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Abstract
In this article, we are interested in some well-known dynamic inequalities on time
scales. For this reason, we will prove some new Hermite–Hadamard (H-H) and Opial
dynamic inequalities on time scales. The main results here will be derived via the
dynamic integration by parts and chain rule formulas on time scales. In addition, we
will extend and unify the inequalities for the convex functions.
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1 Introduction
In 1893, the H-H inequality was established for a convex function ℘ on a given interval
[d1, d2] in [1]:

℘

(
d1 + d2

2

)
≤ 1

d2 – d1

∫ d2

d1

℘(x) dx ≤ ℘(d1) + ℘(d2)
2

. (1.1)

The study of the H-H inequality have been attracted the attention of many scholars. In
recent years, many refinements, generalizations, and extensions have been made to the
inequality (1.1); we advise the interested reader to visit the published papers [2–8] and the
references cited therein.

After the H-H inequality and in 1960, Opial [9] established another important integral
inequality, called in the literature Opial’s integral inequality, which is as follows:

∫ μ

0

∣∣℘(s)℘ ′(s)
∣∣ds ≤ μ

4

∫ μ

0

(
℘ ′(s)

)2 ds, (1.2)

where ℘(s) ∈ C1[0,μ] with ℘(0) = ℘(μ) = 0 and ℘(s) > 0 for s ∈ (0,μ). A best possibility
here is μ

4 . Inequality (1.2) with their extensions play a great role in analysis and its appli-
cations. The interest in inequality (1.2) comes from their mathematical structure. Many
results concerning the generalizations and extensions of this inequality have been estab-
lished; see [10–17].
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The inequalities (1.1) and (1.2) have been proved not only for the ordinary order but also
for various fractional models, for example, the Riemann–Liouville model, the Atangana–
Baleanu model, the tempered fractional model, the Caputo–Fabrizo model, and the con-
formable model; see [18–22] and the references therein.

The use of dynamic system to study the continuous and discrete times is well studied, es-
pecially for the real-world modeling issues. It is better to check if structures can be given
that encourage us in integrating all dynamic systems at the same time to derive a supe-
rior and perspective comprehension of the contrasts between continuous and discrete
domains. In fact, constructing a correlation between discrete and continuous situations
is the primary aim of dynamic equations on time scales. It is well known that the theory
of time scales was originated by Hilger in his Ph.D. thesis [23]. After that, this setting was
evolved by many researchers, for more details refer to [24, 25].

Over the recent couple of years, there has been growing interest in the study of dynamic
inequalities on time scales and this has become an important field in applied and pure
mathematics; see for details [25–30].

This article is devoted to establishing some dynamic H-H and Opial inequalities on time
scales. The obtained inequalities will extend some known integral inequalities, and extend
and unify some continuous inequalities.

The article consists of five sections. Section 1 is for the introduction. In Sect. 2 we
present basic concepts and preliminaries of time scale notations, and in Sect. 3 we discuss
and derive some dynamic inequalities of H-H on time scales. Opial dynamic inequalities
will be discussed in Sect. 4. Section 5 concludes the article finally.

2 Preliminaries
This section deals with recalling time scale notation and basic lemmas on Steffensen in-
equalities on time scales. Let R be the set of real numbers, then a time scale T0 is a
nonempty and closed subset of R. For ι ∈ T0, the forward and backward jump operators
σ ,ρ : T0 → R are, respectively, defined by

σ (ι) = inf{n ∈ T0 : n > ι} and ρ(ι) = sup{n ∈ T0 : n < ι}.

We define the graininess function ℘ : T0 → [0,∞) by ℘(ι) = σ (ι) – ι. An element ι ∈ T0 is
said to be left-dense if ρ(ι) = ι and left-scattered if ρ(ι) < ι, and right-dense if σ (ι) = ι and
right-scattered if σ (ι) > ι. The set T0

k is defined to be T0 if it has a left-scattered maximum
℘2, then T0

k = T0 – {℘2} otherwise T0
k = T0. For further information on these notions we

refer the reader to Refs. [24, 25].

