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Abstract
In this research, we introduce the notions of (p,q)-derivative and integral for
interval-valued functions and discuss their fundamental properties. After that, we
prove some new inequalities of Hermite–Hadamard type for interval-valued convex
functions employing the newly defined integral and derivative. Moreover, we find the
estimates for the newly proved inequalities of Hermite–Hadamard type. It is also
shown that the results proved in this study are the generalization of some already
proved research in the field of Hermite–Hadamard inequalities.
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1 Introduction
Many studies have recently been carried out in the field of q-analysis, starting with Euler
due to a high demand for mathematics that models quantum computing q-calculus ap-
peared as a connection between mathematics and physics. It has a lot of applications in
different mathematical areas such as number theory, combinatorics, orthogonal polyno-
mials, basic hypergeometric functions, and other sciences, quantum theory, mechanics,
and the theory of relativity [1–5]. Apparently, Euler was the founder of this branch of
mathematics by using the parameter q in Newton’s work of infinite series. Later, Jackson
was the first to develop q-calculus known as without limits calculus in a systematic way
[2]. In 1908–1909, Jackson defined the general q-integral and q-difference operator [4]. In
1969, Agarwal described the q-fractional derivative for the first time [6]. In 1966–1967 Al-
Salam introduced q-analogues of the Riemann–Liouville fractional integral operator and
q-fractional integral operator [7]. In 2004, Rajkovic gave a definition of the Riemann-type
q-integral which was a generalization of Jackson q-integral. In 2013, Tariboon introduced
aDq-difference operator [8].

Many integral inequalities well known in classical analysis, such as Hölder’s inequality,
Simpson’s inequality, Newton’s inequality, Hermite–Hadamard inequality, Ostrowski in-
equality, Cauchy–Bunyakovsky–Schwarz, Gruss, Gruss–Cebysev, and other integral in-
equalities, have been proved and applied for q-calculus using classical convexity. Many
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mathematicians have done studies in q-calculus analysis, the interested reader can check
[9–25].

Inspired by these ongoing studies, we give the idea about the post-quantum derivative
and integral in the setting of interval-valued calculus. We also prove some new inequalities
of Hermite–Hadamard type and find their estimates.

2 Interval calculus
We give notation and preliminary information about the interval analysis in this section.
Let the space of all closed intervals of R denoted by Ic and K be a bounded element of Ic,
we have the representation

K = [k, k] = {t ∈R : k ≤ t ≤ k},

where k, k ∈R and k ≤ k. The length of the interval K = [k, k] can be stated as L(K) = k – k.
The numbers k and k are called the left and the right endpoints of interval K , respectively.
When k = k, the interval K is said to be degenerate, and we use the form K = k = [k, k].
Also, we can say that K is positive if k > 0, or we can say that K is negative if k < 0. The
sets of all closed positive intervals of R and closed negative intervals of R are denoted by
I+

c and I–
c , respectively. The Pompeiu–Hausdorff distance between the intervals K and M

is defined by

dH (K , M) = dH
(
[k, k], [m, m]

)
= max

{|k – m|, |k – m|}. (2.1)

(Ic, d) is known to be a complete metric space (see [26]).
The absolute value of K , denoted by |K |, is the maximum of the absolute values of its

endpoints:

|K | = max
{|k|, |k|}.

Now, we mention the definitions of fundamental interval arithmetic operations for the
intervals K and M as follows:

K + M = [k + m, k + m],

K – M = [k – m, k – m],

K · M = [min U , max U], where U = {km, km,km, km},
K/M = [min V , max V ], where V = {k/m, k/m, k/m, k/m} and 0 /∈ M.

Scalar multiplication of the interval K is defined by

μK = μ[k, k] =

⎧
⎪⎪⎨

⎪⎪⎩

[μk,μk], μ > 0;

{0}, μ = 0;

[μk,μk], μ < 0,

where μ ∈R.
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The opposite of the interval K is

–K := (–1)K = [–k, –k],

where μ = –1.
The subtraction is given by

K – M = K + (–M) = [k – m, k – m].

In general, –K is not additive inverse for K , i.e., K – K �= 0.
The definitions of operations cause a great many algebraic features which allows Ic to be

a quasilinear space (see [27]). These properties can be listed as follows (see [26–30]):
(1) (Associativity of addition) (K + M) + N = K + (M + N) for all K , M, N ∈ Ic,
(2) (Additivity element) K + 0 = 0 + K = K for all K ∈ Ic,
(3) (Commutativity of addition) K + M = M + K for all K , M ∈ Ic,
(4) (Cancellation law) K + N = M + N �⇒ K = M for all K , M, N ∈ Ic,
(5) (Associativity of multiplication) (K · M) · N = K · (M · N) for all K , M, N ∈ Ic,
(6) (Commutativity of multiplication) K · M = M · K for all K , M ∈ Ic,
(7) (Unity element) K · 1 = 1 · K for all K ∈ Ic,
(8) (Associativity law) λ(μK) = (λμ)K for all K ∈ Ic and all λ,μ ∈R,
(9) (First distributivity law) λ(K + M) = λK + λM for all K , M ∈ Ic and all λ ∈R,
(10) (Second distributivity law) (λ + μ)K = λK + μK for all K ∈ Ic and all λ,μ ∈R.
In addition to all these features, the distributive law is not always true for intervals. As

an example, K = [1, 2], M = [2, 3], and N = [–2, –1].

