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Abstract
The main purpose of the presented paper is to obtain some time scale inequalities for
different divergences and distances by using weighted time scales Jensen’s inequality.
These results offer new inequalities in h-discrete calculus and quantum calculus and
extend some known results in the literature. The lower bounds of some divergence
measures are also presented. Moreover, the obtained discrete results are given in the
light of the Zipf–Mandelbrot law and the Zipf law.
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1 Introduction
Distance or divergence measures are of key importance in statistics and information the-
ory. Depending upon the nature of the problem, different divergence measures are suit-
able. A number of measures of divergence that compare two probability distributions have
been proposed (see [15, 16, 23, 24, 31, 37] and the references therein). Csiszár [12] intro-
duced the f -divergence functional as follows.

Definition 1.1 Suppose that f : R+ → (0,∞) is a convex function. Let r̃ = (r1, . . . , rn) and
s̃ = (s1, . . . , sn) be such that

∑n
k=1 rk = 1 and

∑n
k=1 sk = 1. Then an f -divergence functional

is stated as

If (r̃, s̃) :=
n∑

k=1

skf
(

rk

sk

)

,

where f bears the following requirements:

f (0) := lim
ε→0+

f (ε); 0f
(

0
0

)

:= 0; 0f
(

a
0

)

:= lim
ε→0+

εf
(

a
ε

)

, a > 0.

The Csiszár’s f -divergence is a broad class of divergences which consists of various diver-
gence measures used in finding out the difference between two probability densities. A sig-
nificant property of Csiszár’s f -divergence is that several well-known divergence measures
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can be deduced from this divergence measure by suitable substitutions to the convex func-
tion f . In recent years, several researchers have done a considerable work providing vari-
ous kinds of bounds on the divergences and distances, see e.g. [13, 14, 25, 33]. Jensen’s in-
equality has an important role in obtaining inequalities for divergence measures. It helps
to compute useful upper bounds for several entropic measures used in information theory.
In [18], Jain et al. established an information inequality regarding Csiszár f -divergence by
utilizing the convexity condition and Jensen’s inequality. This inequality is applied in com-
paring some well-known divergences which play a significant role in information theory.
In [19], Khan et al. obtained new results for the Shannon and Zipf–Mandelbrot entropies.
They also computed different bounds for these entropies by using some refinements of
the Jensen inequality. In [21], the authors established various inequalities for convex func-
tions and applied them to Csiszár divergence. They also obtained several results for Zipf–
Mandelbrot entropy. In [27], Mehmood et al. obtained a new generalized form of cyclic
refinements of Jensen’s inequality from convex to higher order convex functions by uti-
lizing Taylor’s formula. They also computed bounds for various notable inequalities uti-
lized in information theory. In [11], Butt et al. used discrete and continuous cyclic re-
finements of Jensen’s inequality and extended them from convex to higher order convex
function by using new Green functions and Abel–Gontscharoff interpolating polynomial.
As an application, they established a connection between new entropic bounds for rela-
tive, Shannon, and Mandelbrot entropies. In [22], Khan et al. established an elegant re-
finement of Jensen’s inequality related to two finite sequences. The obtained inequality
used to compute bounds for Csiszár divergence, variational distance, Shannon entropy,
and Zipf–Mandelbrot entropy. In [29], Pečarić et al. obtained refinements of the integral
version of Jensen’s inequality and the Lah–Ribarič inequality and deduced estimates for
the integral form of Csiszár divergence and its important particular cases. In [2], Ahmad
et al. utilized some results of Jensen’s inequality for convex functions and obtained vari-
ous estimates for Shannon and generalized Zipf–Mandelbrot entropies. In [10], Butt et al.
proved various Jensen–Grüss type inequalities under certain conditions.

The development of the theory of time scales was initiated by Hilger in 1988. The books
of Bohner and Peterson [8, 9] related to time scales are compact and resolve a lot of time
scales calculus. In the past years, new developments in the theory and applications of
dynamic derivatives on time scales emerged. Many results from the continuous case are
carried over to the discrete one very easily, but some seem to be completely different.
The study on time scales comes to reveal such discrepancies and to make us understand
the difference between the two cases. The Jensen inequality has been extended to time
scales by Agarwal et al. (see [1, 8]). Various classical inequalities and their converses for
isotonic linear functionals on time scales are established in [5]. In [6], Anwar et al. gave
the properties and applications of Jensen functionals on time scales for one variable. Fur-
ther in [7], the authors obtained the Jensen inequality for several variables and deduced
Jensen functionals. They also derived properties of Jensen functionals and applied them
to generalized means. In recent years, the study of dynamic inequalities on time scales has
been considered by several authors, see [1, 28, 30, 32, 36, 39, 40]. In [3], Ansari et al. ob-
tained Shannon type inequalities on an arbitrary time scale. They also deduced bounds of
differential entropy on time scale for various distributions. Further in [4], the authors es-
tablished several inequalities for Csiszár f -divergence among two probability densities on
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time scales. They also obtained new results for divergence measures in h-discrete calculus
and quantum calculus.

Quantum calculus or q-calculus is usually called calculus without limits. In 1910, Jack-
son [17] described a q-analogue of derivative and integral operator along with their ap-
plications. He was the first to establish q-calculus in an organized form. It is important to
note that quantum integral inequalities are more significant and constructive than their
classical counterparts. It has been primarily for the reason that quantum integral inequal-
ities can interpret the hereditary properties of the fact and technique under consideration.
Recently, there has been a rapid development in q-calculus. Consequently, new general-
izations of the classical approach of quantum calculus have been proposed and analyzed
in various literature works. The concepts of quantum calculus on finite intervals were
given by Tariboon and Ntouyas [34, 35], and they obtained certain q-analogues of classi-
cal mathematical objects, which motivated numerous researchers to explore the subject
in detail. Subsequently, several new results related to the quantum counterpart of classical
mathematical results have been established.

