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Abstract
The beta and gamma functions have recently seen several developments and various
extensions because of their nice properties and interesting applications. The
contribution of this paper falls within this framework. After introducing a generalized
gamma function and two generalized beta functions in several variables, we
investigate some inequalities involving these generalized functions.
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1 Introduction
The standard beta and gamma functions are respectively defined by

∀x, y > 0, B(x, y) =:
∫ 1

0
tx–1(1 – t)y–1 dt,

∀x > 0, �(x) =:
∫ +∞

0
tx–1e–t dt.

Such functions play an important role in mathematical analysis and have wide applications
in various contexts of mathematics and physics. An interesting relationship expressing a
connection between B and � is given by

∀x, y > 0, B(x, y) =
�(x)�(y)
�(x + y)

. (1.1)

Otherwise, it is well-known that �(x + 1) = x�(x) for all x > 0. For further properties and
applications of the beta and gamma functions, we refer the interested reader to [2–6, 9–
17, 23], for instance.

The previously defined functions B and � have been extended in the literature, see [7,
8, 19]. In [7], Chaudhry et al. introduced the following extended beta function:

∀x, y > 0, B(x, y; a) =:
∫ 1

0
tx–1(1 – t)y–1e–a/t(1–t) dt (1.2)
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and the extended gamma function

∀x > 0, �a(x) =:
∫ ∞

0
tx–1e–te–a/t dt, (1.3)

where a ≥ 0 is a real parameter.
Another extension of B(x, y) has been introduced by Choi et al. in [8] and reads as follows:

∀x, y > 0, B(x, y; a, b) =:
∫ 1

0
tx–1e–a/t(1 – t)y–1e–b/(1–t) dt, (1.4)

where a, b ≥ 0. It is clear that B(x, y; 0) = B(x, y), �0(x) = �(x) and B(x, y; a, a) = B(x, y; a), for
any x, y > 0 and a ≥ 0. For more properties about B(x, y; a) and �a(x), see [7, 19], and for
those of B(x, y; a, b) we can consult [8].

Further extensions of the beta and gamma functions have been investigated in the lit-
erature. We recall that the notation (λ)m, when m is a nonnegative integer and λ ∈ R is
nonzero, stands for the Pochhammer symbol defined by [20]

(λ)m = λ(λ + 1) · · · (λ + m – 1), with (λ)0 = 1.

In [19], Özergin et al. introduced the generalized beta and gamma functions defined re-
spectively by

∀x, y > 0, B(c,d)
p (x, y) =:

∫ 1

0
tx–1(1 – t)y–1

1F1

(
c; d;

–p
t(1 – t)

)
dt, (1.5)

∀x > 0, �(c,d)
p (x) =:

∫ ∞

0
tx–1

1F1

(
c; d; –t –

p
t

)
dt, (1.6)

where c, d > 0 and p ≥ 0. Here, the notation 1F1(a; b; z) refers to the confluent hypergeo-
metric function (CHF) defined through [18]

1F1(a; b; z) =:
∞∑

m=0

(a)m

(b)m

zm

m!
. (1.7)

If a, b are integers, a < 0, and either b > 0 or b < a, then the series (1.7) converges and
1F1(a; b; z) is a polynomial function. If b is an integer with b ≤ 0 then the series (1.7) di-
verges and 1F1(a; b; z) is undefined. Note that 1F1(a; b; 0) = 1. If a, b – a > 0 then we have
[19]

1F1(a; b; z) =
�(b)

�(a)�(b – a)

∫ 1

0
ua–1(1 – u)b–a–1ezu du. (1.8)

Making the substitution t = 1 – u in the latter integral formula, it is easy to check that

1F1(a; b; z) = ez
1F1(b – a; b; –z). (1.9)

The (CHF) stems its importance in the fact that it contributes as a good tool for solv-
ing many mathematical problems. It also appears as a solution of some partial differential
equations, playing an important role in various mathematical areas. See [6, 18], for in-
stance.
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Remark 1.1 The real functions �(x) and B(x, y), as well as their previous extensions, are
also well-defined when the variables x and y are complex numbers such that �e(x) > 0 and
�e(y) > 0 and, of course, �(x) and B(x, y) are complex functions. Since this paper deals
with some inequalities involving expressions in x and y, we then restrict ourselves for real
variables and real functions.

Remark 1.2 The formula (1.8) brings us some interesting results when the conditions a > 0
and b – a > 0 are satisfied. For instance, we have the following assertions:

(i) The real-map z �→ 1F1(a; b; z) is strictly increasing and strictly convex on R.
(ii) It follows that 1F1(a; b; z) ≥ 1F1(a; b; 0) = 1 for any z ≥ 0 and, by (1.9), 0 ≤ 1F1(a; b; z) ≤

1 for any z ≤ 0.
These properties are not obvious from (1.7).

The extension of the beta function from two to n variables has been introduced in the
literature [1, 2, 6, 21, 22]. Let n ≥ 3 be an integer and let En–1 be the standard (n – 1)-
simplex of Rn–1 defined by

En–1 =

{
(t1, . . . , tn–1) ∈R

n–1 :
n–1∑
i=1

ti ≤ 1; ti ≥ 0, for i = 1, . . . , n – 1

}
.

