then

ψ
(
v – W (v)

)
– b ≤ p – b ≤ ψ

(
W (w) – W (v)

)≤ 1
2
(
ψ
(
v – W (v)

))
+ ψ

(
w – W (w)

)
)

≤ 1
2
(
ψ
(
v – W (v)

)
+ a

)
.

As b is randomly positive, one has ψ(v–W (v)) ≤ a, hence we have v ∈ Ga. As W (Ga) ⊂ �a,
one can see W (�a) ⊂ W (Ga) ⊂ �a, this indicates �a is W -invariant. Consequently, to
show that δψ (�a) ≤ a. Since

ψ
(
W (v) – W (t)

)≤ 1
2
(
ψ
(
v – W (v)

)
+ ψ

(
t – W (t)

))

for all v, t ∈ Ga. Let v ∈ Ga. Hence W (Ga) ⊂ Bψ (W (v), a). The definition of �a gives �a ⊂
Bψ (W (v), a). Therefore, W (v) ∈⋂

t∈�a Bψ (t, a). So, one has ψ(t – w) ≤ a for all t, w ∈ �a,
this means δψ (�a) ≤ a. This completes the proof. �

We study here the sufficient conditions on the pre-quasi normed (sss) (�(�, r))ψ such
that the Kannan pre-quasi norm nonexpansive mapping on it has a fixed point.

Theorem 6.7 Assume that the pre-quasi normed (sss) (�(�, r))ψ verifies the ψ-quasi-
normal property and the (R) property. Suppose that � is a nonempty, ψ-convex, ψ-closed,
and ψ-bounded subset of (�(�, r))ψ . Pick up W : � → � to be a Kannan ψ-nonexpansive
mapping. Then W has a fixed point.

Proof Put a0 = inf{ψ(v – W (v)) : v ∈ �} and ap = a0 + 1
p for all p ≥ 1. From the definition of

a0, one has Gap = {v ∈ � : ψ(v – W (v)) ≤ ap} �= ∅ for every p ≥ 1. Let �ap be indicated as in
Lemma 6.6. Evidently, {�ap} is a decreasing sequence of nonempty ψ-bounded, ψ-closed,
and ψ-convex subsets of �. The property (R) explains that �∞ =

⋂
p≥1 �ap �= ∅. Assume

v ∈ �∞, one can see ψ(v – W (v)) ≤ ap for all p ≥ 1. Let p → ∞, we have ψ(v – W (v)) ≤ a0,
this gives ψ(v – W (v)) = a0. Therefore, Ga0 �= ∅. We have a0 = 0. Else, a0 > 0 this gives
that W misses to have a fixed point. Let �a0 be as defined in Lemma 6.6. As W misses to
have a fixed point and �a0 is W -invariant, so �a0 has more than one point. This implies
δψ (�a0 ) > 0. By the ψ-quasi-normal property, there is v ∈ �a0 such that

ψ(v – t) < δψ (�a0 ) ≤ a0
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for all t ∈ �a0 . By Lemma 6.6, we have �a0 ⊂ Ga0 . By definition of �a0 , then W (v) ∈ Ga0 ⊂
�a0 . Clearly this gives

ψ
(
v – W (v)

)
< δψ (�a0 ) ≤ a0,

this contradicts the definition of a0. So a0 = 0, which explains that any point in Ga0 is a
fixed point of W , i.e., W has a fixed point in �. �

Using Theorems 6.3, 6.5, and 6.7, we obtain the following corollary.

Corollary 6.8 If (ra) ∈R+N ∩�∞ is increasing with r0 > 1. Assume � to be a nonempty, ψ-
convex, ψ-closed, and ψ-bounded subset of (�(�, r))ψ , where ψ(v) = [

∑∞
a=0( |∑a

z=0 �vz|
a+1 )ra ]

1
K

for every v ∈ �(�, r). Suppose that W : � → � is a Kannan ψ-nonexpansive mapping.
Then W has a fixed point.