2 Preliminaries
An arbitrary nonempty closed subset of the real line is known as time scale T ⊂ R. The
subsequent results and definitions are given in [8].

Definition 2.1 Suppose that T is a time scale and ζ ∈ T, then the forward, respectively
backward, jump operators σ ,ρ : T → T are defined as follows:

σ (ζ ) = inf{ν ∈ T : ν > ζ } and ρ(ζ ) = sup{ν ∈ T : ν < ζ }.

Definition 2.2 Let T be a time scale and z : T → R be a function, then z is known as
rd-continuous or right-dense continuous if its left-sided limits exist (finite) at left-dense
points in T and it is continuous at right-dense points in T. The set of rd-continuous func-
tions z : T →R is usually denoted by Crd .

Let us introduce the set Tk as follows:

T
k =

⎧
⎨

⎩

T\(ρ(supT), supT] if supT < ∞,

T if supT = ∞.

Definition 2.3 Consider a function z : T→R and ζ ∈ T
k . Then we define z�(ζ ) to be the

number (when it exists) with the property that given any ε > 0, there is a neighborhood U
of ζ such that

∣
∣z

(
σ (ζ )

)
– z(ν) – z�(ζ )

(
σ (ζ ) – ν

)∣
∣ ≤ ε

∣
∣σ (ζ ) – ν

∣
∣ for all ν ∈ U .

In this case, z is said to be delta differentiable at ζ .

For T = R, z� becomes ordinary derivative z′, while if T = Z, then z� turns into the
usual forward difference operator �z(ζ ) = z(ζ + 1) – z(ζ ). If T = qZ = {qn : n ∈ Z}⋃{0} is
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the so-called q-difference operator, with q > 1, then

z�(ζ ) =
z(qζ ) – z(ζ )

(q – 1)ζ
, z�(0) = lim

ν→0

z(ν) – z(0)
ν

.

Theorem 2.1 (Existence of antiderivatives) Every rd-continuous function has an an-
tiderivative. If x0 ∈ T, then F is defined by

F(ζ ) :=
∫ x

x0

f (ζ )�ζ for x ∈ T
k

is an antiderivative of f .

For T = R, we have
∫ b

a f (ζ )�ζ =
∫ b

a f (ζ ) dζ , and if T = N, then
∫ b

a f (ζ )�ζ =
∑b–1

ζ=a f (ζ ),
where a, b ∈ T with a ≤ b.

In [38], Wong et al. gave the weighted Jensen inequality on time scales which is stated
as follows.

Theorem 2.2 Assume that I ⊂R, and let r ∈ Crd([a, b]T,R) be a positive function with

∫ b

a
r(ζ )�ζ > 0,

where a, b ∈ T. If f ∈ C(I,R) is convex and g ∈ Crd([a, b]T, I), then

f
(∫ b

a r(ζ )g(ζ )�ζ
∫ b

a r(ζ )�ζ

)

≤
∫ b

a r(ζ )f (g(ζ ))�ζ
∫ b

a r(ζ )�ζ
. (1)

When f is a strictly convex function, the inequality sign in (1) is strict.

3 Divergences on time scales
Consider the set of rd-continuous functions on time scale T to be

� :=
{

r ∈ Crd
(
[a, b]T, (0,∞)

)
, r(ζ ) > 0,

∫ b

a
r(ζ )�ζ > 0

}

.

In the sequel, we assume that r, s ∈ � and the following integrals exist:

R =
∫ b

a
r(ζ )�ζ and S =

∫ b

a
s(ζ )�ζ .

3.1 Csiszár f -divergence
Csiszár f -divergence on time scale is defined in [4] as follows:

Df (s, r) :=
∫ b

a
r(ζ )f

(
s(ζ )
r(ζ )

)

�ζ , (2)

where f is convex on (0,∞).
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Theorem 3.1 Assume that I ⊂R, and if f ∈ C(I,R) is convex, then

Rf
(

S
R

)

≤ Df (s, r), (3)

where Df (s, r) is given in (2).

Proof Put g(ζ ) = s(ζ )
r(ζ ) in (1) to get (3). �

Example 3.1 For T = R, Theorem 3.1 becomes [20, Theorem 5.2 on p. 10].

Example 3.2 Choose T = hZ, h > 0 in Theorem 3.1 to get a lower bound for Csiszár diver-
gence in h-discrete calculus

b
h –1
∑

l= a
h

r(lh)hf
(∑ b

h –1
l= a

h
s(lh)h

∑ b
h –1
l= a

h
r(lh)h

)

≤
b
h –1
∑

l= a
h

r(lh)hf
(

s(lh)
r(lh)

)

.

Remark 3.1 Choose h = 1 in Example 3.2, and let a = 0, b = n, r(l) = rj, and s(l) = sj to get
the discrete Csiszár divergence

n∑

j=1

rjf
(∑n

j=1 sj
∑n

j=1 rj

)

≤ If (s, r), (4)

where

If (s̃, r̃) =
n∑

j=1

rjf
(

sj

rj

)

, (5)

s̃ = (s1, . . . , sn) and r̃ = (r1, . . . , rn).

Example 3.3 Choose T = qN0 (q > 1) in Theorem 3.1 to have a new lower bound of the
Csiszár divergence in quantum calculus

n–1∑

l=0

ql+1r
(
ql)f

(∑n–1
l=0 ql+1s(ql)

∑n–1
l=0 ql+1r(ql)

)

≤
n–1∑

l=0

ql+1r
(
ql)f

(
s(ql)
r(ql)

)

.

3.2 Differential entropy (continuous entropy)
Consider a positive density function r on time scale T to a continuous random variable X
with

∫ b
a r(ζ )�ζ = 1, wherever the integral exists.