Definition 2.1 ([25]) Assume that ℘ : T0 → R is a real-valued function. Then we say ℘ is
RD-continuous on R if its left limit is finite at any left-dense point of T0 and it is contin-
uous on every right-dense point of T0.

Definition 2.2 ([25]) Assume that ℘ : T0 → R is a real-valued function. Then we say ℘

is LD-continuous on R if its right limit is finite at any right-dense point of T0 and it is
continuous on every left-dense point of T0.

Theorem 2.1 ([25]) Let d1, d2 ∈ T0 with d1 < d2. Let ℘1,℘2 : [d1, d2]T0 → R be �-
integrable functions such that ℘1 of one sign and decreasing and 0 ≤ ℘2(s) ≤ 1 for each
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s ∈ [d1, d2]T0 . Also, suppose that ϑ1,ϑ2 ∈ [d1, d2]T0 such that

d2 – ϑ1 ≤
∫ d2

d1

℘2(s)�s ≤ ϑ2 – d1, if ℘1(s) > 0,∀s ∈ [d1, d2]T0 , (2.1)

ϑ2 – d1 ≤
∫ d2

d1

℘2(s)�s ≤ d2 – ϑ1, if ℘1(s) < 0,∀s ∈ [d1, d2]T0 , (2.2)

then

∫ d2

ϑ1

℘1(s)�s ≤
∫ d2

d1

℘1(s)℘2(s)�s ≤
∫ ϑ2

d1

℘1(s)�s. (2.3)

Theorem 2.2 ([25]) Let d1, d2 ∈ T0 with d1 < d2. Let ℘1,℘2 : [d1, d2]T0 → R be ∇-
integrable functions such that ℘1 is of one sign and decreasing and 0 ≤ ℘2(s) ≤ 1 for each
s ∈ [d1, d2]T0 . Also, suppose that ϑ1,ϑ2 ∈ [d1, d2]T0 such that

d2 – ϑ1 ≤
∫ d2

d1

℘2(s)∇s ≤ ϑ2 – d1, if ℘1(s) > 0,∀s ∈ [d1, d2]T0 ,

ϑ2 – d1 ≤
∫ d2

d1

℘2(s)∇s ≤ d2 – ϑ1, if ℘1(s) < 0,∀s ∈ [d1, d2]T0 ,

then

∫ d2

ϑ1

℘1(s)∇s ≤
∫ d2

d1

℘1(s)℘2(s)∇s ≤
∫ ϑ2

d1

℘1(s)∇s. (2.4)

Theorem 2.3 ([25]) Let d1, d2 ∈ T0 with d1 < d2. Let ℘1,℘2 : [d1, d2]T0 → R be �-
integrable functions such that ℘1 of one sign and decreasing and 0 ≤ ℘2(s) ≤ 1 for each
s ∈ [d1, d2]T0 . Suppose that

λ :=
∫ d2

d1

℘2(s)�s provided that d2 – λ, d1 + λ ∈ T0,

then

∫ d2

d2–λ

℘1(s)�s ≤
∫ d2

d1

℘1(s)℘2(s)�s ≤
∫ d1+λ

d1

℘1(s)�s. (2.5)

Theorem 2.4 ([25]) Let d1, d2 ∈ T0 with d1 < d2. Let ℘1,℘2 : [d1, d2]T0 → R be ∇-
integrable functions such that ℘1 of one sign and decreasing and 0 ≤ ℘2(s) ≤ 1 for each
s ∈ [d1, d2]T0 . Suppose that

λ :=
∫ d2

d1

℘2(s)∇s such that d2 – λ, d1 + λ ∈ T0,

then

∫ d2

d2–λ

℘1(s)∇s ≤
∫ d2

d1

℘1(s)℘2(s)∇s ≤
∫ d1+λ

d1

℘1(s)∇s. (2.6)
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Theorem 2.5 (�-integration by parts [24, 25]) Let ℘1,℘2 : [d1, d2]T0 → R with ℘1,℘2 ∈
CRD and d1, d2 ∈ T0. Then the integration by parts in the sense of � is formulated as
follows:

∫ d2

d1

℘1(s)℘�
2 (s)�s = ℘1(s)℘2(s)|d2

d1
–

∫ d2

d1

℘�
1 (s)℘σ

2 (s)�s, (2.7)

Theorem 2.6 (∇-integration by parts [17, 24, 25]) Let ℘1,℘2 : [d1, d2]T0 → R with ℘1,℘2 ∈
CLD and d1, d2 ∈ T0. Then the integration by parts in the sense of ∇ is formulated as fol-
lows:

∫ d2

d1

℘1(s)℘∇
2 (s)∇s = ℘1(s)℘2(s)|d2

d1
–

∫ d2

d1

℘∇
1 (s)℘ρ

2 (s)∇s. (2.8)

Definition 2.3 ([31]) Let d1, d2 ∈ T0 with d1 < d2. A function ℘ : T0 → R is said to be
convex on T0, if

℘
(
ϑd1 + (1 – ϑ)d2

) ≤ ϑ℘(d1) + (1 – ϑ)℘(d2)

holds for each ϑ ∈ T0[d1,d2] ⊆ [0, 1].

3 Dynamic H-H inequalities
Theorem 3.1 Let ℘ : [d1, d2]T0 → R be convex and monotonic and d1, d2 ∈ T0 with d1 < d2.
Suppose that also ϑ1,ϑ2 ∈ [d1, d2]T0 , then we have

℘

(
ϑ1 + ϑ2

2

)
≤ 1

d2 – d1

∫ d2

d1

℘σ (s)�s ≤ 2℘(d1) – ℘(ϑ1) – ℘(ϑ2) + 2℘(d2)
2

, (3.1)

such that d1+d2
2 , ϑ1+ϑ2

2 ∈ T0 and

ϑ1,ϑ2 ≥ d1 + 3d2

4
, if ℘ is decreasing,

ϑ1,ϑ2 ≤ d1 + 3d2

4
, if ℘ is increasing.

Proof Suppose that ℘ is decreasing and convex. It follows that ℘� ≤ 0. Set 	1 := –℘�,
then it is clear that 	1 is decreasing and 	1 ≥ 0. If we choose 	2(s) := 2(d2–s)

d2–d1
, we see that

0 ≤ 	2(s) ≤ 1 for each s ∈ [ d1+d2
2 , d2]. Now, by making use of inequality (2.1) with ℘2(s) =

	2(s) = 2(d2–s)
d2–d1

, we get

d2 – ϑ1 ≤ d2 – d1

4
≤ ϑ2 –

d1 + d2

2
.

This implies that ϑ1,ϑ2 ≥ d1+3d2
4 . Thus, 	1 and 	2 satisfy the hypotheses in Theorem 2.1

and therefore

∫ d2

ϑ1

	1(s)�s ≤
∫ d2

d1+d2
2

	1(s)	2(s)�s ≤
∫ ϑ2

d1+d2
2

	1(s)�s. (3.2)
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By using �-integration by parts (Theorem 2.5), we have

∫ d2

d1+d2
2

	1(s)	2(s)�s = ℘

(
d1 + d2

2

)
–

2
d2 – d1

∫ d2

d1+d2
2

℘σ (s)�s.

Then, by making use of the above and the fact
∫ x2

x1
	1(s)�s = ℘(x1)–℘(x2) in the inequality

(3.2), we get

℘(ϑ1) – ℘(d2) ≤ ℘

(
d1 + d2

2

)
–

2
d2 – d1

∫ d2

d1+d2
2

℘σ (s)�s ≤ ℘

(
d1 + d2

2

)
– ℘(ϑ2).

This simplifies to

℘(ϑ2) ≤ 2
d2 – d1

∫ d2

d1+d2
2

℘σ (s)�s ≤ ℘(d1) + ℘(d2)
2

+ ℘(d2) – ℘(ϑ1), (3.3)

where we used the convexity of ℘ to get ℘( d1+d2
2 ) ≤ ℘(d1)+℘(d2)

2 .
On the other hand, if we choose 	3(s) := 2(s–d1)

d2–d1
, we see that 0 ≤ 	3(s) ≤ 1 for each

s ∈ [d1, d1+d2
2 ]. Again, by making use of inequality (2.1) for the new 	3(s), we find

d1 + d2

2
– ϑ1 ≤ d2 – d1

4
≤ ϑ2 – d1.