Example 6.9 Let W : � → � with

W (v) =

⎧
⎨

⎩

v
4 , ψ(v) ∈ [0, 1),
v
5 , ψ(v) ∈ [1,∞),

where � = {v ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ : v0 = v1 = 0} and ψ(v) =

√∑
a∈N | va

a+1 | 2a+3
a+2 for all v ∈

(�(�, ( 2a+3
a+2 )∞a=0))ψ . From Example 5.8, the map W is a Kannan ψ-contraction mapping. So

it is a Kannan ψ-nonexpansive mapping. Clearly, � is a nonempty, ψ-convex, ψ-closed,
and ψ-bounded subset of (�(�, ( 2a+3

a+2 )∞a=0))ψ . By Corollary 6.8, the map W has one fixed
point (v = θ ) in �.

7 Kannan contraction maps on pre-quasi operator ideal
We investigate the existence of a fixed point of Kannan pre-quasi norm contraction map-
ping in the pre-quasi Banach operator ideal formed by (�(�, r))ψ and s-numbers.

The following theorem follows from Theorem 2.9.

Theorem 7.1 Pick up Z and M to be Banach spaces and (ra) ∈ R+N ∩�∞ to be increasing,
then (S(�(�,r))ψ ,�), where �(W ) = ψ((sz(W ))∞z=0) = [

∑∞
a=0( |∑a

z=0 �sz(W )|
a+1 )ra ]

1
K is a pre-quasi

Banach operator ideal.

Theorem 7.2 Pick up Z and M to be Banach spaces and (ra) ∈ R+N ∩�∞ to be increasing,
then (S(�(�,r))ψ ,�), where �(W ) = ψ((sz(W ))∞z=0) = [

∑∞
a=0( |∑a

z=0 �sz(W )|
a+1 )ra ]

1
K is a pre-quasi

closed operator ideal.

Proof Assume Wq ∈ S(�(�,r))ψ (Z, M) for every q ∈ N and limq→∞ �(Wq – W ) = 0. Since
L(Z, M) ⊇ S(�(�,r))ψ (Z, M), we get

�(Wq – W ) = ψ
((

sa(Wq – W )
)∞

a=0

)≥ ψ
(
s0(Wq – W ), 0, 0, 0, . . .

)
= ‖Wq – W‖ r0

K .

Hence (Wq)q∈N is convergent in L(Z, M), i.e., limq→∞ ‖Wq – W‖ = 0, and while
(sa(Wq))∞a=0 ∈ (�(�, r))ψ for every q ∈N and (�(�, r))ψ is a pre-modular (sss). Therefore,
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one has

�(W ) = ψ
((

sa(W )
)∞

a=0

)
= ψ

((
sa(W – Wq + Wq)

)∞
a=0

)

≤ ψ
((

s[ a
2 ](W – Wq)

)∞
a=0

)
+ ψ

((
s[ a

2 ](Wq)∞a=0
))

≤ ψ
(
(‖Wq – W‖)∞a=0

)
+ (2)

1
K ψ

((
sa(Wq)∞a=0

))
< ε,

we have (sa(W ))∞a=0 ∈ (�(�, r))ψ , then W ∈ S(�(�,r))ψ (Z, M). �

Definition 7.3 A pre-quasi norm � on the ideal SAψ
, where �(W ) = ψ((sa(W ))∞a=0), sat-

isfies the Fatou property if for any sequence {Wa}a∈N ⊆ SAψ
(Z, M) with lima→∞ �(Wa –

W ) = 0 and any V ∈ SAψ
(Z, M), then

�(V – W ) ≤ sup
a

inf
i≥a

ψ(V – Wi).

Theorem 7.4 The pre-quasi norm �(W ) = [
∑∞

a=0( |∑a
z=0 �sz(W )|

a+1 )ra ]
1
K for all W ∈

S(�(�,r))ψ (Z, M) does not satisfy the Fatou property if (ra) ∈R+N ∩ �∞ is increasing.

Proof Assume the setting to be satisfied and {Wp}p∈N ⊆ S(�(�,r))ψ (Z, M) with
limp→∞ �(Wp – W ) = 0. Since the space S(�(�,r))ψ is a pre-quasi closed ideal, then W ∈
S(�(�,r))ψ (Z, M). Then, for any V ∈ S(�(�,r))ψ (Z, M), we have

�(V – W ) =

[ ∞∑

a=0

( |sa(V – W )|
a + 1

)ra
] 1

K

≤
[ ∞∑

a=0

( |s[ a
2 ](V – Wi)|

a + 1

)ra
] 1

K

+

[ ∞∑

a=0

( |s[ a
2 ](W – Wi)|

a + 1

)ra
] 1

K

≤ 2
1
K sup

p
inf
i≥p

[ ∞∑

a=0

( |sa(V – Wi)|
a + 1

)ra
] 1

K

.