In [3], Ansari et al. defined the so-called differential entropy on time scale by

hb̄(X) :=
∫ b

a
r(ζ ) log

1
r(ζ )

�ζ , (6)

where b̄ > 1 is the base of log. In the sequel, we assume that the base of log is greater than 1.
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Theorem 3.2 Suppose that r, s ∈ Crd([a, b]T,R) are �-integrable functions and r is a pos-
itive probability density function with S =

∫ b
a s(ζ )�ζ > 0. If f ∈ C(I,R) is convex and b̄ > 1,

then

hb̄(X) ≤
∫ b

a
r(ζ ) log

1
s(ζ )

�ζ + log(S), (7)

where hb̄(ζ ) is defined in (6) and a, b ∈ T.

Proof The function f (ζ ) = – log ζ is convex. Use f (ζ ) = – log ζ with
∫ b

a r(ζ )�ζ = 1 in (3) to
get

– log(S) ≤
∫ b

a
–r(ζ ) log

(
s(ζ )
r(ζ )

)

�ζ ,

=
∫ b

a

(
r(ζ ) log r(ζ ) – r(ζ ) log s(ζ )

)
�ζ ,

=
∫ b

a
r(ζ ) log r(ζ )�ζ –

∫ b

a
r(ζ ) log s(ζ )�ζ

= –
∫ b

a
r(ζ ) log

1
r(ζ )

�ζ +
∫ b

a
r(ζ ) log

1
s(ζ )

�ζ ,

= –hb̄(X) +
∫ b

a
r(ζ ) log

1
s(ζ )

�ζ ,

the stated result. �

Remark 3.2 The inequality in (7) holds in the opposite direction for the base of log less
than 1.

Example 3.4 For T = R, Theorem 3.2 becomes [26, Theorem 21(a)].

Example 3.5 Choose T = hZ, h > 0 in Theorem 3.2 to get an upper bound for entropy in
h-discrete calculus

b
h –1
∑

l= a
h

r(lh)h log

(
1

r(lh)h

)

≤
b
h –1
∑

l= a
h

r(lh)h log

(
1

s(lh)h

)

+ log

( b
h –1
∑

l= a
h

s(lh)h

)

. (8)

Remark 3.3 Put h = 1 in (8) to get [26, Theorem 8 (i)].

Example 3.6 Choose T = qN0 (q > 1) in Theorem 3.2 to have

n–1∑

l=0

ql+1r
(
ql) log

(
1

r(ql)

)

≤
n–1∑

l=0

ql+1r
(
ql) log

(
1

s(ql)

)

+ log

( n–1∑

l=0

ql+1s
(
ql)

)

. (9)

Remark 3.4 (9) contains Shannon entropy which is new in quantum calculus up to the
knowledge of authors.



Ansari et al. Journal of Inequalities and Applications         (2021) 2021:93 Page 7 of 21

3.3 Karl Pearson χ2-divergence
The χ2-divergence on time scale is defined in [4] as follows:

Dχ2 (s, r) :=
∫ b

a
r(ζ )

[(
s(ζ )
r(ζ )

)2

– 1
]

�ζ . (10)

Theorem 3.3 Assume the conditions of Theorem 3.1 to get

1
R

[
S2 – R2] ≤ Dχ2 (s, r), (11)

where Dχ2 (s, r) is defined in (10).

Proof Consider f (ζ ) = ζ 2 – 1 in (3) to obtain

(
S
R

)2

– 1 ≤ 1
R

∫ b

a
r(ζ )

[(
s(ζ )
r(ζ )

)2

– 1
]

�ζ ,

after simplification we get

S2 – R2 ≤ R
∫ b

a
r(ζ )

[(
s(ζ )
r(ζ )

)2

– 1
]

�ζ ,

the desired result. �

Example 3.7 If T = R, then (11) takes the form

1
∫ b

a r(ζ ) dζ

[(∫ b

a
s(ζ ) dζ

)2

–
(∫ b

a
r(ζ ) dζ

)2]

≤
∫ b

a
r(ζ )

[(
s(ζ )
r(ζ )

)2

– 1
]

dζ .

Example 3.8 Choose T = hZ, h > 0 in Theorem 3.3 to get a new lower bound for χ2-
divergence in h-discrete calculus

1
∑ b

h –1
l= a

h
r(lh)h

[( b
h –1
∑

l= a
h

s(lh)h

)2

–

( b
h –1
∑

l= a
h

r(lh)h

)2]

≤
b
h –1
∑

l= a
h

r(lh)h
[(

s(lh)
r(lh)

)2

– 1
]

. (12)

Remark 3.5 Choose h = 1 in (12), let a = 0, b = n, r(l) = rj, and s(l) = sj to get χ2-divergence

1
∑n

j=1 rj

[( n∑

j=1

sj

)2

–

( n∑

j=1

rj

)2]

≤ χ2(s̃, r̃),

where

χ2(s̃, r̃) =
n∑

j=1

rj

[(
sj

rj

)2

– 1
]

. (13)
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Example 3.9 Choose T = qN0 (q > 1) in Theorem 3.3 to have a new lower bound for χ2-
divergence in quantum calculus

1
∑n–1

l=0 ql+1r(ql)

[( n–1∑

l=0

ql+1s
(
ql)

)2

–

( n–1∑

l=0

ql+1r
(
ql)

)2]

≤
n–1∑

l=0

ql+1r
(
ql)

[(
s(ql)
r(ql)

)2

– 1
]

. (14)

3.4 Kullback–Leibler divergence
Kullback–Leibler divergence on time scale is defined in [4] as follows:

D(s, r) =
∫ b

a
s(ζ ) ln

[
s(ζ )
r(ζ )

]

�ζ . (15)

Theorem 3.4 Assume the conditions of Theorem 3.1, then we have

S ln

(
S
R

)

≤ D(s, r), (16)

where D(s, r) is defined in (15).

Proof Consider f (ζ ) = ζ ln ζ in (3) to get

S
R

ln

(
S
R

)

≤ 1
R

∫ b

a
s(ζ ) ln

(
s(ζ )
r(ζ )

)

�ζ ,

or we have

S ln

(
S
R

)

≤
∫ b

a
s(ζ ) ln

(
s(ζ )
r(ζ )

)

�ζ ,

the desired result. �

Example 3.10 For T = R, (16) becomes

∫ b

a
s(ζ ) dζ ln

(∫ b
a s(ζ ) dζ

∫ b
a r(ζ ) dζ

)

≤
∫ b

a
s(ζ ) ln

(
s(ζ )
r(ζ )

)

dζ .