K · (M + N) = [0, 4],

whereas

K · M + K · N = [–2, 5].

Definition 1 ([31]) For the intervals K and M, we state that the gH-difference of K and
M is the interval T such that

K �g M = T ⇔

⎧
⎪⎪⎨

⎪⎪⎩

K = M + T ,

or

T = K + (–M).

It looks beyond dispute that

K �g M =

⎧
⎨

⎩
[k – m, k – m], if L(K) ≥ L(M),

[k – m, k – m], if L(K) < L(M).

Particularly, if M = m ∈R is a constant, we have

K �g M = [k – m, k – m].
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Moreover, another set feature is the inclusion ⊆ that is defined by

K ⊆ M ⇐⇒ k ≤ m and k ≤ m.

Throughout this paper, 0 < q < 1 and a function F = [F , F] : [a, b] → Ic is called L-
increasing (or L-decreasing) if L(f ) : [a, b] → [0,∞) is increasing (or decreasing) on [a, b].
Also, F = [F , F] is said to be L-monotone on [a, b] if L(f ) is monotone on [a, b]. For con-
densation, interval-valued quantum calculus and interval-valued post-quantum calculus
are denoted by Iq-calculus and I(p, q)-calculus, respectively.

3 Preliminaries of Iq-calculus and inequalities
In this section, we recollect some formerly regarded concepts about the q-calculus and
Iq-calculus. Moreover, here and further we use the following notation (see [5]):

[n]q =
1 – qn

1 – q
= 1 + q + q2 + · · · + qn–1, q ∈ (0, 1).

In [4], Jackson gave the q-Jackson integral from 0 to b for 0 < q < 1 as follows:

∫ b

0
f (x) dqx = (1 – q)b

∞∑

n=0

qnf
(
bqn) (3.1)

provided the sum converges absolutely.

Definition 2 ([32]) For a function f : [a, b] →R, the qa-derivative of f at x ∈ [a, b] is char-
acterized by the expression

aDqf (x) =
f (x) – f (qx + (1 – q)a)

(1 – q)(x – a)
, x �= a. (3.2)

Moreover, we have aDqf (a) = limx→a aDqf (x). The function f is said to be q- differentiable
on [a, b] if aDqf (x) exists for all x ∈ [a, b]. If a = 0 in (3.2), then 0Dqf (x) = Dqf (x), where
Dqf (x) is familiar q-derivative of f at x ∈ [0, b] defined by the expression (see [5])

Dqf (x) =
f (x) – f (qx)

(1 – q)x
, x �= 0.

Definition 3 ([33]) For a function f : [a, b] →R, the qb-derivative of f at x ∈ [a, b] is char-
acterized by the expression

bDqf (x) =
f (qx + (1 – q)b) – f (x)

(1 – q)(b – x)
, x �= b.

Definition 4 ([32]) Let f : [a, b] →R be a function. Then the qa-definite integral on [a, b]
is defined as

∫ b

a
f (x) adqx = (1 – q)(b – a)

∞∑

n=0

qnf
(
qnb +

(
1 – qn)a

)

= (b – a)
∫ 1

0
f
(
(1 – t)a + tb

)
dqt.
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Definition 5 ([33]) Let f : [a, b] →R be a function. Then the qb-definite integral on [a, b]
is defined as

∫ b

a
f (x) bdqx = (1 – q)(b – a)

∞∑

n=0

qnf
(
qna +

(
1 – qn)b

)

= (b – a)
∫ 1

0
f
(
ta + (1 – t)b

)
dqt.

On the other hand, recently, Lou et al. introduced the notions of I(q)-calculus. They gave
the following definitions of I(q)-derivative and integral, and proved some inequalities of
I(q)-Hermite–Hadamard type for interval-valued convex functions.

Definition 6 ([31]) For an interval-valued function F = [F , F] : [a, b] → Ic, the Iqa-
derivative of F at x ∈ [a, b] is defined by

aDqF(x) =
F(x) �g F(qx + (1 – q)a)

(1 – q)(x – a)
, x �= a. (3.3)

Since F = [F , F] : [a, b] → Ic is a continuous function, we can state

aDqF(a) = lim
x→a aDqF(x).

