
Zhao et al. Journal of Inequalities and Applications         (2021) 2021:86 
https://doi.org/10.1186/s13660-021-02622-x

R E S E A R C H Open Access

Quantile Jensen’s inequalities
Mu Zhao1, Xinai Yang2, Qi He3, Zunrong Zhou1 and Xiangyu Ge1*

*Correspondence:
xiangyu_ge@163.com
1School of Statistics and
Mathematics, Zhongnan University
of Economics and Law, 430073,
Wuhan, China
Full list of author information is
available at the end of the article

Abstract
Quantiles of random variable are crucial quantities that give more delicate
information about distribution than mean and median and so on. We establish
Jensen’s inequality for q-quantile (q ≥ 0.5) of a random variable, which includes as a
special case Merkle (Stat. Probab. Lett. 71(3):277–281, 2005) where Jensen’s inequality
about median (i.e. q = 0.5) was given. We also refine this inequality in the case where
q < 0.5. An application to the confidence interval of parameters in pivotal quantity is
also considered by virtue of the rigorous description on the relationship between
quantiles and intervals that have required probability.
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1 Introduction and preliminaries
Inequalities play a central role in all mathematical branches, especially in approximation
theory, as illustrated by monographs such as Hardy et al. [2] and Kazarinoff [3]. The fa-
mous Jensen inequality is one of the most useful inequalities in probability and statistics,
which applies to convex functions. A function f (x) defined on R is proved to be a convex
function if f (λx + (1 – λ)y) ≤ λf (x) + (1 – λ)f (y) for all x and y, and 0 ≤ λ ≤ 1. In addi-
tion, a function f (x) is said to be a concave function if –f (x) is a convex function. When
applied with expectation operator in probability, Jensen’s inequality states that, for any
real-valued random variable X with a finite expectation E|X| and for any convex func-
tion f , f (EX) ≤ Ef (X) holds. The equality holds if and only if, for every line a + bx that
is related to be tangent f (x) at x = EX, P(f (X) = a + bX) = 1. When we apply Jensen’s in-
equality to concave functions, we have a converse inequality, that is, if f is concave, then
f (EX) ≥ Ef (X).

There are some interesting examples about Jensen’s inequality. One immediate applica-
tion of Jensen’s inequality on f (x) = x2 shows that EX2 ≥ (EX)2 for any real-valued random
variables. This is also a consequence if one thinks of Var(X) = EX2 – (EX)2 ≥ 0. Also, it is
obvious that 1/x is convex on (0,∞). Accordingly, E(1/X) ≥ 1/EX, if X > 0 almost surely.
Other applications of Jensen’s inequality can be found almost in every textbook in the field
of probability and statistics, for example, in proving an inequality between any two of the
three different kinds of means (see Casella and Berger [4]), in proving the relationship be-
tween convergence in the rth mean and convergence in the sth mean with 0 < s < r (see
Serfling [5], p. 7), etc. Jensen’s inequality can also play a significant role in the fields of
applied mathematics (see Mitrinović, Pečarić, and Fink [6]; Malamud [7]), information
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theory (see Dragomir [8]; Budimir et al. [9]), and pricing theory of financial derivatives
(see Hull [10]). Different kinds of generalizations and variant of Jensen’s inequalities can
also be found, for example, in To and Yip [11], Rigler et al. [12], Agnew and Pecaric [13].

Another analogue of Jensen’s inequality was given by Merkle [1], where median is in
lieu of expectation operator; moreover, Merkle [14] generalized median Jensen’s inequal-
ity to the multivariate case; Kwiecien and Gather [15] proved another analogous Jensen’s
inequality with the expectation operator replaced by the Tukey-median-operator.

As median is a special case of quantile with q = 1/2, we are very much curious whether
Jensen’s inequality still holds for general q-quantile. As far as we know, no relevant work is
available in the literature. The present paper contributes in three folds: Firstly, we describe
the relationship between quantiles and intervals that have corresponding probability when
q ≥ 1/2; also we show that this relationship is violated when q < 1/3, and further when
1/3 ≤ q < 1/2 we illustrate with several examples that this relationship can be both possible
and impossible.