Example 3.11 ChooseT = hZ, h > 0 in Theorem 3.4 to get a new lower bound in h-discrete
calculus

b
h –1
∑

l= a
h

s(lh)h ln

(∑ b
h –1
l= a

h
s(lh)h

∑ b
h –1
l= a

h
r(lh)h

)

≤
b
h –1
∑

l= a
h

s(lh)h ln

(
s(lh)
r(lh)

)

. (17)

Remark 3.6 Choose h = 1 in (17), let a = 0, b = n, r(l) = rj, and s(l) = sj to get the discrete
Kullback–Leibler divergence

n∑

j=1

sj ln

(∑n
j=1 sj

∑n
j=1 rj

)

≤ KL(s̃, r̃),
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where

KL(s̃, r̃) =
n∑

j=1

sj ln

(
sj

rj

)

. (18)

Example 3.12 Choose T = qN0 (q > 1) in Theorem 3.4 to have a new lower bound in quan-
tum calculus

n–1∑

l=0

ql+1s
(
ql) ln

(∑n–1
l=0 ql+1s(ql)

∑n–1
l=0 ql+1r(ql)

)

≤
n–1∑

l=0

ql+1s
(
ql) ln

(
s(ql)
r(ql)

)

.

3.5 Hellinger discrimination
Hellinger discrimination on time scale is defined in [4] as follows:

h2(s, r) =
1
2

∫ b

a

[√
s(ζ ) –

√
r(ζ )

]2
�ζ . (19)

Theorem 3.5 Assume the conditions of Theorem 3.1 to obtain

1
2

(
√

S –
√

R)2 ≤ h2(s, r), (20)

where h2(s, r) is defined in (19).

Proof Consider f (ζ ) = 1
2 (

√
ζ – 1)2 in (3) to get

1
2

(√
S
R

– 1
)2

≤ 1
2R

∫ b

a
r(ζ )

(√
s(ζ )
r(ζ )

– 1
)2

�ζ , (21)

after simplification we obtain

1
2

(
√

S –
√

R)2 ≤ 1
2

∫ b

a

(√
s(ζ ) –

√
r(ζ )

)2
�ζ ,

the desired result. �

Example 3.13 For T = R, (20) becomes

1
2

([∫ b

a
s(ζ ) dζ

] 1
2

–
[∫ b

a
r(ζ ) dζ

] 1
2
)2

≤ 1
2

∫ b

a

(√
s(ζ ) –

√
r(ζ )

)2 dζ .

Example 3.14 Choose T = hZ, h > 0 in Theorem 3.5 to get a new lower for Hellinger dis-
crimination in h-discrete calculus

1
2

[( b
h –1
∑

l= a
h

s(lh)h

) 1
2

–

( b
h –1
∑

l= a
h

r(lh)h

) 1
2
]2

≤ 1
2

b
h –1
∑

l= a
h

(√
s(lh)h –

√
r(lh)h

)2. (22)
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Remark 3.7 Choose h = 1 in (22), let a = 0, b = n, r(l) = rj, and s(l) = sj to get the Hellinger
distance

1
2

[( n∑

j=1

sj

) 1
2

–

( n∑

j=1

rj

) 1
2
]2

≤ h2(s̃, r̃),

where

h2(s̃, r̃) =
1
2

n∑

j=1

(√sj – √rj)2. (23)

Example 3.15 Choose T = qN0 (q > 1) in Theorem 3.5 to have a new lower for Hellinger
discrimination in quantum calculus

1
2

[( n–1∑

l=0

ql+1s
(
ql)

) 1
2

–

( n–1∑

l=0

ql+1r
(
ql)

) 1
2
]2

≤ 1
2

n–1∑

k=0

ql+1[
√

s
(
ql

)
–

√
r
(
ql

)]2. (24)

3.6 Bhattacharyya coefficient
The Bhattacharyya coefficient on time scale is defined in [4] as follows:

DB(s, r) =
∫ b

a

√
r(ζ )s(ζ )�ζ . (25)

Theorem 3.6 Assume the conditions of Theorem 3.1 to get

DB(s, r) ≤ √
RS, (26)

where DB(s, r) is defined in (25).

Proof Consider f (ζ ) = –
√

ζ in (3) to get

–
√

S
R

≤ –1
R

∫ b

a

√
r(ζ )s(ζ )�ζ ,

after simplification we obtain

∫ b

a

√
r(ζ )s(ζ )�ζ ≤ √

RS,

the desired result. �

Example 3.16 If T = R, then (26) takes the form

∫ b

a

(
r(ζ )s(ζ )

) 1
2 dζ ≤

(∫ b

a
r(ζ ) dζ

∫ b

a
s(ζ ) dζ

) 1
2

.
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Example 3.17 Choose T = hZ, h > 0 in Theorem 3.6 to get a new upper bound for the
Bhattacharyya coefficient in h-discrete calculus

b
h –1
∑

l= a
h

(
r(lh)hs(lh)h

) 1
2 ≤

( b
h –1
∑

l= a
h

r(lh)h

b
h –1
∑

l= a
h

s(lh)h

) 1
2

. (27)

Remark 3.8 Choose h = 1 in (27), let a = 0, b = n, r(l) = rj, and s(l) = sj to get the Bhat-
tacharyya coefficient

B(s̃, r̃) ≤
( n∑

j=1

rj

n∑

j=1

sj

) 1
2

,

where

B(s̃, r̃) =
n∑

j=1

√rjsj. (28)

Example 3.18 Choose T = qN0 (q > 1) in Theorem 3.6 to have a new upper bound for the
Bhattacharyya coefficient in quantum calculus

n–1∑

l=0

ql+1[r
(
ql)s

(
ql)] 1

2 ≤
( n–1∑

l=0

ql+1r
(
ql)

n–1∑

l=0

ql+1s
(
ql)

) 1
2

.