The function F is said to be Iq-differentiable on [a, b] if aDqF(x) exist for all x ∈ [a, b]. If
we set a = 0 in (3.3), then 0DqF(a) = DqF(a), where DqF(a) is called Iq-Jackson derivative
of F at x ∈ [a, b] defined by the expression

DqF(x) =
F(x) �g F(qx)

(1 – q)x
.

Definition 7 ([31]) For an interval-valued function F = [F , F] : [a, b] → Ic, the Iqa-definite
integral is defined by

∫ x

a
F(s) adI

qs = (1 – q)(x – a)
∞∑

n=0

qnF
(
qnx +

(
1 – qn)a

)
(3.4)

for all x ∈ [a, b].

Remark 1 If we set a = 0 in (3.4), then we have Iq-Jackson integral defined by the following
equation:

∫ x

0
F(s) 0dI

qs = (1 – q)x
∞∑

n=0

qnF
(
qnx

)

for all x ∈ [0,∞).

Theorem 1 ([31]) Let F = [F , F] : [a, b] → Ic be Iqa-differentiable and convex on [a, b].
Then the Iqa-Hermite–Hadamard inequality is expressed as follows:

F
(

qa + b
[2]q

)
⊇ 1

b – a

∫ b

a
F(x) adI

qx ⊇ qF(a) + F(b)
[2]q

.
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In [34], Alp et al. gave the definition of Iqb-integral and proved inequalities of Hermite–
Hadamard type for interval-valued convex functions by using Iqb-integral.

Definition 8 For an interval-valued function F = [F , F] : [a, b] → Ic, the Iqb-definite inte-
gral is defined by

∫ b

x
F(s) bdI

qs = (1 – q)(b – x)
∞∑

n=0

qnF
(
qnx +

(
1 – qn)b

)
(3.5)

for all x ∈ [a, b].

Theorem 2 Let F = [F , F] : [a, b] → Ic be interval-valued convex on [a, b]. Then the Iqb-
Hermite–Hadamard inequality is expressed as follows:

F
(

a + qb
[2]q

)
⊇ 1

b – a

∫ b

a
F(x) bdI

qx ⊇ F(a) + qF(b)
[2]q

.

4 I(p, q)-calculus
In this section, the notions and results about the (p, q)-calculus are reviewed, and we are
interested in introducing the concepts of I(p, q)-calculus.

The [n]p,q is said to be (p, q)-integers and expressed as

[n]p,q =
pn – qn

p – q

with 0 < q < p ≤ 1. The [n]p,q! and
[ n

k
]
! are called (p, q)-factorial and (p, q)-binomial, re-

spectively, and expressed as

[n]p,q! =
n∏

k=1

[k]p,q, n ≥ 1, [0]p,q! = 1,

[
n
k

]

! =
[n]p,q!

[n – k]p,q![k]p,q!
.

Definition 9 ([35]) For a function f : [a, b] → R, the (p, q)-derivative of f at x ∈ [a, b] is
given by

Dp,qf (x) =
f (px) – f (qx)

(p – q)x
, x �= 0 (4.1)

with 0 < q < p ≤ 1.

On the other hand, Tunç and Göv gave the following new definitions of (p, q)-derivative
and integrals.

Definition 10 ([36]) For a function f : [a, b] → R, the (p, q)a-derivative of f at x ∈ [a, b] is
given by

aDp,qf (x) =
f (px + (1 – p)a) – f (qx + (1 – q)a)

(p – q)(x – a)
, x �= a, (4.2)

with 0 < q < p ≤ 1.
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For x = a, we state aDp,qf (a) = limx→a aDp,qf (x) if it exists and is finite.

Definition 11 ([36]) For a function f : [a, b] →R, the definite (p, q)a-integral of f on [a, b]
is stated as

∫ x

a
f (t) adp,qt = (p – q)(x – a)

∞∑

n=0

qn

pn+1 f
(

qn

pn+1 x +
(

1 –
qn

pn+1

)
a
)

(4.3)

with 0 < q < p ≤ 1.

On the other hand, Ali et al. gave the following new definition of (p, q)-derivative and
integral, and proved some related inequalities.

Definition 12 ([37]) For a continuous function f : [a, b] →R, the definite (p, q)b-integral
of f on [a, b] is stated as

∫ b

x
f (t) bdp,qt = (p – q)(b – x)

∞∑

n=0

qn

pn+1 f
(

qn

pn+1 x +
(

1 –
qn

pn+1

)
b
)

(4.4)

with 0 < q < p ≤ 1.

Definition 13 ([37]) For a continuous function f : [a, b] →R, the (p, q)b-derivative of f at
x ∈ [a, b] is given as follows:

bDp,qf (x) =
f (qx + (1 – q)b) – f (px + (1 – p)b)

(p – q)(b – x)
, x �= b. (4.5)

For x = b, we state bDp,qf (b) = limx→b
bDp,qf (x) if it exists and is finite.