Secondly, we show rigorously that Jensen’s inequality with quantile operator and C-
functions, which is more general than convex functions (defined in the paper), still holds
for q-quantile (q ≥ 1/2) and any random variable X, while a refinement of the correspond-
ing inequality is derived in the case that q < 1/2 though quantile Jensen’s inequality does
not hold in this situation. Thirdly, we establish a stringent description for confidence in-
terval of parameters in any pivotal quantity by virtue of the relationship in the first con-
tribution.

The remaining part of the paper is arranged as follows. Two crucial lemmas that are
fundamental for our theoretical development in the following sections are presented in
Sect. 2; Sect. 3 shows our main results including quantile Jensen’s inequality when q ≥ 1/2
and its refinement when q < 1/2. Section 4 applies the assertion developed in Sect. 2 to
construct a confidence interval for pivotal quantity. Some concluding remarks are in-
cluded in Sect. 5.

2 Two crucial lemmas
Let X be a random variable defined on some probability space (�,F , P). By definition, a
q-quantile (q ∈ [0, 1]) of X is any real number μq that satisfies the inequalities

P(X ≤ μq) ≥ q and P(X ≥ μq) ≥ 1 – q. (1)

As to any random variable X, its q-quantile either is unique or there are infinitely many
of them such that all its q-quantiles are abound within a closed bounded interval [a, b].
Apparently, one significant feature of the quantile is that μq is nondecreasing with q, that
is, μq ≤ μq′ whenever q ≤ q′.

In the sequel we refer to all intervals like (–∞, a] and [b,∞) for any real number a and
b as closed half lines.

Lemma 1 Let I be either a closed half line or a closed interval on R and q ≥ 1
2 . We have:

(i) If P(X ∈ I) = q, then there exist both q-quantile and (1 – q)-quantile of X in I ;
additionally, for any η : 1 – q < η < q, I contains all η-quantiles of X .

(ii) Suppose that the set S possesses the following property: If J is any closed interval
which has S as a proper subset, that is, S ⊂ J , then P(X ∈ J) > q. Then S includes all
η-quantiles of X , where 1 – q ≤ η ≤ q.
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As a special case where q = 1
2 , the lemma is reduced to Lemma 1.2 of Merkle [1]. Ac-

cordingly, we shall dwell on the case q > 1
2 .

Proof (i) Note that, if I = (–∞, b], then clearly b is one q-quantile of X. If I = [a,∞), then
for any ξ < a, ξ is not a q-quantile of X since P(X ≤ ξ ) ≤ P(X ≤ a) = 1 – q < q. Therefore,
all q-quantiles of X are in I = [a,∞).

Moreover, let I = [a, b] and suppose that there is no q-quantile in I . Notice that if μq > b,
then P(X ≤ b) ≥ P(X ∈ I) = q and P(X ≥ b) ≥ P(X ≥ μq) ≥ 1 – q, implying that b is a q-
quantile of X, a contradiction; if μq < a, then P(X ≤ a) ≥ P(X ≤ μq) ≥ q and P(X ≥ a) ≥
P(X ∈ I) = q ≥ 1 – q, so that a is a q-quantile too, another contradiction. In conclusion,
there at least exists a q-quantile in I .

Next, given P(X ∈ I) = q and q > 1
2 , in order to prove the existence of μ1–q ∈ I , let us

consider the three possibilities of I . If I = (–∞, b], for any ξ > b, ξ cannot be a (1 – q)-
quantile. Indeed, P(X ≥ ξ ) ≤ P(X > b) = 1 – q < q = 1 – (1 – q), which indicates that ξ is not
a (1 – q)-quantile. If I = [a,∞), then a obviously is a 1 – q quantile. Thirdly, if I = [a, b] and
there is a (1 – q)-quantile μ1–q such that μ1–q > b, then we have P(X ≤ b) ≥ P(X ∈ I) = q >
1 – q and P(X ≥ b) ≥ P(X ≥ μ1–q) ≥ q. Thus, b is a (1 – q)-quantile too. Conversely, if μ1–q

is a (1 – q)-quantile such that μ1–q < a, so is a by the same reason.
Additionally, because there are both (1 – q)-quantile and q-quantile in I , the assertion

holds for 1 – q < η < q immediately due to the monotonicity of a quantile function.
(ii) Firstly, we prove that S contains all q-quantiles of X. Suppose that μq is a q-quantile of

X and μq /∈ S. It is evident that J is set in a closed interval such that J ⊃ S and μq /∈ J . Then J
is disjoint with one of sets A = (–∞,μq] or B = [μq,∞). Thus, either P(X ∈ A) < 1– q < q or
P(X ∈ B) < 1 – q, which implies that μq is not a q-quantile of X. Therefore, all q-quantiles
of X are in S.