3.7 Jeffreys distance
Jeffreys distance on time scale is defined in [4] as follows:

DJ (s, r) =
∫ b

a

(
s(ζ ) – r(ζ )

)
ln

[
s(ζ )
r(ζ )

]

�ζ . (29)

Theorem 3.7 Assume the conditions of Theorem 3.1 to get

(S – R) ln

(
S
R

)

≤ DJ (s, r), (30)

where DJ (s, r) is defined in (29).

Proof Consider f (ζ ) = (ζ – 1) ln ζ in (3) to get

R
(

S
R

– 1
)

ln

(
S
R

)

≤
∫ b

a
r(ζ )

(
s(ζ )
r(ζ )

– 1
)

ln

(
s(ζ )
r(ζ )

)

�ζ ,

or we have

(S – R) ln

(
S
R

)

≤
∫ b

a

(
s(ζ ) – r(ζ )

)
ln

(
s(ζ )
r(ζ )

)

�ζ ,

the desired result. �
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Example 3.19 For T = R, (30) takes the form

(∫ b

a
s(ζ ) dζ –

∫ b

a
s(ζ ) dζ

)

ln

(∫ b
a s(ζ ) dζ

∫ b
a r(ζ ) dζ

)

≤
∫ b

a

[
s(ζ ) – r(ζ )

]
ln

(
s(ζ )
r(ζ )

)

dζ .

Example 3.20 Choose T = hZ, h > 0 in Theorem 3.7 to get a new lower bound for Jeffreys
distance in h-discrete calculus

( b
h –1
∑

l= a
h

s(lh)h –

b
h –1
∑

l= a
h

r(lh)h

)

ln

(∑ b
h –1
l= a

h
s(lh)h

∑ b
h –1
l= a

h
r(lh)h

)

≤
b
h –1
∑

l= a
h

(
s(lh)h – r(lh)h

)
ln

(
s(lh)
r(lh)

)

. (31)

Remark 3.9 Choose h = 1 in (31), let a = 0, b = n, r(l) = rj, and s(l) = sj to get Jeffreys
distance

( n∑

j=1

sj –
n∑

j=1

rj

)

ln

(∑n
j=1 sj

∑n
j=1 rj

)

≤ DJ (s̃, r̃),

where

DJ (s̃, r̃) =
n∑

j=1

(sj – rj) ln

(
sj

rj

)

. (32)

Example 3.21 Choose T = qN0 (q > 1) in Theorem 3.7 to have a new lower bound for the
Jeffreys distance in quantum calculus

( n–1∑

l=0

ql+1s
(
ql) –

n–1∑

l=0

ql+1r
(
ql)

)

ln

(∑n–1
l=0 ql+1s(ql)

∑n–1
l=0 ql+1r(ql)

)

≤
n–1∑

l=0

ql+1(s
(
ql) – r

(
ql)) ln

(
s(ql)
r(ql)

)

.

3.8 Triangular discrimination
Triangular discrimination on time scale is defined in [4] as follows:

D�(r, s) =
∫ b

a

[s(ζ ) – r(ζ )]2

s(ζ ) + r(ζ )
�ζ . (33)

Theorem 3.8 Assume the conditions of Theorem 3.1 to obtain

[S – R]2

S + R
≤ D�(r, s), (34)

where D�(r, s) is defined in (33).
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Proof Consider f (ζ ) = (ζ–1)2

ζ+1 in (3) to get

R
( S

R – 1)2

S
R + 1

≤
∫ b

a
r(ζ )

( s(ζ )
r(ζ ) – 1)2

s(ζ )
r(ζ ) + 1

�ζ

or

[S – R]2

S + R
≤

∫ b

a

[s(ζ ) – r(ζ )]2

s(ζ ) + r(ζ )
�ζ . �

Example 3.22 For T = R, (34) becomes

[
∫ b

a s(ζ ) dζ –
∫ b

a r(ζ ) dζ ]2

∫ b
a s(ζ ) dζ +

∫ b
a r(ζ ) dζ

≤
∫ b

a

[s(ζ ) – r(ζ )]2

s(ζ ) + r(ζ )
dζ .

Example 3.23 Choose T = hZ, h > 0 in Theorem 3.8 to get a new lower bound for the
triangular discrimination in h-discrete calculus

(
∑ b

h –1
l= a

h
s(lh)h –

∑ b
h –1
l= a

h
r(lh)h)2

∑ b
h –1
l= a

h
s(lh)h +

∑ b
h –1
l= a

h
r(lh)h

≤
b
h –1
∑

l= a
h

h(s(lh) – r(lh))2

s(lh) + r(lh)
. (35)

Remark 3.10 Choose h = 1 in (35), let a = 0, b = n, r(l) = rj, and s(l) = sj to get the triangular
discrimination

(
∑n

j=1 sj –
∑n

j=1 rj)2

∑n
j=1 sj +

∑n
j=1 rj

≤ �(s̃, r̃),

where

�(s̃, r̃) =
n∑

j=1

(sj – rj)2

sj + rj
. (36)

Example 3.24 Choose T = qN0 (q > 1) in Theorem 3.8 to have a new lower bound for the
triangular discrimination in quantum calculus

(
∑n–1

l=0 ql+1s(ql) –
∑n–1

l=0 ql+1r(ql))2
∑n–1

l=0 ql+1s(ql) +
∑n–1

l=0 ql+1r(ql)
≤

n–1∑

l=0

ql+1 [s(ql) – r(ql)]2

s(ql) + r(ql)
.

4 Zipf–Mandelbrot law
The Zipf–Mandelbrot law is a discrete probability distribution and is defined via a prob-
ability mass function which is given as follows:

f (j; N , a, b) =
1

(j + b)aHN ,a,b
, j = 1, . . . , N , (37)

where

HN ,a,b =
N∑

i=1

1
(i + b)a (38)
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is a generalization of a harmonic number and N ∈ {1, 2, . . . }, a > 0 and b ∈ [0,∞) are pa-
rameters.