Hence, � does not satisfy the Fatou property. �

Now, we give the definition of Kannan �-Lipschitzian mapping in the pre-quasi opera-
tor ideal.

Definition 7.5 For the pre-quasi norm � on the ideal SAψ
, where �(W ) = ψ((sa(W ))∞a=0).

An operator G : SAψ
(Z, M) → SAψ

(Z, M) is called a Kannan �-Lipschitzian, if there is
ξ ≥ 0 such that

�(GW – GA) ≤ ξ
(
�(GW – W ) + �(GA – A)

)

for all W , A ∈ SAψ
(Z, M). An operator G is called:

(1) Kannan �-contraction if ξ ∈ [0, 1
2 ).

(2) Kannan �-nonexpansive if ξ = 1
2 .
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Definition 7.6 For the pre-quasi norm � on the ideal SAψ
, where �(W ) = ψ((sa(W ))∞a=0),

G : SAψ
(Z, M) → SAψ

(Z, M) and B ∈ SAψ
(Z, M). The operator G is called �-sequentially

continuous at B if and only if, when limp→∞ �(Wp –B) = 0, then limp→∞ �(GWp –GB) = 0.

Theorem 7.7 Let (ra) ∈ R+N ∩ �∞ be increasing and G : S(�(�,r))ψ (Z, M) →
S(�(�,r))ψ (Z, M), where �(W ) = [

∑∞
a=0( |∑a

z=0 �sz(W )|
a+1 )ra ]

1
K for all W ∈ S(�(�,r))ψ (Z, M). The

point A ∈ S(�(�,r))ψ (Z, M) is the unique fixed point of G if the following conditions are sat-
isfied:

(a) G is a Kannan �-contraction mapping;
(b) G is �-sequentially continuous at a point A ∈ S(�(�,r))ψ (Z, M);
(c) There is B ∈ S(�(�,r))ψ (Z, M) such that the sequence of iterates {GpB} has a

subsequence {Gpi B} converging to A.

Proof Let the conditions be verified. If A is not a fixed point of G, then GA �= A. From
conditions (b) and (c), we have

lim
pi→∞�

(
Gpi B – A

)
= 0 and lim

pi→∞�
(
Gpi+1B – GA

)
= 0.

Since G is a Kannan �-contraction mapping, one can see

0 < �(GA – A) = �
((

GA – Gpi+1B
)

+
(
Gpi B – A

)
+
(
Gpi+1B – Gpi B

))

≤ 2
1
K �

(
Gpi+1B – GA

)
+ 2

2
K �

(
Gpi B – A

)
+ 2

2
K ξ

(
ξ

1 – ξ

)pi–1

�(GB – B).

As pi → ∞, we have a contradiction. Therefore, A is a fixed point of G. To show that the
fixed point A is unique, let us have two different fixed points A, D ∈ S(�(�,r))ψ (Z, M) of G.
Hence, we obtain

�(A – D) ≤ �(GA – GD) ≤ ξ
(
�(GA – A) + �(GD – D)

)
= 0.

Therefore, A = D. �

Example 7.8 Let Z and M be Banach spaces, G : S(�(�,( a+1
a+2 )∞a=0))ψ (Z, M) →

S(�(�,( a+1
a+2 )∞a=0))ψ (Z, M), where �(W ) =

∑∞
a=0( |∑a

z=0 �sz(W )|
a+1 ) a+1

a+2 for every W ∈
S(�(�,( a+1

a+2 )∞a=0))ψ (Z, M) and

G(W ) =

⎧
⎨

⎩

W
26 , �(W ) ∈ [0, 1),
W
37 , �(W ) ∈ [1,∞).