The beta function in n variables x1, . . . , xn > 0 is defined by

B(x1, . . . , xn) =:
∫

En–1

n∏
i=1

txi–1
i dt1 · · · dtn–1, (1.10)

where tn =: 1 –
∑n–1

i=1 ti. Throughout the following, we set σ (x) =:
∑n

i=1 xi for the sake of
simplicity. The following formula:

B(x1, . . . , xn) =
∏n

i=1 �(xi)
�(σ (x))

(1.11)

holds for any x1, . . . , xn > 0. Other properties of the beta function in n variables can be
found in the literature. Among them we mention the following [6]:

B(x1, . . . , xn) = B(xτ (1), . . . , xτ (n)), (1.12)

where τ is any permutation of the set {1, 2, . . . , n}, and

B(x1 + 1, x2, . . . , xn) + · · · + B(x1, . . . , xn–1, xn + 1) = B(x1, . . . , xn). (1.13)

Recently, the authors [22] have extended the previous functions B(x, y; a) and B(x, y; a, b)
for n variables. For any x1, . . . , xn > 0, a1, . . . , an > 0 and a > 0, they defined the following
extensions:

B(x1, . . . , xn; a) =:
∫

En–1

n∏
i=1

txi–1
i e–a/π (t) dt1 · · · dtn–1, (1.14)
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B(x1, . . . , xn; a1, . . . , an) =:
∫

En–1

n∏
i=1

txi–1
i e–ai/ti dt1 · · · dtn–1, (1.15)

where, as before, tn =: 1 –
∑n–1

i=1 ti, and π (t) =:
∏n

i=1 ti. For a systematic study of the prop-
erties of B(x1, . . . , xn; a), as well as those of B(x1, . . . , xn; a1, . . . , an), one can consult [22].

This manuscript will be organized as follows: In Sect. 2 we introduce the generalized
gamma function in n variables in a brief and simple setting. Section 3 is focused on in-
troducing the first generalized beta function in n variables, and Sect. 4 displays some in-
equalities involving this generalized beta function. Section 5 is devoted to introducing a
second generalized beta function in n variables, and Sect. 6 discusses some inequalities
about this generalized beta function.

2 Generalized gamma function in n variables
In this section, we will introduce some extensions of (1.3) and (1.6) from one to n variables.
We then state the following definition.

Definition 2.1 Let x =: (x1, . . . , xn) ∈ (0,∞)n, α =: (α1, . . . ,αn) ∈ (0,∞)n, β =: (β1, . . . ,βn) ∈
(0,∞)n, and p = (p1, . . . , pn) ∈ [0,∞)n. We introduce the following:

(i) The extended gamma function in n variables defined by

�p(x) =:
∫

(0,∞)n

n∏
i=1

txi–1
i e–ti e–pi/ti dt =

n∏
i=1

�pi (xi), (2.1)

where dt =: dt1 · · · dtn and �pi (xi) is defined by (1.3). If p = 0, we simply write �(x), i.e.,

�(x) =: �0(x) =:
n∏

i=1

�(xi). (2.2)

(ii) The generalized gamma function in n variables defined through

�(α,β)
p (x) =:

n∏
i=1

�(αi ,βi)
pi

(xi) =
∫

(0,∞)n

n∏
i=1

txi–1
i 1F1

(
αi;βi; –ti –

pi

ti

)
dt, (2.3)

where �
(αi ,βi)
pi (xi) is defined by (1.6). If p = 0, we simply write �(α,β)(x), i.e.,

�(α,β)(x) =:
n∏

i=1

�(αi ,βi)(xi) =
∫

(0,∞)n

n∏
i=1

txi–1
i 1F1(αi;βi; –ti) dt. (2.4)

Some special cases are worth mentioning, as itemized in the following:
• If n = 1 then (2.1) and (2.3) are reduced to (1.3) and (1.6), respectively.
• If α = β then (2.3) coincides with (2.1).
The equality (2.3) means that the generalized gamma function in n variables �

(α,β)
p (x) is

defined as the product in the usual way of the n components �
(αi ,βi)
pi (xi), 1 ≤ i ≤ n. There-

fore, the properties of �
(α,β)
p (x) can be immediately deduced from those of �

(αi ,βi)
pi (xi). As

an example, the following relationship:

�(α,β)
p (x) = �(α,β)

p (–x)
n∏

i=1

pxi
i
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holds for any x =: (x1, . . . , xn) ∈ (0,∞)n, α =: (α1, . . . ,αn) ∈ (0,∞)n, β =: (β1, . . . ,βn) ∈
(0,∞)n, and p = (p1, . . . , pn) ∈ (0,∞)n.

Remark 2.2 The generalized gamma functions in n variables defined by (2.3) and (2.4)
would be of use later. See Corollaries 4.7 and 4.11, Theorem 6.3, Corollary 6.4, and Theo-
rem 6.8.

3 Generalized beta function of the first kind
We preserve the same notations as in the previous sections. In the ongoing section, we
will introduce a generalized beta function in n variables of the first kind as recited in the
following.

Definition 3.1 Let x =: (x1, . . . , xn) ∈ (0,∞)n, c, d, q > 0 and r ≥ 0. The generalized beta
function of the first kind is defined by

B(c,d)
r (x; q) =:

∫
En–1

n∏
i=1

txi–1
i 1F1

(
c; d; –

q
π (t)

– r
π (t)

q

)
dt, (3.1)

where we set dt =: dt1 · · · dtn–1, and π (t) =:
∏n

i=1 ti with tn =: 1 –
∑n–1

i=1 ti. For r = 0, we set
throughout the following:

B(c,d)(x; q) =: B(c,d)
0 (x; q) =:

∫
En–1

n∏
i=1

txi–1
i 1F1

(
c; d; –

q
π (t)

)
dt. (3.2)

Some special cases and a concept of singularity of (3.1) are worth mentioning, such as:
• If n = 2 and r = 0 then (3.1) coincides with (1.5).
• If c = d and r = 0 then (3.1) is exactly (1.14).
• If r 
= 0 then (3.1) presents a singularity at q = 0. Such a singularity has been

eliminated in (3.2).
The existence of the integral on the right hand-side of (3.1) is justified by the following

result.

Proposition 3.2 Let x =: (x1, . . . , xn) ∈ (0,∞)n, r ≥ 0 and c, d, q > 0, with d – c > 0. Then
0 ≤ B(c,d)

r (x; q) ≤ B(x) and so, B(c,d)
r (x; q) is well-defined.