This implies that ϑ1,ϑ2 ≥ 3d1+d2
4 < d1+3d2

4 . Thus, 	1 and 	3 satisfy the hypotheses in The-
orem 2.1. Then, by using the same technique as used above, we can deduce

℘(ϑ1) ≤ 2
d2 – d1

∫ d1+d2
2

d1

℘σ (s)�s ≤ ℘(d1) + ℘

(
d1 + d2

2

)
– ℘(ϑ2).

By convexity of ℘ , it follows that

℘(ϑ1) ≤ 2
d2 – d1

∫ d1+d2
2

d1

℘σ (s)�s ≤ ℘(d1) +
℘(d1) + ℘(d2)

2
– ℘(ϑ2). (3.4)

Adding inequalities (3.3) and (3.4) together and simplifying the result we get

℘(ϑ2) + ℘(ϑ1)
2

≤ 1
d2 – d1

∫ d2

d1

℘σ (s)�s ≤ 2℘(d1) + 2℘(d2)
2

–
℘(ϑ2) + ℘(ϑ1)

2
.

Again, by using the convexity of ℘ (we see ℘( ϑ2+ϑ1
2 ) ≤ ℘(ϑ2)+℘(ϑ1)

2 ) for the last inequality
and rearranging the terms, we get the desired result. �

Corollary 3.1 Theorem 3.1 with ϑ1 = ϑ2 = d1+3d2
4 gives the new inequality

℘

(
d1 + 3d2

4

)
≤ 1

d2 – d1

∫ d2

d1

℘σ (s)�s ≤ 2℘(d1) + 2℘(d2)
2

– ℘

(
d1 + 3d2

4

)
. (3.5)
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Theorem 3.2 Let ℘ : [d1, d2]T0 → R be convex and monotonic and d1, d2 ∈ T0 with d1 < d2,
then we have

℘

(
d1 + d2

2

)
≤ 1

d2 – d1

∫ d2

d1

℘σ (s)�s ≤ 2℘(d1) + 2℘(d2)
2

– ℘

(
d1 + d2

2

)
, (3.6)

such that d1+d2
2 ∈ T0.

Proof Suppose that ℘ is decreasing and convex. It follows that ℘� ≤ 0. Let 	1 := –℘�,
then we see that 	1 is decreasing and 	1 ≥ 0. If we choose 	2(s) := d2–s

d2–d1
, we see that

0 ≤ 	2(s) ≤ 1 for each s ∈ [d1, d2]. Moreover,

λ :=
∫ d2

d1

	2(s)�s =
d2 – d1

2
.

It follows that d1 + λ = d2 – λ = d1+d2
2 ∈ T0. Thus, 	1 and 	2 satisfy the hypotheses in

Theorem 2.3 and therefore inequality (2.5) holds true for 	1 = –℘� and 	2(s) = d2–s
d2–d1

.

∫ d2

d1+d2
2

	1(s)�s ≤
∫ d2

d1

	1(s)	2(s)�s ≤
∫ d1+d2

2

d1

	1(s)�s.

By making use of integration by parts and the fact
∫ x2

x1
	1(s)�s = ℘(x1) – ℘(x2), we can

deduce

℘

(
d1 + d2

2

)
– ℘(d2) ≤ ℘(d1) –

1
d2 – d1

∫ d2

d1

℘σ (s)�s ≤ ℘(d1) – ℘

(
d1 + d2

2

)
,

which rearranges to the desired result. �

The above results can be obtained for the ∇ case by using Theorems 2.2 and 2.4, respec-
tively.