Since for all W1, W2 ∈ S(�(�,( a+1
a+2 )∞a=0))ψ with �(W1),�(W2) ∈ [0, 1), we have

�(GW1 – GW2) = �

(
W1

26
–

W2

26

)
≤ 2

5

(
�

(
25W1

26

)
+ �

(
25W2

26

))

=
2
5
(
�(GW1 – W1) + �(GW2 – W2)

)
.
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For all W1, W2 ∈ S(�(�,( a+1
a+2 )∞a=0))ψ with �(W1),�(W2) ∈ [1,∞), we have

�(GW1 – GW2) = �

(
W1

37
–

W2

37

)
≤ 1

3

(
�

(
36W1

37

)
+ �

(
36W2

37

))

=
1
3
(
�(GW1 – W1) + �(GW2 – W2)

)
.

For all W1, W2 ∈ S(�(�,( a+1
a+2 )∞a=0))ψ with �(W1) ∈ [0, 1) and �(W2) ∈ [1,∞), we have

�(GW1 – GW2) = �

(
W1

26
–

W2

37

)
≤ 2

5
�

(
25W1

26

)
+

1
3
�

(
36W2

37

)

≤ 2
5

(
�

(
25W1

26

)
+ �

(
36W2

37

))

=
2
5
(
�(GW1 – W1) + �(GW2 – W2)

)
.

Therefore, the map W is a Kannan �-contraction mapping and

Gp(W ) =

⎧
⎨

⎩

W
26p , �(W ) ∈ [0, 1),
W
37p , �(W ) ∈ [1,∞).

It is clear that G is �-sequentially continuous at the zero operator � ∈ S(�(�,( a+1
a+2 )∞a=0))ψ

and {GpW } has a subsequence {Gpi W } converging to �. By Theorem 7.7, the zero operator
� ∈ S(�(�,( a+1

a+2 )∞a=0))ψ is the only fixed point of G. Let {W (n)} ⊆ S(�(�,( a+1
a+2 )∞a=0))ψ be such that

limn→∞ �(W (n) – W (0)) = 0, where W (0) ∈ S(�(�,( a+1
a+2 )∞a=0))ψ with �(W (0)) = 1. Since the pre-

quasi norm � is continuous, we have

lim
n→∞�

(
GW (n) – GW (0)) = lim

n→∞�

(
W (n)

26
–

W (0)

37

)
= �

(
11W (0)

962

)
> 0.

Hence G is not �-sequentially continuous at W (0). So, the map G is not continuous at
W (0).

Example 7.9 Let Z and M be Banach spaces, G : S(�(�,( 2a+1
a+3 )∞a=0))ψ (Z, M) →

S(�(�,( 2a+1
a+3 )∞a=0))ψ (Z, M), where �(W ) =

√∑∞
a=0( sa(W )

a+1 ) 2a+1
a+3 for every W ∈

S(�(�,( 2a+1
a+3 )∞a=0))ψ (Z, M) and

G(W ) =

⎧
⎨

⎩

W
263,170 , �(W ) ∈ [0, 1),

W
263,171 , �(W ) ∈ [1,∞).

Since for all W1, W2 ∈ S(�(�,( 2a+1
a+3 )∞a=0))ψ with �(W1),�(W2) ∈ [0, 1), we have

�(GW1 – GW2) = �

(
W1

263,170
–

W2

263,170

)

≤
√

2
6√263,169

(
�

(
263,169W1

263,170

)
+ �

(
263,169W2

263,170

))
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=
√

2
6√263,169

(
�(GW1 – W1) + �(GW2 – W2)

)
.

For all W1, W2 ∈ S(�(�,( 2a+1
a+3 )∞a=0))ψ with �(W1),�(W2) ∈ [1,∞), we have

�(GW1 – GW2) = �

(
W1

263,171
–

W2

263,171

)

≤
√

2
6√263,170

(
�

(
263,170W1

263,171

)
+ �

(
263,170W2

263,171

))

=
√

2
6√263,170

(
�(GW1 – W1) + �(GW2 – W2)

)
.

For all W1, W2 ∈ S(�(�,( 2a+1
a+3 )∞a=0))ψ with �(W1) ∈ [0, 1) and �(W2) ∈ [1,∞), we have

�(GW1 – GW2) = �

(
W1

263,170
–

W2

263,171

)

≤
√

2
6√263,169

�

(
263,169W1

263,170

)
+

√
2

6√263,170
�

(
263,170W2

263,171

)

≤
√

2
6√263,169

(
�

(
263,169W1

263,170

)
+ �

(
263,170W2

263,171

))

=
√

2
6√263,169

(
�(GW1 – W1) + �(GW2 – W2)

)
.