Proof By Remark 1.2(ii), we have

0 ≤
n∏

i=1

txi–1
i 1F1

(
c; d; –

q
π (t)

– r
π (t)

q

)
≤

n∏
i=1

txi–1
i . (3.3)

Integrating (3.3) side by side over t ∈ En–1, with the help of (1.10) and (3.1), we get the
desired result. �

The basic properties of B(c,d)
r (x; q), analogous to (1.12) and (1.13), are embodied in the

following result.
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Proposition 3.3 Let x, c, d, r, and q be as previously.
(i) The following relationship holds:

B(c,d)
r (x; q) = B(c,d)

r
(
x∗; q

)
,

where we set x∗ =: (xτ (1), . . . , xτ (n)) for any permutation τ of the set {1, 2, . . . , n}.
(ii) We have

n∑
j=1

B(c,d)
r (x + ej; q) = B(c,d)

r (x; q),

where (e1, . . . , en) refers to the canonical basis of Rn.

Proof (i) Let y =: (x1, . . . , xj, . . . , xk , . . . , xn) and z =: (x1, . . . , xk , . . . , xj . . . , xn). It is enough to
show that B(c,d)

r (y; q) = B(c,d)
r (z; q) for any j, k such that 1 ≤ j < k ≤ n. We consider the fol-

lowing change of variables:

t1 = u1, . . . , tj = uk , . . . , tk = uj, . . . , tn = un. (3.4)

First, it is obvious that π (t) =: t1 · · · tn = u1 · · ·un =: π (u). Further, it is clear that (t1, . . . , tn) ∈
En–1 if and only if (u1, . . . , un) ∈ En–1. Moreover, it is easy to see that the absolute value of
the Jacobian J of the transformation (t1, . . . , tn) �→ (u1, . . . , un) defined by (3.4) is given by
|J| = 1. By (3.1), with the standard rules of calculus, we get

B(c,d)
r (y; q) =

∫
En–1

n∏
i=1,i
=j,k

txi–1
i txj–1

j txk –1
k 1F1

(
c; d; –

q
π (t)

– r
π (t)

q

)
dt

=
∫

En–1

n∏
i=1,i
=j,k

uxi–1
i uxk –1

j uxj–1
k 1F1

(
c; d; –

q
π (u)

– r
π (u)

q

)
du

= B(c,d)
r (z; q),

and hence the desired result.
(ii) By (3.1), we have

n∑
j=1

B(c,d)
r (x + ej; q) =

∫
En–1

n∑
j=1

n∏
i=1,i
=j

txi–1
i txj

j 1F1

(
c; d; –

q
π (t)

– r
π (t)

q

)
dt,

or, equivalently,

n∑
j=1

B(c,d)
r (x + ej; q) =

∫
En–1

n∏
i=1

txi–1
i

( n∑
j=1

tj

)
1F1

(
c; d; –

q
π (t)

– r
π (t)

q

)
dt.

Since
∑n

j=1 tj = 1, we then get the desired equality, completing the proof. �

Another property concerning B(c,d)(x; q) reads as follows.
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Theorem 3.4 Let x, c, d, and q be as above. Assume that c, d – c > 0. Then we have

B(c,d)(x; q) =
�(d)

�(c)�(d – c)

∫ 1

0
uc–1(1 – u)d–c–1B(x; qu) du, (3.5)

where B(x; qu) is defined by (1.14).

Proof By (3.2) and (1.8), we have

B(c,d)(x; q) =
∫

En–1

n∏
i=1

txi–1
i 1F1

(
c; d; –

q
π (t)

)
dt

=
�(d)

�(c)�(d – c)

∫
En–1

{ n∏
i=1

txi–1
i

∫ 1

0
uc–1(1 – u)d–c–1e– qu

π (t) du

}
dt,

where, as before, dt = dt1 · · · dtn–1 and π (t) = t1 · · · tn. By virtue of the uniform convergence
of the involved integrals, we can interchange their orders and obtain

B(c,d)(x; q) =
�(d)

�(c)�(d – c)

∫ 1

0
uc–1(1 – u)d–c–1

(∫
En–1

n∏
i=1

txi–1
i e– qu

π (t) dt

)
du,

which, when combined with (1.14), immediately implies (3.5). �

4 Inequalities involving B(c,d)
r (x; q)

This section deals with some inequalities involving the beta function of the first kind. Our
first main result in this section is recited in the following.

Theorem 4.1 Let c > 0, d – c > 0, q > 0, and r ≥ 0. The following inequality:

(
B(c,d)

r (x + y; q)
)2 ≤ B(c,d)

r (2x; q)B(c,d)
r (2y; q) (4.1)

holds for any x, y ∈ (0,∞)n. Therefore, the real-valued function x �→ B(c,d)
r (x; q) is convex on

(0,∞)n.

Proof Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ (0,∞)n and set

ω(t) =: 1F1

(
c; d; –

q
π (t)

– r
π (t)

q

)
.

By Remark 1.2(ii), we have ω(t) ≥ 0. Then we can write

(
B(c,d)

r (x + y; q)
)2 =

(∫
En–1

( n∏
i=1

txi–1/2
i

(
ω(t)

)1/2
)( n∏

i=1

tyi–1/2
i

(
ω(t)

)1/2
)

dt

)2

.

This, with the Cauchy–Schwartz inequality for integrals, yields

(
B(c,d)

r (x + y; q)
)2 ≤

∫
En–1

n∏
i=1

t2xi–1
i ω(t) dt

∫
En–1

n∏
i=1

t2yi–1
i ω(t) dt.
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Hence (4.1). Now, let us remark that (4.1) is equivalent to

B(c,d)
r

(
x + y

2
; q

)
≤ (

B(c,d)
r (x; q)B(c,d)

r (y; q)
)1/2.