Theorem 3.3 Let ℘ : [d1, d2]T0 → R be convex and monotonic and d1, d2 ∈ T0 with d1 < d2.
Suppose that also ϑ1,ϑ2 ∈ [d1, d2]T0 , then we have

℘

(
ϑ1 + ϑ2

2

)
≤ 1

d2 – d1

∫ d2

d1

℘ρ(s)∇s ≤ 2℘(d1) – ℘(ϑ1) – ℘(ϑ2) + 2℘(d2)
2

, (3.7)

such that d1+d2
2 , ϑ1+ϑ2

2 ∈ T0 and

ϑ1,ϑ2 ≥ d1 + 3d2

4
, if ℘ is decreasing,

ϑ1,ϑ2 ≤ d1 + 3d2

4
, if ℘ is increasing.

Corollary 3.2 Theorem 3.3 with ϑ1 = ϑ2 = d1+3d2
4 gives the new inequality

℘

(
d1 + 3d2

4

)
≤ 1

d2 – d1

∫ d2

d1

℘ρ(s)∇s ≤ 2℘(d1) + 2℘(d2)
2

– ℘

(
d1 + 3d2

4

)
. (3.8)
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Theorem 3.4 Let ℘ : [d1, d2]T0 → R be convex and monotonic and d1, d2 ∈ T0 with d1 < d2,
then we have

℘

(
d1 + d2

2

)
≤ 1

d2 – d1

∫ d2

d1

℘ρ(s)∇s ≤ 2℘(d1) + 2℘(d2)
2

– ℘

(
d1 + d2

2

)
, (3.9)

such that d1+d2
2 ∈ T0.

4 Dynamic Opial inequalities
Theorem 4.1 Let 0,μ ∈ T0. For a delta differentiable and increasing function ℘ :
[0,μ]T0 → R with ℘(0) = 0, then

∣∣℘(μ)
∣∣(∣∣℘(μ)

∣∣ –
∣∣∣∣℘

(
μ

2

)∣∣∣∣
)

≤
∫ μ

0

∣∣℘(s)
∣∣∣∣℘�(s)

∣∣�s ≤ ∣∣℘(μ)
∣∣∣∣∣∣℘

(
μ

2

)∣∣∣∣, (4.1)

with equality when ℘(s) = cs, for some c ∈ R.

Proof Let 	1(s) := |℘�(s)|, then 	1(s) ≥ 0 for all s ∈ [0,μ]. Taking 	2(s) := |℘(s)|
|℘(μ)| and since

℘(s) is an increasing function on [0,μ], we see that 0 ≤ 	2(s) ≤ 1 for each s ∈ [0,μ]. Thus,
	1 and 	2 satisfy the hypotheses in Theorem 2.3. Hence

∫ μ

μ
2

	1(s)�s ≤
∫ μ

0
	1(s)	2(s)�s ≤

∫ μ
2

0
	1(s)�s.

So,

∫ μ

μ
2

∣∣℘�(s)
∣∣�s ≤ 1

|℘(μ)|
∫ μ

0

∣∣℘(s)
∣∣∣∣℘�(s)

∣∣�s ≤
∫ μ

2

0

∣∣℘�(s)
∣∣�s.

By making use of integration by parts and the fact

∫ a2

a1

	1(s)�s =
∣∣℘(a2)

∣∣ –
∣∣℘(a1)

∣∣,

we get

∣∣℘(μ)
∣∣ –

∣∣∣∣℘
(

μ

2

)∣∣∣∣ ≤ 1
|℘(μ)|

∫ μ

0

∣∣℘(s)
∣∣∣∣℘�(s)

∣∣�s ≤
∣∣∣∣℘

(
μ

2

)∣∣∣∣ –
∣∣℘(0)

∣∣. (4.2)

Multiplying inequality (4.2) on both sides by the factor |℘(μ)| > 0 and from the condition
℘(0) = 0 we obtain the desired result (4.1). Now, let ℘(s) = cs for some c ∈ R. Then ℘�(s) =
c and it is easy to check that equality holds in (4.1). The proof is complete. �

Theorem 4.2 Let d1, d2 ∈ T0 and d1 < d2. Assume that ℘,℘σ ,℘� ∈CRD([d1, d2]T0 , R) and
p > 1. Then

(∫ d2

d1

∣∣℘(s) + ℘σ (s)
∣∣p∣∣℘�(s)

∣∣�s
) 1

p
≤

(∫ d2

d1

∣∣℘(s)
∣∣p∣∣℘�(s)