If b = 0 and N is finite, then the Zipf–Mandelbrot law is commonly known as the Zipf
law. By expression (37), the probability mass function in connection with the Zipf law is

f (j; N , a) =
1

(j)aHN ,a
, j = 1, . . . , N , (39)

where

HN ,a =
N∑

i=1

1
(i)a . (40)

Using rj = f (j, N , a, b) in (37) as a probability mass function, we observe the obtained results
via the Zipf–Mandelbrot law.

For this reason, we give results concerning the Csiszár functional Ĩf (s̃, r̃) for the Zipf–
Mandelbrot law.

Case-1 Define r̃ by (37) as a Zipf–Mandelbrot law N-tuple, Csiszár functional (5)
becomes

Ĩf (j, N , a2, b2, s̃) =
N∑

j=1

1
(j + b2)a2 HN ,a2,b2

f
(
sj(j + b2)a2 HN ,a2,b2

)
, (41)

where f : I →R, I ⊂R, and N ∈ N, a2 > 0, b2 > 0 are such that
sj(j + b2)a2 HN ,a2,b2 ∈ I , j = 1, . . . , N .

Case-2 When s̃ and r̃ both are defined via the Zipf–Mandelbrot law for N-tuples:

Ĩf (j, N , a1, a2, b1, b2) =
N∑

j=1

1
(j + b2)a2 HN ,a2,b2

f
(

(j + b2)a2 HN ,a2,b2

(j + b1)a1 HN ,a1,b1

)

, (42)

where f : I →R, I ⊂R, and N ∈ N, a1, a2 > 0, b1, b2 > 0 are such that
(j+b2)a2 HN ,a2,b2
(j+b1)a1 HN ,a1,b1

∈ I , j = 1, . . . , N .
Case-3 If s̃ and r̃ both are defined as the Zipf law for N-tuples, then Csiszár functional

(5) becomes

Ĩf (j, N , a1, a2) =
N∑

j=1

1
ja2 HN ,a2

f
(

ja2–a1
HN ,a2

HN ,a1

)

. (43)

Start from case-1 which is for the single Zipf–Mandelbrot law rj, j = 1, . . . , N .

Corollary 4.1 Assume that I ⊂ R, and let N ∈ N, a2 > 0, b2 > 0 be such that
∑N

j=1 sj(j +
b2)a2 HN ,a2,b2 ∈ I for j = 1, . . . , N . If f is a convex function, then

n∑

j=1

1
(j + b2)a2 HN ,a2,b2

f
( ∑n

j=1 sj
∑n

j=1
1

(j+b2)a2 HN ,a2,b2

)

≤ Ĩf (j, N , a2, b2, s̃). (44)

Proof Put rj = 1
(j+b2)a2 HN ,a2,b2

for j = 1, . . . , N in (4) to get (44), where Ĩf (j, N , a2, b2, s̃) is de-
fined in (41). �
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Remark 4.1 The inequality sign in (44) holds in reverse direction when f is a concave
function.

The next result is for case-2 as both sj and rj are defined by the Zipf–Mandelbrot law.

Corollary 4.2 Assume that I ⊂ R, and let N ∈ N, a1, a2 > 0, b1, b2 > 0 be such that
(j+b2)a2 HN ,a2,b2∑N
j=1(j+b1)a1 HN ,a1,b1

∈ I for j = 1, . . . , N . If f is a convex function, then

n∑

j=1

1
(j + b2)a2 HN ,a2,b2

f
(∑n

j=1
1

(j+b1)a1 HN ,a1,b1∑n
j=1

1
(j+b2)a2 HN ,a2,b2

)

≤ Ĩf (j, N , a1, a2, b1, b2). (45)

Proof Using rj = 1
(j+b2)a2 HN ,a2,b2

and sj = 1
(j+b1)a1 HN ,a1,b1

for j = 1, . . . , N , in (4), we get (45),

where Ĩf (j, N , a1, a2, b1, b2) is defined in (42). �

Remark 4.2 The inequality sign in (45) holds in reverse direction when f is a concave
function.

The next result is for case-3 as both sj and rj are defined by the Zipf law.

Corollary 4.3 Assume that I ⊂ R, and let N ∈ N, a1, a2 > 0 be such that (j)a2 HN ,a2
(j)a1 HN ,a1

∈ I for
j = 1, . . . , N . If f is a convex function, then

n∑

j=1

1
(j)a2 HN ,a2

f
(∑n

j=1
1

(j)a1 HN ,a1∑n
j=1

1
(j)a2 HN ,a2

)

≤ Ĩf (j, N , a1, a2). (46)

Proof Using rj = 1
(j)a2 HN ,a2

and sj = 1
(j)a1 HN ,a1

for j = 1, . . . , N in (4), we get (46), where

Ĩf (j, N , a1, a2) is defined in (43). �

Remark 4.3 The inequality sign in (46) holds in reverse direction when f is a concave
function.

To give certain results related to the particular cases of f -divergences, we begin with the
well-known Kullback–Leibler divergence (18).

Corollary 4.4 Let N ∈N and a2 > 0, b2 > 0. Then

n∑

j=1

sj ln

( ∑n
j=1 sj

∑n
j=1

1
(j+b2)a2 HN ,a2,b2

)

≤ K̃L(j, N , a2, b2, s̃). (47)

Proof The function f (ζ ) = ζ ln(ζ ) is convex. Use f (ζ ) = ζ ln(ζ ) in (44) to obtain (47), where

K̃L(j, N , a2, b2, s̃) =
N∑

j=1

sj ln
(
sj(j + b2)a2 HN ,a2,b2

)
.