This, with the arithmetic–geometric mean inequality
√

ab ≤ 1
2 a+ 1

2 b valid for any a, b ≥ 0,
implies that

B(c,d)
r

(
x + y

2
; q

)
≤ 1

2
B(c,d)

r (x; q) +
1
2

B(c,d)
r (y; q).

We then deduce that x �→ B(c,d)
r (x; q) is mid-convex. This, with the fact that x �→ B(c,d)

r (x; q)
is continuous, ensures that x �→ B(c,d)

r (x; q) is convex. The proof is finished. �

To giving more results, we need the following lemma.

Lemma 4.2 Let a, b > 0. Then the real-valued function z �→ 1F1(a; b; z) is differentiable on
R and we have

d
dz 1F1(a; b; z) =

a
b 1F1(a + 1; b + 1; z). (4.2)

In particular, one has

d
dz 1F1(a; b; z)|z=0 =

a
b

. (4.3)

Proof For the proof of (4.2), see [18]. Since 1F1(a; b; 0) = 1 for any a, b > 0, we then deduce
(4.3). �

Now, we may state the following result.

Theorem 4.3 Let c > 0, d – c > 0, q > 0, and r ≥ 0. Then the following inequalities:

B(c,d)(x; q) –
c
d

r
q

B(c+1,d+1)(x + e; q) ≤ B(c,d)
r (x; q) ≤ B(c,d)(x; q) ≤ B(x) (4.4)

hold true for all x ∈ (0,∞)n, where we set e =: (1, 1, . . . , 1).

Proof By (3.1) and (3.2), with the help of Remark 1.2(ii), we deduce that B(c,d)
r (x; q) ≤

B(c,d)(x; q) ≤ B(x). We now prove the inequality

B(c,d)(x; q) –
c
d

r
q

B(c+1,d+1)(x + e; q) ≤ B(c,d)
r (x; q). (4.5)

According to Remark 1.2(i), the map z �→ 1F1(a; b; z) is convex on R, for fixed a, b – a > 0.
Let us recall that if f : R →R is a convex function, differentiable at z0, then we have f (z) ≥
f (z0) + (z – z0)f ′(z0) for all z ∈ R. Applying this with f (z) =: 1F1(c; d; z), and utilizing (4.2),
we obtain

1F1

(
c; d; –

q
π (t)

– r
π (t)

q

)

≥ 1F1

(
c; d; –

q
π (t)

)
–

c
d

r
q
π (t)1F1

(
c + 1; d + 1; –

q
π (t)

)
. (4.6)
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Multiplying (4.6) by
∏n

i=1 txi–1 and integrating side by side over t ∈ En–1, with the help of
(3.1), (3.2), and the fact that π (t) =:

∏n
i=1 ti, we get (4.5). The proof is complete. �

It is worth mentioning that (4.5) gives the converse of B(c,d)
r (x; q) ≤ B(c,d)(x; q). The fol-

lowing result concerns the converse of the inequality B(c,d)
r (x; q) ≤ B(x).

Proposition 4.4 Let c > 0, d – c > 0, q > 0, and r ≥ 0. For any x ∈ (1,∞)n, we have

B(c,d)
r (x; q) ≥ B(x) –

c
d

qB(x – e) –
c
d

r
q

B(x + e), (4.7)

where, as previously, e =: (1, 1, . . . , 1).

Proof By the same arguments as in the proof of Theorem 4.3 and by using (4.3), we get

1F1

(
c; d; –

q
π (t)

– r
π (t)

q

)
≥ 1F1(c; d; 0) +

c
d

(
–

q
π (t)

– r
π (t)

q

)
. (4.8)

Multiplying (4.8) by
∏n

i=1 txi–1, our conclusion then would be similar to that in Theorem
4.3. The details are simple and therefore omitted here. �

In order to give more results, we need to prove the lemma below. Recall that, with t =:
(t1, . . . , tn–1), we have

π (t) =: t1 · · · tn–1tn = t1 · · · tn–1(1 – t1 – · · · – tn–1).

Lemma 4.5 With the above we have

sup
t∈En–1

π (t) = n–n.

Proof We will prove this lemma following two different ways.
First method. Let a1, a2, . . . , an be n positive real numbers. The following inequality:

n√a1a2 · · ·an ≤ a1 + a2 + · · · + an

n
(4.9)

is well known as the arithmetic–geometric mean inequality in n variables. Letting a1 =
t1, a2 = t2, . . . , an–1 = tn–1, an = tn =: 1 – t1 – · · · – tn–1 in (4.9), we obtain n√π (t) ≤ 1

n , i.e.,
π (t) ≤ n–n for any t ∈ En–1. It is clear that the inequality π (t) ≤ n–n becomes an equality
for (t1, t2, . . . , tn–1) = (1/n, 1/n, . . . , 1/n) ∈ En–1. The desired result follows.

Second method. Let us first remark that the simplex En–1 is a compact set of Rn–1 and
the real-valued function t �→ π (t) is continuous on En–1. So, the supremum of π (t) on
En–1 exists and it is achieved, i.e., maxt∈En–1 π (t) = π (v) for some v ∈ En–1. Further, it is
well known that the set of all extremal points of En–1, as a convex compact of Rn–1, is
given by Ext(En–1) = {e0, e1, . . . , en–1}, where e0 is the zero-vector of Rn–1 and (e1, . . . , en–1)
is the canonical basis of Rn–1. It is obvious that π (t) = 0 for any t ∈ Ext(En–1). This, plus
the equality inft∈En–1 π (t) = 0, ensures that v will be a critical point of the differentiable
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function t �→ π (t). We will then find the critical points of t �→ π (t). Simple computation
leads to

∂π

∂ti
(t) =

( n–1∏
j=1,j 
=i

tj

)(
1 –

n–1∑
j=1,j 
=i

tj – 2ti

)
, 1 ≤ i ≤ n – 1.