Next, in a similar fashion, we can show that (ii) holds for η = 1 – q. Finally, by the mono-
tonicity of quantile function, we have that (ii) holds for 1 – q < η < q. �

Since the assertions in Lemma 1 are based on the condition q ≥ 1
2 , we are curious what

happens for the case where q < 1
2 . Intuitively, if P(X ∈ I) = q < 1

2 , then the set I is relatively
“small” since the measure of the entire real line R by P(X ∈ ·) is one, whereas the comple-
ment of I is sufficiently large to contain possibly the quantiles. By contrast the set I such
that P(X ∈ I) = q ≥ 1

2 is relatively “large”, that is the key to validate the assertions in Lemma
1. Thus, we may not be able to conclude similar assertions as in Lemma 1. Nevertheless,
we have the following lemma.

Lemma 2 Let I be any interval on R or half line and 0 < q < 1
3 . If P(X ∈ I) = q, then either

μq or μ1–q is not in I .

Proof Since 1 – q > q, we have μ1–q ≥ μq. It follows from the definition that

P(μq ≤ X ≤ μ1–q) = P(X ≤ μ1–q) – P(X < μq)

≥ 1 – q –
[
1 – P(X ≥ μq)

]

= P(X ≥ μq) – q ≥ 1 – 2q

> q.
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Thus, it is impossible that the interval [μq,μ1–q] can be covered by I ; thus at least one of
μq and μ1–q is not in I , which finishes the proof. �

This lemma shows that when q < 1
3 , Lemma 1 is no longer valid, a sufficient condition

that hamstrings the preceding lemma. However, when 1
3 ≤ q < 1

2 , both positive and nega-
tive examples exist.

Example 2.1 Suppose that X ∼ Unif[0, 1]. Let q = 0.4 and I = [0.3, 0.7]. Then both μ0.4 =
0.4 and μ0.6 = 0.6 are included in I .

Example 2.2 Suppose that X ∼ Unif[0, 2]; let q = 0.4 and I = [0.1, 0.9]. Then μ0.4 = 0.8 ∈ I ,
but μ0.6 = 1.2 /∈ I ; for another choice I = [1.1, 1.9], μ0.4 = 0.8 /∈ I , but μ0.6 = 1.2 ∈ I .

It follows from Lemmas 1 and 2 and Examples 2.1 and 2.2 that we may divide the uni-
tary interval into three subintervals [0, 1

3 ), [ 1
3 , 1

2 ), and [ 1
2 , 1], where on the last one both

q-quantiles and (1 – q)-quantiles are included in any closed half line or closed interval
that has probability q ∈ [ 1

2 , 1], on the first subinterval [0, 1
3 ) this fact fails to hold, while on

the middle part both positive and negative conclusions may happen.

3 Quantile Jensen’s inequality
Quantile Jensen’s inequality is established below with C-functions. Recall that the C-
functions are real-valued functions f defined on R such that, for any u ∈R, the set

f –1((–∞, u]) =
{

x : f (x) ≤ u
}

is a closed interval, a singleton, or an empty set.
Note that it happens to be lower semicontinuous if f –1((–∞, u]) belongs to a closed

interval for any u ∈ R. Therefore, it is clear that a C-function is lower semicontinuous,
hence f (x) ≤ lim infy→x f (y) for any x ∈R. In addition, every C-function f (x) has finite left
and right limits at any x, and f (x) ≤ min(f (x–), f (x+)).

On the other hand, if f (x) is convex on R, it definitely belongs to the class of C-functions;
the same as any monotone and continuous function on R. Similarly, any continuous func-
tion with nonincreasing on (–∞, a) and nondecreasing on (a,∞), for a fixed a, is deemed
to be a C-function e.g. all loss functions used in statistics. More discussion can be found
in Merkle [1].

Theorem 1 (Jensen’s inequality for quantile) Let g be a C-function and X be any real
random variable. Suppose that q ≥ 1

2 . Then, if μX
q , the q-quantile of X, is unique, then

g
(
μX

q
) ≤ μg(X)

q , (2)

where μ
g(X)
q is any q-quantile of g(X). Conversely, if μ

g(X)
q is unique, (2) holds for any q-

quantile of X. General speaking, for any q-quantile of g(X), there exists a q-quantile of X
such that (2) holds.