�

If sj and rj are defined by the Zipf–Mandelbrot law.
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Corollary 4.5 Suppose that N ∈N and a1, a2 > 0, b1, b2 > 0. Then

n∑

j=1

1
(j + b1)a1 HN ,a1,b1

ln

(∑n
j=1

1
(j+b1)a1 HN ,a1,b1∑n

j=1
1

(j+b2)a2 HN ,a2,b2

)

≤ K̃L(j, N , a1, a2, b1, b2). (48)

Proof The function f (ζ ) = ζ ln(ζ ) is convex. Use f (ζ ) = ζ ln(ζ ) in (45) to get (48), where

K̃L(j, N , a1, a2, b1, b2) =
N∑

j=1

1
(j + b1)a1 HN ,a1,b1

ln

(
(j + b2)a2 HN ,a2,b2

(j + b1)a1 HN ,a1,b1

)

.
�

The following result holds as both sj and rj are defined by the Zipf law.

Corollary 4.6 Let N ∈N, a1, a2 > 0. Then

n∑

j=1

1
(j)a1 HN ,a1

ln

(∑n
j=1

1
(j)a1 HN ,a1∑n

j=1
1

(j)a2 HN ,a2

)

≤ K̃L(j, N , a1, a2). (49)

Proof The function f (ζ ) = ζ ln(ζ ) is convex. Use f (ζ ) = ζ ln(ζ ) in (46) to have (49), where

K̃L(j, N , a1, a2) =
N∑

j=1

1
ja1 HN ,a1

ln

(

ja2–a1
HN ,a2

HN ,a1

)

.
�

Analogous results for the Hellinger distance (23) are given as follows.

Corollary 4.7 Let N ∈N, a2 > 0, b2 > 0. Then

1
2

[( n∑

j=1

sj

) 1
2

–

( n∑

j=1

1
(j + b2)a2 HN ,a2,b2

) 1
2
]2

≤ h̃2(j, N , a2, b2, s̃). (50)

Proof Since f (ζ ) = 1
2 (

√
ζ – 1)2 is a convex function, therefore we use f (ζ ) = 1

2 (
√

ζ – 1)2 in
(44) to get (50), where

h̃2(j, N , a2, b2, s̃) =
N∑

j=1

1
2

[

(sj)
1
2 –

(
1

(j + b2)a2 HN ,a2,b2

) 1
2
]2

.
�

The following result holds as both sj and rj are defined by the Zipf–Mandelbrot law.

Corollary 4.8 Let N ∈N, a1, a2 > 0, b1, b2 > 0. Then

1
2

[( n∑

j=1

1
(j + b1)a1 HN ,a1,b1

) 1
2

–

( n∑

j=1

1
(j + b2)a2 HN ,a2,b2

) 1
2
]2

≤ h̃2(j, N , a1, a2, b1, b2). (51)
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Proof Since f (ζ ) = 1
2 (

√
ζ – 1)2 is a convex function, therefore we use f (ζ ) = 1

2 (
√

ζ – 1)2 in
(45) to get (51), where

h̃2(j, N , a1, a2, b1, b2) =
1
2

N∑

j=1

[(
1

(j + b1)a1 HN ,a1,b1

) 1
2

–
(

1
(j + b2)a2 HN ,a2,b2

) 1
2
]2

.
�

The following result holds as both sj and rj are defined by the Zipf law.

Corollary 4.9 Let N ∈N, a1, a2 > 0. Then

1
2

[( n∑

j=1

1
(j)a1 HN ,a1

) 1
2

–

( n∑

j=1

1
(j)a2 HN ,a2

) 1
2
]2

≤ h̃2(j, N , a1, a2). (52)

Proof Since f (ζ ) = 1
2 (

√
ζ – 1)2 is a convex function, therefore we use f (ζ ) = 1

2 (
√

ζ – 1)2 in
(46) to get (52), where

h̃2(j, N , a1, a2) =
N∑

j=1

1
2

[(
1

(j)a1 HN ,a1

) 1
2

–
(

1
(j)a2 HN ,a2

) 1
2
]2

.
�

Similarly, corresponding results for the Karl Pearson divergence (13) and the Jeffrey dis-
tance (32) are given below.

Corollary 4.10 Let N ∈N and a2 > 0, b2 > 0. Then

1
∑n

j=1
1

(j+b2)a2 HN ,a2,b2

[( n∑

j=1

sj

)2

–

( n∑

j=1

1
(j + b2)a2 HN ,a2,b2

)2]

≤ χ̃2(j, N , a2, b2, s̃). (53)

Proof Since f (ζ ) = ζ 2 – 1 is a convex function, therefore we use f (ζ ) = ζ 2 – 1 in (44) to
obtain (53), where

χ̃2(j, N , a2, b2, s̃) =
N∑

j=1

1
(j + b2)a2 HN ,a2,b2

[(
sj(j + b2)a2 HN ,a2,b2

)2 – 1
]
.

�

If sj and rj are defined via the Zipf–Mandelbrot law.

Corollary 4.11 Suppose that N ∈N and a1, a2 > 0, b1, b2 > 0. Then

1
∑n

j=1
1

(j+b2)a2 HN ,a2,b2

[( n∑

j=1

1
(j + b1)a1 HN ,a1,b1

)2

–

( n∑

j=1

1
(j + b2)a2 HN ,a2,b2

)2]

≤ χ̃2(j, N , a1, a2, b1, b2). (54)
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Proof Since f (ζ ) = ζ 2 – 1 is a convex function, therefore we use f (ζ ) = ζ 2 – 1 in (45) to get
(54), where

χ̃2(j, N , a1, a2, b1, b2) =
N∑

j=1

1
(j + b2)a2 HN ,a2,b2

[(
(j + b2)a2 HN ,a2,b2

(j + b1)a1 HN ,a1,b1

)2

– 1
]

.
�

The following result holds as both sj and rj are defined by the Zipf law.