Then we get

∂π

∂ti
(t) = 0 ⇐⇒ 1 –

n–1∑
j=1,j 
=i

tj – 2ti = 0, 1 ≤ i ≤ n – 1.

We have to solve the (n – 1)-equations, namely

n–1∑
j=1,j 
=i

tj + 2ti = 1, 1 ≤ i ≤ n – 1 (4.10)

in the unknown (t1, . . . , tn–1). Thus, (4.10) is a linear system whose matrix is M = I +P where
I is the identity matrix and P = (pij) is such that pij = 1 for any i, j = 1, . . . , n – 1. If we denote
the euclidean inner product of Rn–1 by 〈·, ·〉, then it is easy to check that 〈Pw, w〉 = (w1 +
· · · + wn–1)2 ≥ 0 for any w = (w1, . . . , wn–1) ∈R

n–1. We then deduce that 〈Mw, w〉 ≥ ‖w‖2 for
any w ∈ R

n–1, where ‖ · ‖ refers to the euclidean norm of Rn–1. It follows that the matrix
M, which is clearly symmetric, is positive definite and so it is invertible. We conclude that
the linear system (4.10) has one and only one solution. Otherwise, (4.10) is symmetric in
t1, . . . , tn–1 and therefore its unique solution satisfies t1 = t2 = · · · = tn–1 =: τ . Substituting
this into (4.10), we get nτ = 1 and so the unique solution of (4.10) is (1/n, 1/n, . . . , 1/n). In
conclusion, t �→ π (t) has one and only one critical point v, and we then conclude that v =
(1/n, . . . , 1/n). A simple computation leads to π (v) = n–n, and the desired result follows. �

We are now in a position to state the following result which gives a refinement of the
inequality B(c,d)

r (x; q) ≤ B(x).

Theorem 4.6 Let c > 0, d – c > 0, q > 0, r ≥ 0, and x ∈ (0,∞)n. Assume that further q ≥ √
r.

Then we have

B(c,d)
r (x; q)

B(x)
≤ 1F1

(
c; d; –qnn –

r
qnn

)
≤ 1F1(c; d; –2

√
r) ≤ 1, (4.11)

where B(x) is defined by (1.10).

Proof The inequalities

1F1

(
c; d; –qnn –

r
qnn

)
≤ 1F1(c; d; –2

√
r) ≤ 1

are immediate since it is easy to check that

–qnn –
r

qnn ≤ –2
√

r ≤ 0, 1F1(c; d; 0) = 1,
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and the real-valued function z �→ 1F1(c; d; z) is increasing. We will now prove the inequality

B(c,d)
r (x; q)

B(x)
≤ 1F1

(
c; d; –qnn –

r
qnn

)
. (4.12)

By (3.1), we deduce that

B(c,d)
r (x; q) ≤ B(x) sup

t∈En–1
1F1

(
c; d; –

q
π (t)

– r
π (t)

q

)
, (4.13)

provided that the involved supremum exists. By (1.8), we have

1F1

(
c; d; –

q
π (t)

– r
π (t)

q

)

=
�(d)

�(c)�(d – c)

∫ 1

0
uc–1(1 – u)d–c–1 exp u

(
–

q
π (t)

– r
π (t)

q

)
du. (4.14)

It is then enough to find an upper bound of t �→ – q
π (t) – r π (t)

q , since u ∈ [0, 1] and the
exponential function is increasing. By the standard techniques of real analysis, it is easy to
see that if q ≥ √

r and 0 < ρ < 1 then

sup
0≤s≤ρ

(
–

q
s

– r
s
q

)
= –

q
ρ

– r
ρ

q
. (4.15)

Otherwise, Lemma 4.5 asserts that π (t) ≤ n–n, and so we can write

En–1 ⊂ {
(t1, . . . , tn–1) : 0 ≤ π (t) ≤ n–n} =: F .

This, with (4.15), implies that

sup
t∈En–1

(
–

q
π (t)

– r
π (t)

q

)
≤ sup

t∈F

(
–

q
π (t)

– r
π (t)

q

)

= sup
0≤s≤n–n

(
–

q
s

– r
s
q

)
= –qnn –

r
qnn .

Substituting this into (4.14) and then into (4.13), we get (4.12). The proof is finished. �

From the previous theorem, we can deduce the following result.

Corollary 4.7 With the hypotheses of Theorem 4.6, for any u > 0, we have:

∫ ∞

0
qu–1B(c,d(x; q) dq ≤ B(x)n–nu�(c,d)(u), (4.16)

where �(c,d)(u) is defined by (2.4). In particular,

∫ ∞

0
B(c,d(x; q) dq ≤ B(x)n–n�(c,d)(1).
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Proof Taking r = 0 in (4.11), we get

B(c,d)(x; q) ≤ B(x)1F1
(
c; d; –qnn). (4.17)

Multiplying (4.17) by qu–1 and integrating side by side over q ∈ (0,∞), we obtain (4.16)
after a simple change of variable. �

Now we will state a result which gives a lower bound of B(c,d)
r (x; q).

Theorem 4.8 Let c > 0, d – c > 0, q > 0, r ≥ 0, and x ∈ (0,∞)n. Then we have

B(c,d)
r (x; q)
B(x; q)

≥ 1F1
(
d – c; d; qnn) exp

(
–

r
qnn

)
, (4.18)

where B(x; q) is defined by (1.14).