Proof Let μ
g(X)
q be one q-quantile of g(X), and define I = g–1((–∞,μg(X)

q ]). Then

P(X ∈ I) = P
(
g(X) ≤ μg(X)

q
) ≥ q,
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and by Lemma 1 there is one μX
q in I which implies g(μq) ≤ μ

g(X)
q . Therefore, it has been

proved that for any q-quantile of g(X) there exists a q-quantile of X such that (2) holds.
In particular, it is implied that if μX

q is unique, (2) holds for any q-quantile of g(X). It is
supposed that μ

g(X)
q is unique. We only need to prove the property of interval I described

in (ii) of Lemma 1. In fact, if otherwise, it can be found that there is a closed interval J
under the condition such that I is a proper subset of J and P(X ∈ J) = q. Without loss of
generality, we assume I = (–∞, b], J = (–∞, c], where c > b. Then, there is x0 such that
x0 /∈ I, x0 ∈ J , and g(x0) > μ

g(X)
q . Let M = μ

g(X)
q + (g(x0) – μ

g(X)
q )/2. It is easy to show that

the closed interval I1 = g–1((–∞, M]) is contained in J due to the lower semicontinuous
property of g , which also means

P
(
g(X) ≤ M

)
= P(X ∈ I1) = q.

Consequently, M is a q-quantile of g(X), which is contradictory to the uniqueness of μ
g(X)
q .

Therefore, we complete the proof of Theorem 1. �

Remark 1 The theorem indicates that, when q ≥ 1
2 , the quantile operator μX

q , along with
any C-function, possesses Jensen’s inequality, which extremely extends the existing liter-
ature; unfortunately, this cannot be guaranteed when q < 1

2 as illustrated in the following
remark.

Remark 2 Theorem 1 does not hold for the case q < 1
2 yet. For example, let g(x) = x2 and

X be a discrete random variable with

X –3 –2 –1 0 1 2 3

Pr 1
4

1
4

1
4

1
16

1
16

1
16

1
16

It is easy to check that {μ0.25} = [–3, –2], {μ0.5} = [–2, –1], {μ0.75} = [–1, 0] and {μX2
0.25} =

{1}, {μX2
0.5} = {4}, {μX2

0.75} = {9}. Then, for any 0.25-quantile of X, we have (μ0.25)2 > μX2
0.25 i.e.

Theorem 1 does not hold for q = 0.25.

Although Theorem 1 may not hold for the case q < 1
2 , it is interesting to find that we still

can construct a similar inequality for q-quantile of X in this case.

Corollary 1 Let g be a C-function and X be any real random variable. Suppose that q < 1
2 .

Then, if μX
q is unique,

g
(
μX

q
) ≤ μ

g(X)
1–q , (3)

where μ
g(X)
1–q is any (1 – q)-quantile of g(X). If μ

g(X)
1–q is unique, (3) holds for any q-quantile

of X. General speaking, for any (1 – q)-quantile of g(X), a q-quantile of X such that (3) is
available.

Proof By noting that μX
q = –μ–X

1–q and the fact that if g(x) is a C-function, h(x) = g(–x) is
also a C-function, we have

g
(
μX

q
)

= g
(
–μ–X

1–q
)

= h
(
μ–X

1–q
) ≤ μ

h(–X)
1–q = μ

g(X)
1–q . �
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Remark 3 Assertion (3) can be reinforced as

max
[
g
(
μX

q
)
, g

(
μX

1–q
)] ≤ μ

g(X)
1–q

by virtue of Theorem 1 and 1 – q > 1/2. Furthermore, if g(·) happens to be an increasing
function, one has g(μX

q ) ≤ g(μX
1–q) ≤ μ

g(X)
1–q .

To illustrate with a concrete example, let X be the discrete random variable defined in
Remark 2. It is easy to check that, for all μ0.25, we have (μ0.25)2 ≤ μX2

0.75.

4 Confidence intervals
In statistical inference, to make some standard inference for unknown parameters θ , it is
important to construct a confidence interval for it.