Corollary 4.12 Let N ∈N, a1, a2 > 0. Then

1
∑n

j=1
1

(j)a2 HN ,a2

[( n∑

j=1

1
(j)a1 HN ,a1

)2

–

( n∑

j=1

1
(j)a2 HN ,a2

)2]

≤ χ̃2(j, N , a1, a2). (55)

Proof Since f (ζ ) = ζ 2 – 1 is a convex function, therefore we use f (ζ ) = ζ 2 – 1 in (46) to have
(55), where

χ̃2(j, N , a1, a2) =
N∑

j=1

1
ja2 HN ,a2

[(

ja2–a1
HN ,a2

HN ,a1

)2

– 1
]

.
�

Corollary 4.13 Let N ∈N and a2 > 0, b2 > 0. Then

( n∑

j=1

sj –
n∑

j=1

1
(j + b2)a2 HN ,a2,b2

)

ln

( ∑n
j=1 sj

∑n
j=1

1
(j+b2)a2 HN ,a2,b2

)

≤ D̃J (j, N , a2, b2, s̃). (56)

Proof The function f (ζ ) = (ζ – 1) ln(ζ ) is convex. Use f (ζ ) = (ζ – 1) ln(ζ ) in (44) to obtain
(56), where

D̃J (j, N , a2, b2, s̃) =
N∑

j=1

(

sj –
1

(j + b2)a2 HN ,a2,b2

)

ln
(
sj(j + b2)a2 HN ,a2,b2

)
.

�

If sj and rj are defined via the Zipf–Mandelbrot law.

Corollary 4.14 Suppose that N ∈N and a1, a2 > 0, b1, b2 > 0. Then

( n∑

j=1

1
(j + b1)a1 HN ,a1,b1

–
n∑

j=1

1
(j + b2)a2 HN ,a2,b2

)

ln

(∑n
j=1

1
(j+b1)a1 HN ,a1,b1∑n

j=1
1

(j+b2)a2 HN ,a2,b2

)

≤ D̃J (j, N , a1, a2, b1, b2). (57)

Proof The function f (ζ ) = (ζ – 1) ln(ζ ) is convex. Use f (ζ ) = (ζ – 1) ln(ζ ) in (45) to get (57),
where

D̃J (j, N , a1, a2, b1, b2) =
N∑

j=1

(
1

(j + b1)a1 HN ,a1,b1
–

1
(j + b2)a2 HN ,a2,b2

)

× ln

(
(j + b2)a2 HN ,a2,b2

(j + b1)a1 HN ,a1,b1

)

. �

The following result holds as both sj and rj are defined by the Zipf law.
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Corollary 4.15 Let N ∈N, a1, a2 > 0. Then

( n∑

j=1

1
(j)a1 HN ,a1

–
n∑

j=1

1
(j)a2 HN ,a2

)

ln

(∑n
j=1

1
(j)a1 HN ,a1∑n

j=1
1

(j)a2 HN ,a2

)

≤ D̃J (j, N , a1, a2). (58)

Proof The function f (ζ ) = (ζ – 1) ln(ζ ) is convex. Use f (ζ ) = (ζ – 1) ln(ζ ) in (46) to have
(58), where

D̃J (j, N , a1, a2) =
N∑

j=1

(
1

ja1 HN ,a1
–

1
ja2 HN ,a2

)

ln

(

ja2–a1
HN ,a2

HN ,a1

)

.
�

In addition to all, similar findings for triangular discrimination are given as follows.

Corollary 4.16 Let N ∈N, a2 > 0, b2 > 0. Then

(
∑n

j=1 sj –
∑n

j=1
1

(j+b2)a2 HN ,a2,b2
)2

∑n
j=1 sj +

∑n
j=1

1
(j+b2)a2 HN ,a2,b2

≤ �̃(j, N , a2, b2, s̃). (59)

Proof Since f (ζ ) = (ζ–1)2

ζ+1 is a convex function, therefore we use f (ζ ) = (ζ–1)2

ζ+1 in (44) to
obtain (59), where

�̃(j, N , a2, b2, s̃) =
N∑

j=1

1
(j + b2)a2 HN ,a2,b2

[sj(j + b2)a2 HN ,a2,b2 – 1]2

sj(j + b2)a2 HN ,a2,b2 + 1
.

�

If sj and rj are defined via the Zipf–Mandelbrot law.

Corollary 4.17 Suppose that N ∈N and a1, a2 > 0, b1, b2 > 0. Then

(
∑n

j=1
1

(j+b1)a1 HN ,a1,b1
–

∑n
j=1

1
(j+b2)a2 HN ,a2,b2

)2

∑n
j=1

1
(j+b1)a1 HN ,a1,b1

+
∑n

j=1
1

(j+b2)a2 HN ,a2,b2

≤ �̃(j, N , a1, a2, b1, b2). (60)

Proof Since f (ζ ) = (ζ–1)2

ζ+1 is a convex function, therefore we use f (ζ ) = (ζ–1)2

ζ+1 in (45) to get
(60), where

�̃(j, N , a1, a2, b1, b2) =
N∑

j=1

[(j + b2)a2 HN ,a2,b2 – (j + b1)a1 HN ,a1,b1 ]2

(j + b2)a2 HN ,a2,b2 + (j + b1)a1 HN ,a1,b1
.

�

The following result holds when both sj and rj are defined via the Zipf law.

Corollary 4.18 Let N ∈N, a1, a2 > 0. Then

(
∑n

j=1
1

(j)a1 HN ,a1
–

∑n
j=1

1
(j)a2 HN ,a2

)2

∑n
j=1

1
(j)a1 HN ,a1

+
∑n

j=1
1

(j)a2 HN ,a2

≤ �̃(j, N , a1, a2). (61)
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Proof Since f (ζ ) = (ζ–1)2

ζ+1 is a convex function, we use f (ζ ) = (ζ–1)2

ζ+1 in (46) to have (61),
where

�̃(j, N , a1, a2) =
N∑

j=1

1
ja2

(ja2–a1 HN ,a2 – HN ,a1 )2

ja2–a1 HN ,a2 + HN ,a1
.

�
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