Proof By (1.9), we can write

B(c,d)
r (x; q) =

∫
En–1

n∏
i=1

txi–1
i exp

(
–

q
π (t)

– r
π (t)

q

)
1F1

(
d – c; d;

q
π (t)

+ r
π (t)

q

)
dt,

or, equivalently,

B(c,d)
r (x; q) =

∫
En–1

( n∏
i=1

txi–1
i e– q

π (t)

)
e– rπ (t)

q 1F1

(
d – c; d;

q
π (t)

+ r
π (t)

q

)
dt. (4.19)

Now, by Lemma 4.5, we deduce that

e– rπ (t)
q ≥ e– r

qnn and
q

π (t)
+ r

π (t)
q

≥ q
π (t)

≥ qnn.

Substituting this into (4.19) and taking into account that the real-valued function z �→
1F1(a; b; z) is increasing, with the help of (1.14), we get (4.18), and the proof is finished. �

We have the following result as well.

Corollary 4.9 With the hypotheses of Theorem 4.8, for any u > 0, we have:

∫ ∞

0
ru–1B(c,d

r (x; q) dr ≥ (
qnn)u

�(u)B(x; q)1F1
(
d – c; d; qnn). (4.20)

In particular, if u = 1, one has

∫ ∞

0
B(c,d

r (x; q) dr ≥ qnnB(x; q)1F1
(
d – c; d; qnn). (4.21)

Proof Multiplying (4.18) by ru–1 and then integrating over r ∈ (0,∞), we get

∫ ∞

0
ru–1B(c,d

r (x; q) dr ≥ B(x; q)1F1
(
d – c; d; qnn)∫ ∞

0
ru–1e– r

qnn dr. (4.22)
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Making the change of variable t = r
qnn in (4.22), with some simple manipulations, we get

(4.20) and then (4.21). �

The following result may be stated as well.

Theorem 4.10 Let c > 0, d – c > 0, q > 0, r ≥ 0, and x ∈ (0,∞)n. Then we have

B(c,d)
r (x; q)
B(x; q)

≥ 1F1

(
c; d; –

r
qnn

)
. (4.23)

Proof Again by (1.8), we have

1F1

(
c; d; –

q
π (t)

– r
π (t)

q

)

=
�(d)

�(c)�(d – c)

∫ 1

0
uc–1(1 – u)d–c–1 exp

(
–u

q
π (t)

)
exp

(
–ur

π (t)
q

)
du.

By Lemma 4.5, we have, for any u ∈ [0, 1],

exp

(
–u

q
π (t)

)
≥ exp

(
–

q
π (t)

)
and exp

(
–ur

π (t)
q

)
≥ exp

(
–u

r
qnn

)
.

Substituting these into the following formula:

B(c,d)
r (x; q) =

∫
En–1

n∏
i=1

txi–1
i 1F1

(
c; d; –

q
π (t)

– r
π (t)

q

)
dt,

with an argument of uniform convergence of the involved integrals, we get

B(c,d)
r (x; q) ≥ �(d)

�(c)�(d – c)

∫ 1

0
uc–1(1 – u)d–c–1 exp

(
–u

r
qnn

)
du

×
∫

En–1

n∏
i=1

txi–1
i exp

(
–

q
π (t)

)
dt.

Whence (4.23). The proof is finished. �

Finally, we state the following corollary.

Corollary 4.11 With the same hypotheses as in Theorem 4.10, for any u > 0, we have:

∫ ∞

0
ru–1B(c,d

r (x; q) dr ≥ (
qnn)uB(x; q)�(c,d)(u), (4.24)

where �(c,d)(u) is defined by (2.4). In particular, if taking u = 1, one has

∫ ∞

0
B(c,d

r (x; q) dr ≥ qnnB(x; q)�(c,d)(1).
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Proof If we multiply (4.23) by ru–1 and then integrate over r ∈ (0,∞), we get

∫ ∞

0
ru–1B(c,d

r (x; q) dr ≥ B(x; q)
∫ ∞

0
ru–1

1F1

(
c; d; –

r
qnn

)
dr. (4.25)

Making the change of variable r = qnnt in (4.25), we get

∫ ∞

0
ru–1B(c,d

r (x; q) dr ≥ (
qnn)uB(x; q)

∫ ∞

0
tu–1

1F1(c; d; –t) dt.

Hence (4.24). �

5 Generalized beta function of the second kind
This section deals with another generalized beta function in n variables. In what follows,
we need to use the following notation:

x =: (x1, . . . , xn), a =: (a1, . . . , an), α =: (α1, . . . ,αn),

β =: (β1, . . . ,βn), p =: (p1, . . . , pn).

The central definition of this section is given in what follows.

Definition 5.1 Let x,α,β , a ∈ (0,∞)n, and p ∈ [0,∞)n. The generalized beta function of
the second kind is defined by

B(α,β)
p (x; a) =:

∫
En–1

n∏
i=1

txi–1
i 1F1

(
αi;βi; –

ai

ti
– pi

ti

ai

)
dt, (5.1)

where we set dt =: dt1 · · · dtn–1 and tn =: 1 –
∑n–1

i=1 ti. If p = 0, we simply write B(α,β)(x; a),
i.e.,

B(α,β)(x; a) =:
∫

En–1

n∏
i=1

txi–1
i 1F1

(
αi;βi; –

ai

ti

)
dt. (5.2)

Some special cases are included in the previous definition:
• If α = β and n = 2 then (5.2) coincides with (1.4).
• If α = β and p = 0 then (5.1) is exactly (1.15).
• If α = β , p = 0 and a → 0 then (5.1) and (5.2) are both reduced to (1.10).
As for the generalized beta function of the first kind, one can easily check that the in-

equalities 0 ≤ B(α,β)
p (x; a) ≤ B(x) hold for any x,α,β – α, a ∈ (0,∞)n and p ∈ [0,∞)n. This

justifies the existence of the integral defining B(α,β)
p (x; a) through (5.1).

The basic properties of B(α,β)
p (x; a), analogous to those of Proposition 3.3, are embodied

in the following result.