Therefore, the map W is a Kannan �-contraction mapping and

Gp(W ) =

⎧
⎨

⎩

W
263,170p , �(W ) ∈ [0, 1),

W
263,171p , �(W ) ∈ [1,∞).

It is clear that G is �-sequentially continuous at the zero operator � ∈ S(�(�,( 2a+1
a+3 )∞a=0))ψ

and {GpW } has a subsequence {Gpi W } converging to �. By Theorem 7.7, the zero operator
� ∈ S(�(�,( 2a+1

a+3 )∞a=0))ψ is the only fixed point of G. Let {W (n)} ⊆ S(�(�,( 2a+1
a+3 )∞a=0))ψ be such that

limn→∞ �(W (n) – W (0)) = 0, where W (0) ∈ S(�(�,( 2a+1
a+3 )∞a=0))ψ with �(W (0)) = 1. Since the pre-

quasi norm � is continuous, we have

lim
n→∞�

(
GW (n) – GW (0)) = lim

n→∞�

(
W (n)

263,170
–

W (0)

263,171

)

= �

(
W (0)

69,258,712,070

)
> 0.

Hence G is not �-sequentially continuous at W (0). So, the map G is not continuous at
W (0).

8 Application to the existence of solutions of summable equations
Summable equations such as (1) were studied by Salimi et al. [19], Agarwal et al. [20],
and Hussain et al. [21]. In this section, we search for a solution to (1) in (�(�, r))ψ , where
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(rl) ∈ R+N is increasing and ψ(v) = [
∑∞

a=0( |∑a
z=0 �vz|
a+1 )ra ]

1
K for all v ∈ �(�, r). Consider the

summable equation

va = pa +
∞∑

m=0

A(a, m)f (m, vm), (1)

and let W : (�(�, r))ψ → (�(�, r))ψ be defined by

W (va)a∈N =

(

pa +
∞∑

m=0

A(a, m)f (m, vm)

)

a∈N
. (2)

Theorem 8.1 Summable equation (1) has a solution in (�(�, r))ψ if A : N 2 →R, f : N ×
R→R, p : N →R, and for all a ∈N , there is ξ ∈ [0, 1

2 ) such that

∣∣∣∣
∑

m∈N
A(a, m)

(
f (m, vm) – f (m, tm)

)
∣∣∣∣

ra

≤ ξK

[∣∣∣∣∣
pa – va +

∞∑

m=0

A(a, m)f (m, vm)

∣∣∣∣∣

ra

+

∣∣∣∣∣
pa – ta +

∞∑

m=0

A(a, m)f (m, tm)

∣∣∣∣∣

ra]

.

Proof Let the conditions be verified. Consider the mapping W : (�(�, r))ψ → (�(�, r))ψ
defined by (2). We have

ψ(Wv – Wt) =
[∑

a∈N

( |Wva – Wta|
a + 1

)ra] 1
K

=
[∑

a∈N

( |∑m∈N A(a, m)[f (m, vm) – f (m, tm)]|
a + 1

)ra] 1
K

≤ ξ

([∑

a∈N

( |pa – va +
∑∞

m=0 A(a, m)f (m, vm)|
a + 1

)ra] 1
K

+
[∑

a∈N

( |pa – ta +
∑∞

m=0 A(a, m)f (m, tm)|
a + 1

)ra] 1
K
)

= ξ
(
ψ(Wv – v) + ψ(Wt – t)

)
.

Then, from Theorem 5.2, we have one solution of equation(1) in (�(�, r))ψ . �

Example 8.2 Given the sequence space (�(�, ( a+1
a+2 )∞a=0))ψ , where ψ(v) =

∑
a∈N ( |va|

a+1 ) a+1
a+2 for

all v ∈ �(�, ( a+1
a+2 )∞a=0). Consider the summable equation

va = e–(3a+6) +
∞∑

m=0

(–1)a+m
(

e|va|

a2 + m2 + 1

)q

, (3)

where q > 2, and let W : (�(�, ( a+1
a+2 )∞a=0))ψ → (�(�, ( a+1

a+2 )∞a=0))ψ be defined by

W (va)a∈N =

(

e–(3a+6) +
∞∑

m=0

(–1)a+m
(

e|va|

a2 + m2 + 1

)q
)

a∈N
. (4)
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It is easy to see that