The first step of constructing a confidence interval is to find a pivotal quantity for
θ . Given several random samples X1, . . . , Xn with sample size n, an expression Y =
Q(X1, . . . , Xn; θ ) is called pivotal quantity for θ if the distribution of Y does not depend
on θ . For example, let X1, . . . , Xn be a sample drawn from population X ∼ N(μ,σ 2), X̄ and
S2 be the sample mean and sample variance. Then

Y1 =
X̄ – μ

S/
√

n
∼ N(0, 1) and Y2 =

(n – 1)S2

σ 2 ∼ χ2
n–1

are pivotal quantities, respectively, for μ and σ 2. For more discussion on pivotal quantity,
please refer to Casella and Berger [4], p. 427).

The second step is that, for a specified value of α ∈ (0, 1), we can find numbers a and b,
which do not depend on θ but on α, to satisfy

Pθ

(
a ≤ Q(X1, . . . , Xn; θ ) ≤ b

) ≥ 1 – α.

Then the 1 – α confidence interval for θ can be constructed by

Cθ (X1, . . . , Xn) =
{
θ : a ≤ Q(X1, . . . , Xn; θ ) ≤ b

}
.

However, often we can explicitly find the lower bound and the upper bound of the in-
terval Cθ , 
n ≡ 
(X1, . . . , Xn) and Ln ≡ L(X1, . . . , Xn) such that Cθ (X1, . . . , Xn) = [
n, Ln], and
therefore

Pθ (
n ≤ θ ≤ Ln) ≥ 1 – α,

which gives a confidence interval for θ at 100(1 – α)% significant level.
Take Y2 above as an example. Let χ2

n,α be the α-quantile of χ2
n . Then

P
(

χ2
n–1,α/2 ≤ (n – 1)S2

σ 2 ≤ χ2
n–1,1–α/2

)
= 1 – α,

from which we have

P
(

(n – 1)S2

χ2
n–1,1–α/2

≤ σ 2 ≤ (n – 1)S2

χ2
n–1,α/2

)
= 1 – α.
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Thus, the confidence interval for σ 2 is [
n, Ln], where both the lower and upper bounds


n =
(n – 1)S2

χ2
n–1,1–α/2

and Ln =
(n – 1)S2

χ2
n–1,α/2

depend on the sample only.
Obviously, according to the procedures listed above, the confidence interval is not

unique because another interval on which the pivotal quantity has the probability as well
can be found. However, on the basis of the relationship of the intervals and quantiles in
Lemma 1, a more natural definition of confidence interval for the pivotal quantity given
below is to be unique.

Theorem 2 (A characterization of 1 – α confidence interval for pivotal quantity Q(X; θ )
with α < 0.5, usually, α = 0.01, 0.05, 0.1) For any pivotal quantity Q(X; θ ), the set of its 1 –α

confidence interval is the intersection of all closed intervals I that satisfy: If J is any closed
interval that contains I as a proper subset of J , then P(J) > 1 – α

2 .

Proof Let Iq denote the set of all q quantiles of Q(X; θ ) and Ĩ denote the intersection of
all closed intervals I with a property stated in the theorem. We only need to show that
⋃

α/2≤q≤(1–α/2) Iq = Ĩ . In fact, (ii) of Lemma 1 shows that, for any α/2 ≤ q ≤ (1 – α/2), Iq ⊂ Ĩ .
On the other hand, if Iα/2 = [a, b], I1–α/2 = [c, d], Iα/2, I1–α/2 may be a closed interval or

a singleton. Then intervals [a,∞) and (–∞, d] both have the stated property. Note that
[a, d] = [a,∞)∩(–∞, d], the intersection of two closed intervals which both have the prop-
erty stated in the theorem. Therefore, Ĩ ⊂ [a, d] ⊂ ⋃

α/2≤q≤(1–α/2) Iq. Thus, we complete the
proof. �

Remark 4 The key point in the proof of Theorem 2 is to make use of the assertion in
Lemma 1, where the condition q ≥ 1

2 is fulfilled automatically due to 1 – α/2 ≥ 1
2 for any

α ∈ [0, 1]. Theorem 2 gives a characterization of the confidence interval for parameters in
pivotal statistic. However, it is a challenge to extend the definition of confidence interval
to higher dimensions due to its shape restriction.

5 Concluding remarks
The paper has shown two critical lemmas that help prove quantile Jensen’s inequality and
construct a confidence interval for parameters in some pivotal quantities. All these results,
however, are about univariate random variables, and we thus shall study the relevant the-
ory on multivariate variables in our future work.
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