Proposition 5.2 Let x, α, β , a, p be as previously.
(i) We have the following relationship:

B(α,β)
p (x; a) = B(α∗ ,β∗)

p∗
(
x∗; a∗),
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where τ is any permutation of the set {1, 2, . . . , n} and p∗ =: (pτ (1), . . . , pτ (n)), with similar
settings for α∗, β∗, x∗, a∗.

(ii) The following relation holds:

n∑
i=1

B(α,β)
p (x + ei; a) = B(α,β)

p (x; a),

where (e1, . . . , en) refers to the canonical basis of Rn.

Proof Similar to that of Proposition 3.3. The details are left for the reader. �

Following the uniform convergence of the series (1.7), we can interchange in (5.1) the
series and the integral. This shows that (5.1) is well defined, i.e., the involved integral is
convergent. Further, such an integral is uniformly convergent in any compact set included
in the interior of En–1. This implies that we can take limit and differentiation under the
integral sign of (5.1). In particular, we have

lim
p→0

B(α,β)
p (x; a) = B(α,β)(x; a), (5.3)

where B(α,β)(x; a) is defined by (5.2).
The following result justifies that B(α;β)

p (x; a) is a generalization of the extended beta func-
tion B(x; a) in n variables defined by (1.15).

Proposition 5.3 For any α, x, a ∈ (0,∞)n, we have

B(x; a) = lim
p→0

B(α;α)
p (x; a) =: B(α,α)(x; a).

Proof By (1.7), with the help of (5.3) and (5.2), we have for any i = 1, 2, . . . , n,

1F1

(
αi;αi; –

ai

ti

)
=

∞∑
m=0

(–ai/ti)m

m!
= e–ai/ti .

This, with (1.15) and (5.1), yields the desired result. �

6 Inequalities involving B(α,β)
p (x; a)

In this section, we will discuss some inequalities involving the generalized beta function
of the second kind. We begin by stating the following result.

Theorem 6.1 Let a,α,β – α ∈ (0,∞)n, and p ∈ [0,∞)n. Then the inequality

(
B(α,β)

p (x + y; a)
)2 ≤ B(α,β)

p (2x; a)B(α,β)
p (2y; a)

holds for any x, y ∈ (0,∞)n. Thus, the real-valued map x �→ B(α,β)
p (x; a) is convex on (0,∞)n.

Proof Using similar arguments, it is analogous to that of Theorem 4.1. We left to the reader
the routine task for formulating this proof in a detailed manner. �

We now state the following result which gives an upper bound of B(α,β)
p (x; a).
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Theorem 6.2 Let x, a,α,β – α ∈ (0,∞)n, and p ∈ [0,∞)n. Then

B(α,β)
p (x; a)

B(x)
≤

n∏
i=1

e–ai 1F1

(
βi – αi;βi; ai +

pi

ai

)
, (6.1)

where B(x) is defined by (1.10).

Proof Since the real-valued function z �→ 1F1(a; b; z) is increasing and 0 < ti ≤ 1 for any
i = 1, . . . , n, we have

B(α,β)
p (x; a) ≤

∫
En–1

n∏
i=1

txi–1
i 1F1

(
αi;βi; –ai – pi

ti

ai

)
dt.

This, with (1.9), implies that

B(α,β)
p (x; a) ≤

∫
En–1

n∏
i=1

txi–1
i exp

(
–ai – pi

ti

ai

)
1F1

(
βi – αi;βi; ai + pi

ti

ai

)
dt. (6.2)

Again with 0 < ti ≤ 1 for i = 1, . . . , n, it is clear that

exp

(
–ai – pi

ti

ai

)
≤ e–ai and ai + pi

ti

ai
≤ ai +

pi

ai
. (6.3)

Substituting (6.3) in (6.2), and using again the fact that z �→ 1F1(a; b; z) is increasing, we
get (6.1), and the proof is finished. �

We have the following result as well.

Theorem 6.3 Let x,α,β – α ∈ (0,∞)n, and p ∈ [0,∞)n. For any u =: (u1, . . . , un) ∈ (0,∞)n,
there holds:

∫
(0,∞)n

n∏
i=1

aui–1
i e

pi
ai B(α,β)

p (x; a) da ≤ B(x)�(α,β)
p (u), (6.4)

where da =: da1 · · · dan and �
(α,β)
p (u) is defined by (2.3).

Proof By (1.9), (6.1) can be written as follows:

B(α,β)
p (x; a) ≤ B(x)

n∏
i=1

e– pi
ai 1F1

(
αi;βi; –ai –

pi

ai

)
,

or, equivalently,

n∏
i=1

e
pi
ai B(α,β)

p (x; a) ≤ B(x)1F1

(
αi;βi; –ai –

pi

ai

)
. (6.5)

Multiplying (6.5) by
∏n

i=1 aui–1
i and then integrating with respect to a =: (a1, . . . , an) over

(0,∞)n, with the help of (2.3), we get (6.4). The proof is finished. �
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The following corollary tells us that the map a �→ B(α,β)
p (x; a) is integrable on (0,∞)n

provided that �
(α,β)
p (e) < ∞.

Corollary 6.4 Let x, α, β , p be as in Theorem 6.3. Then we have

(0 ≤)
∫

(0,∞)n
B(α,β)

p (x; a) da ≤
∫

(0,∞)n
e

pi
ai B(α,β)

p (x; a) da ≤ B(x)�(α,β)
p (e). (6.6)

Proof Taking u = e =: (1, 1, . . . , 1) in (6.4), we get the right-hand side inequality of (6.6).
The left-hand side inequality of (6.6) is immediate, since epi/ai ≥ 1 and B(α,β)

p (x; a) ≥ 0. �

Now, we state the following result which concerns a lower bound of B(α,β)
p (x; a).