∣∣�s
) 1

p

+
(∫ d2

d1

∣∣℘σ (s)
∣∣p∣∣℘�(s)

∣∣�s
) 1

p
. (4.3)
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Proof Note

∫ d2

d1

∣∣℘(s) + ℘σ (s)
∣∣p∣∣℘�(s)

∣∣�s

=
∫ d2

d1

∣∣℘(s) + ℘σ (s)
∣∣p–1∣∣℘(s) + ℘σ (s)

∣∣∣∣℘�(s)
∣∣�s

≤
∫ d2

d1

∣∣℘(s) + ℘σ (s)
∣∣p–1∣∣℘(s)

∣∣∣∣℘�(s)
∣∣�s

+
∫ d2

d1

∣∣℘(s) + ℘σ (s)
∣∣p–1∣∣℘σ (s)

∣∣∣∣℘�(s)
∣∣�s.

Applying the Hölder inequality, we get

∫ d2

d1

∣∣℘(s) + ℘σ (s)
∣∣p∣∣℘�(s)

∣∣�s

≤
(∫ d2

d1

(∣∣℘(s) + ℘σ (s)
∣∣p–1)q∣∣℘�(s)

∣∣�s
) 1

q
(∫ d2

d1

∣∣℘(s)
∣∣p∣∣℘�(s)

∣∣�s
) 1

p

+
(∫ d2

d1

(∣∣℘(s) + ℘σ (s)
∣∣p–1)q∣∣℘�(s)

∣∣�s
) 1

q
(∫ d2

d1

∣∣℘σ (s)
∣∣p∣∣℘�(s)

∣∣�s
) 1

p

=
(∫ d2

d1

∣∣℘(s) + ℘σ (s)
∣∣p∣∣℘�(s)

∣∣�s
) 1

q

×
[(∫ d2

d1

∣∣℘(s)
∣∣p∣∣℘�(s)

∣∣�s
) 1

p
+

(∫ d2

d1

∣∣℘σ (s)
∣∣p∣∣℘�(s)

∣∣�s
) 1

p
]

.

Therefore

(∫ d2

d1

∣∣℘(s) + ℘σ (s)
∣∣p∣∣℘�(s)

∣∣�s
) 1

p

=
(∫ d2

d1

∣∣℘(s) + ℘σ (s)
∣∣p∣∣℘�(s)

∣∣�s
)1– 1

q

≤
[(∫ d2

d1

∣∣℘(s)
∣∣p∣∣℘�(s)

∣∣�s
) 1

p
+

(∫ d2

d1

∣∣℘σ (s)
∣∣p∣∣℘�(s)

∣∣�s
) 1

p
]

,

which is the desired inequality (4.3). The proof is completed. �

By making use of Theorem 4.1 and the well-known inequality

|d1 + d2|p ≤ 2p–1(|d1|p + |d2|p
)
, p ≥ 1,

we can obtain the following result.
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Corollary 4.1 Let 0,μ ∈ T0. Assume that ℘,℘σ ,℘� ∈CRD([0,μ]T0 , R). For a delta differ-
entiable and increasing function ℘ : [0,μ]T0 → R with ℘(0) = ℘σ (0) = 0 and p ≥ 1, then

∫ μ

0

∣∣℘(s) + ℘σ (s)
∣∣p∣∣℘�(s)

∣∣�s ≤ 2p–1
∣∣∣∣℘

(
μ

2

)∣∣∣∣(
∣∣℘(μ)

∣∣p +
∣∣℘σ (μ)

∣∣p). (4.4)

By making use of Theorems 4.1 and 4.2, we can deduce the following inequality.

Corollary 4.2 Let 0,μ ∈ T0. Assume that ℘,℘σ ,℘� ∈CRD([0,μ]T0 , R). For a delta differ-
entiable and increasing function ℘ : [0,μ]T0 → R with ℘(0) = ℘σ (0) = 0 and p > 1, then

(∫ μ

0

∣∣℘(s) + ℘σ (s)
∣∣p∣∣℘�(s)

∣∣�s
) 1

p
≤

∣∣∣∣℘
(

μ

2

)∣∣∣∣
1
p (∣∣℘(μ)

∣∣ +
∣∣℘σ (μ)

∣∣). (4.5)

The above results can be obtained for the ∇ case by using Theorems 2.2 and 2.4, respec-
tively.