∣∣∣∣∣

∞∑

m=0

(–1)a
(

e|va|

a2 + m2 + 1

)q(
(–1)m – (–1)m)

∣∣∣∣∣

a+1
a+2

≤ 1
3

[∣∣∣∣∣
e–(3a+6) – va +

∞∑

m=0

(–1)a+m
(

e|va|

a2 + m2 + 1

)q
∣∣∣∣∣

a+1
a+2

+

∣∣∣∣∣
e–(3a+6) – ta +

∞∑

m=0

(–1)a+m
(

e|ta|

a2 + m2 + 1

)q
∣∣∣∣∣

a+1
a+2

]

.

By Theorem 8.1, summable equation (3) has a solution in (�(�, ( a+1
a+2 )∞a=0))ψ .

Example 8.3 Given the sequence space (�(�, ( 2a+1
a+3 )∞a=0))ψ , where ψ(v) =

√∑
a∈N ( |va|

a+1 ) 2a+1
a+3

for all v ∈ �(�, ( 2a+1
a+3 )∞a=0). Consider the summable equation

va = e–(3a+6) +
∞∑

m=0

(–1)a+m
(

va

a2 + m2 + 1

)q

, (5)

where q > 2, and let W : (�(�, ( 2a+1
a+3 )∞a=0))ψ → (�(�, ( 2a+1

a+3 )∞a=0))ψ be defined by

W (va)a∈N =

(

e–(3a+6) +
∞∑

m=0

(–1)a+m
(

va

a2 + m2 + 1

)q
)

a∈N
. (6)

It is easy to see that

∣∣∣∣∣

∞∑

m=0

(–1)a
(

va

a2 + m2 + 1

)q(
(–1)m – (–1)m)

∣∣∣∣
∣

2a+1
a+3

≤ 1
9

[∣∣∣∣∣
e–(3a+6) – va +

∞∑

m=0

(–1)a+m
(

va

a2 + m2 + 1

)q
∣∣∣∣∣

2a+1
a+3

+

∣∣∣∣∣
e–(3a+6) – ta +

∞∑

m=0

(–1)a+m
(

ta

a2 + m2 + 1

)q
∣∣∣∣∣

2a+1
a+3

]

.

By Theorem 8.1, summable equation (5) has a solution in (�(�, ( 2a+1
a+3 )∞a=0))ψ .

Example 8.4 Given the sequence space (�(�, ( 2a+3
a+2 )∞a=0))ψ , where ψ(v) =

√∑
a∈N ( |va|

a+1 ) 2a+3
a+2

for all v ∈ �(�, ( 2a+3
a+2 )∞a=0). Consider the summable equation

va = e–(3a+6) +
∞∑

m=0

(–1)a+m
(

va

a2 + m2 + 1

)q

, (7)
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with a ≥ 2 and q > 2, and let W : � → �, where � = {v ∈ (�(�, ( 2a+3
a+2 )∞a=0))ψ : v0 = v1 = 0},

be defined by

W (va)a≥2 =

(

e–(3a+6) +
∞∑

m=0

(–1)a+m
(

va

a2 + m2 + 1

)q
)

a≥2

. (8)

Clearly, � is a nonempty, ψ-convex, ψ-closed, and ψ-bounded subset of (�(�,
( 2a+3

a+2 )∞a=0))ψ . It is easy to see that

∣∣∣∣∣

∞∑

m=0

(–1)a
(

va

a2 + m2 + 1

)q(
(–1)m – (–1)m)

∣∣∣∣∣

2a+3
a+2

≤ 1
9

[∣∣∣∣∣
e–(3a+6) – va +

∞∑

m=0

(–1)a+m
(

va

a2 + m2 + 1

)q
∣∣∣∣∣

2a+3
a+2

+

∣∣∣∣∣
e–(3a+6) – ta +

∞∑

m=0

(–1)a+m
(

ta

a2 + m2 + 1

)q
∣∣∣∣∣

2a+3
a+2

]

.

By Theorem 8.1, summable equation (7) has a solution in �.
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