Theorem 6.5 Let x, a,α,β – α ∈ (0,∞)n, and p ∈ [0,∞)n. Then we have

B(α,β)
p (x; a)
B(x; a)

≥
n∏

i=1

e– pi
ai 1F1(βi – αi;βi; mi), (6.7)

where B(x; a) is defined by (1.15) and mi = max(2√pi, ai). If, moreover, ai ≥ √pi for any
i = 1, . . . , n, then (6.7) can be refined as follows:

B(α,β)
p (x; a)
B(x; a)

≥
n∏

i=1

e– pi
ai 1F1

(
βi – αi;βi; ai +

pi

ai

)
. (6.8)

Proof By (1.9), (5.1) can be written as follows:

B(α,β)
p (x; a) =

∫
En–1

( n∏
i=1

txi–1
i e– ai

ti

)
e–pi

ti
ai 1F1

(
βi – αi;βi;

ai

ti
+ pi

ti

ai

)
dt. (6.9)

It is easy to see that ai
ti

+ pi
ti
ai

≥ 2√pi. Further, since 0 < ti < 1 for any i = 1, . . . , n and the
real-valued map z �→ 1F1(a; b; z) is increasing, we have

e–pi
ti
ai ≥ e– pi

ai and 1F1

(
βi – αi;βi;

ai

ti
+ pi

ti

ai

)
≥ 1F1

(
βi – αi;βi; max(2

√
pi, ai)

)
.

Substituting these into (6.9), with the help of (1.15), we get (6.7).
Now let us remark that we have

(a, p > 0 with a ≥ √
p) �⇒ inf

0<t<1

(
a
t

+ p
t
a

)
= a +

p
a

.

Hence (6.8). The fact that (6.8) refines (6.7) is immediate and the proof is finished. �

We have the following result as well.
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Theorem 6.6 Let x, a,α,β – α ∈ (0,∞)n. For any u =: (u1, . . . , un) ∈ (0,∞)n, we have

∫
(0,∞)n

n∏
i=1

pui–1
i B(α,β)

p (x; a) dp

≥ B(x, a)�(u)

( n∏
i=1

aui
i

) n∏
i=1

1F1(βi – αi;βi; ai), (6.10)

where we set dp =: dp1 · · · dpn and �(u) is defined by (2.2). In particular, if u = e =: (1, . . . , 1)
then one has

∫
(0,∞)n

B(α,β)
p (x; a) dp ≥ B(x, a)

( n∏
i=1

ai

) n∏
i=1

1F1(βi – αi;βi; ai). (6.11)

Proof Multiplying (6.7) by
∏n

i=1 pui–1
i , we obtain

n∏
i=1

pui–1
i B(α,β)

p (x; a) ≥ B(x, a)
n∏

i=1

pui–1
i e–pi/ai

n∏
i=1

1F1(βi – αi;βi; ai). (6.12)

By integrating (6.12) with respect to p ∈ (0,∞)n, we get

∫
(0,∞)n

n∏
i=1

pui–1
i B(α,β)

p (x; a) dp

≥ B(x, a)
n∏

i=1
1F1(βi – αi;βi; ai)

∫
(0,∞)n

n∏
i=1

pui–1
i e–pi/ai . (6.13)

Making the change of variables pi = aivi, i = 1, . . . , n in the right-hand side integral of (6.13),
we obtain

∫
(0,∞)n

n∏
i=1

pui–1
i B(α,β)

p (x; a) dp

≥ B(x, a)
n∏

i=1
1F1(βi – αi;βi; ai)

n∏
i=1

aui
i

∫
(0,∞)n

n∏
i=1

vui–1
i e–vi dv.

Hence (6.10). Taking ui = 1; i = 1, . . . , n in (6.10), we get (6.11). The proof is complete. �

The following result may be recited as well.

Theorem 6.7 Let x, a,α,β – α ∈ (0,∞)n, and p ∈ [0,∞)n. Then we have

B(α,β)
p (x; a)
B(x; a)

≥
n∏

i=1
1F1

(
αi;βi; –

pi

ai

)
. (6.14)
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Proof By (1.8), we have

1F1

(
αi;βi; –

ai

ti
– pi

ti

ai

)
(6.15)

=
�(βi)

�(αi)�(βi – αi)

∫ 1

0
uαi–1(1 – u)βi–αi–1e– ai

ti
ue–pi

ti
ai

u du.

Since 0 < ti ≤ 1 for any i = 1, . . . , n and u ∈ [0, 1], one has

e– ai
ti

u ≥ e– ai
ti and e–pi

ti
ai

u ≥ e– pi
ai

u.

Substituting these into (6.15) and then into (5.1), we get

B(α,β)
p (x; a) ≥

∫
En–1

n∏
i=1

txi–1
i e– ai

ti dt

×
n∏

i=1

�(βi)
�(αi)�(βi – αi)

∫ 1

0
uαi–1(1 – u)βi–αi–1e– pi

ai
u du.

This, with (1.15) and (1.8) again, yields (6.14). This completes the proof. �

We end this section by stating the following result.

Theorem 6.8 Let x, a,α,β – α ∈ (0,∞)n. For any u =: (u1, . . . , un) ∈ (0,∞)n, we have

∫
(0,∞)n

n∏
i=1

pui–1
i B(α,β)

p (x; a) dp ≥ B(x, a)�(α,β)(u)
n∏

i=1

aui
i ,

where �(α,β)(u) is defined by (2.4). In particular, taking u = e =: (1, 1, . . . , 1), we get

∫
(0,∞)n

B(α,β)
p (x, a) dp ≥ B(x, a)�(α,β)(e)

n∏
i=1

ai.

Proof It is similar to that of Theorem 6.6, by utilizing (6.14). We therefore leave the details
for the reader. �
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