Theorem 4.3 Let 0,μ ∈ T0. For a nabla differentiable and increasing function ℘ :
[0,μ]T0 → R with ℘(0) = 0, then

∣∣℘(μ)
∣∣(∣∣℘(μ)

∣∣ –
∣∣∣∣℘

(
μ

2

)∣∣∣∣
)

≤
∫ μ

0

∣∣℘(s)
∣∣∣∣℘∇ (s)

∣∣∇s ≤ ∣∣℘(μ)
∣∣
∣∣∣∣℘

(
μ

2

)∣∣∣∣, (4.6)

with equality when ℘(s) = cs, for some c ∈ R.

Theorem 4.4 Let d1, d2 ∈ T0 and d1 < d2. Assume that ℘,℘ρ ,℘∇ ∈CLD([d1, d2]T0 , R) and
p > 1. Then

(∫ d2

d1

∣∣℘(s) + ℘ρ(s)
∣∣p∣∣℘∇ (s)

∣∣∇s
) 1

p
≤

(∫ d2

d1

∣∣℘(s)
∣∣p∣∣℘∇ (s)

∣∣∇s
) 1

p

+
(∫ d2

d1

∣∣℘ρ(s)
∣∣p∣∣℘∇ (s)

∣∣∇s
) 1

p
. (4.7)

By making use of Theorems 4.3 and 4.4, we can deduce the following inequalities, re-
spectively.

Corollary 4.3 Let 0,μ ∈ T0. Assume that ℘,℘ρ ,℘∇ ∈CLD([0,μ]T0 , R). For a nabla differ-
entiable and increasing function ℘ : [0,μ]T0 → R with ℘(0) = ℘ρ(0) = 0 and p > 1, then

(∫ μ

0

∣∣℘(s) + ℘ρ(s)
∣∣p∣∣℘∇ (s)

∣∣∇s
) 1

p
≤

∣∣∣∣℘
(

μ

2

)∣∣∣∣
1
p (∣∣℘(μ)

∣∣ +
∣∣℘ρ(μ)

∣∣). (4.8)

Corollary 4.4 Let 0,μ ∈ T0. Assume that ℘,℘ρ ,℘∇ ∈CLD([0,μ]T0 , R). For a nabla differ-
entiable and increasing function ℘ : [0,μ]T0 → R with ℘(0) = ℘ρ(0) = 0 and p ≥ 1, then

∫ μ

0

∣∣℘(s) + ℘ρ(s)
∣∣p∣∣℘∇ (s)

∣∣∇s ≤ 2p–1
∣∣∣∣℘

(
μ

2

)∣∣∣∣(
∣∣℘(μ)

∣∣p +
∣∣℘ρ(μ)

∣∣p). (4.9)
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5 Conclusion
In this article, by making use of the well-known dynamic inequalities, a dynamic version of
integration by parts and chain rule formulas, we obtained some useful dynamic H-H and
Opial inequalities on time scales. The derived inequalities generalize some well-known
dynamic inequalities in the literature. For this purpose, the reader can see corollaries and
remarks after each theorem of the main results.

Acknowledgements
This Research was supported by Taif University Researchers Supporting Project Number (TURSP-2020/217), Taif University,
Taif, Saudi Arabia, and the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST)
(No. 2017R1A2B4006092).

Funding
Not applicable.

Availability of data and materials
No data were used to support this study.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq.
2Department of Mathematics, Hannam University, Daejeon 34430, Korea. 3Department of Mathematics, Faculty of
Technical Science, University Ismail Qemali, Vlora, Albania. 4Department of Mathematics and Statistics, College of
Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 17 February 2021 Accepted: 27 April 2021

References
1. Hadamard, J.: Étude sur les propriétés des fonctions entières en particulier d’une fonction considérée par Riemann. J.

Math. Pures Appl. 58, 171–215 (1893)
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