Theorem 3 ([37]) Let f : [a, b] → R be a convex differentiable function on [a, b]. Then the
following inequalities hold for (p, q)b-integrals:

f
(

pa + qb
[2]p,q

)
≤ 1

p(b – a)

∫ b

pa+(1–p)b
f (x) bdp,qx ≤ pf (a) + qf (b)

[2]p,q
, (4.6)

where 0 < q < p ≤ 1.

Theorem 4 ([37]) Let f : [a, b] → R be a convex differentiable function on [a, b]. Then the
following inequalities hold for (p, q)b-integrals:

f
(

qa + pb
[2]p,q

)
+

(p – q)(b – a)
[2]p,q

f ′
(

qa + pb
[2]p,q

)
≤ 1

p(b – a)

∫ b

pa+(1–p)b
f (x) bdp,qx (4.7)

≤ pf (a) + qf (b)
[2]p,q

,

where 0 < q < p ≤ 1.
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Theorem 5 ([37]) Let f : [a, b] → R be a differentiable function on (a, b) and bDp,qf be
continuous and integrable on [a, b]. If |bDp,qf | is a convex function over [a, b], then we have
the following (p, q)-midpoint inequality:

∣∣
∣∣

∫ b

ap+(1–p)b
f (x) bdp,qx – f

(
pa + qb

[2]p,q

)∣∣
∣∣ (4.8)

≤ (b – a)
[(∣∣bDp,qf (a)

∣∣A1(p, q) +
∣∣bDp,qf (b)

∣∣A2(p, q)
)

+
(∣∣bDp,qf (a)

∣
∣A3(p, q) +

∣
∣bDp,qf (b)

∣
∣A4(p, q)

)]
,

where

A1(p, q) =
qp3

([2]p,q)3[3]p,q
,

A2(p, q) =
q(p3(p2 + q2 – p) + p2[3]p,q)

([2]p,q)4[3]p,q
,

A3(p, q) =
q(q + 2p)

[2]p,q
–

q2(q2 + 3p2 + 3pq)
([2]p,q)3[3]p,q

,

A4(p, q) =
q

[2]p,q
–

q2(q + 2p)
([2]p,q)4 – A3(p, q),

and 0 < q < p ≤ 1.

Theorem 6 ([37]) Let f : [a, b] → R be a differentiable function on (a, b) and bDp,qf be
integrable on [a, b]. If |bDp,qf | is a convex function over [a, b], then we have the following
new (p, q)-trapezoidal inequality:

∣∣
∣∣
pf (a) + qf (b)

[2]p,q
–

1
p(b – a)

∫ b

pa+(1–p)b
f (x) bdp,qx

∣∣
∣∣ (4.9)

≤ q(b – a)
[2]p,q

[∣∣bDp,qf (a)
∣∣A5(p, q) +

∣∣bDp,qf (b)
∣∣A6(p, q)

]
,

where

A5(p, q) =
2([3]p,q – [2]p,q)

[2]3
p,q[3]p,q

+
[2]2

p,q – [3]p,q

[2]p,q[3]p,q
,

A6(p, q) =
2([2]p,q – 1)

[2]2
p,q

– A5(p, q).

Now, we are able to introduce the concepts of I(p, q)b- derivative and integrals.

4.1 I(p, q)b-derivative
Definition 14 For a continuous interval-valued function F = [F , F] : [a, b] → Ic, the
I(p, q)b-derivative of F at x ∈ [a, b] is given as follows:

bDp,qF(x) =
F(qx + (1 – q)b) �g F(px + (1 – p)b)

(p – q)(b – x)
, x �= b, (4.10)

with 0 < q < p ≤ 1. For x = b, we state bDp,qF(b) = limx→b
bDp,qF(x) if it exists and is finite.
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Remark 2 If we choose p = 1 in (4.10), then we have Iqb-derivative defined as follows:

bDqF(x) =
F(qx + (1 – q)b) �g F(x)

(1 – q)(b – x)
, x �= b.

Theorem 7 An interval-valued function F = [F , F] : [a, b] → Ic is said to be I(p, q)b-
differentiable at x ∈ [a, b] if and only if F and F are (p, q)b-differentiable at x ∈ [a, b]. More-
over,

bDp,qF(x) =
[
min

{bDp,qF(x), bDp,qF(x)
}

, max
{bDp,qF(x), bDp,qF(x)

}]
. (4.11)

Proof Let F be an I(p, q)b-differentiable function at x ∈ [a, b], there exist G and G such
that bDp,qF(x) = [G, G]. From Definition 14, we have that

G(x) = min

{
F(qx + (1 – q)b) – F(px + (1 – p)a)

(p – q)(b – x)
,

F(qx + (1 – q)b) – F(px + (1 – p)a)
(p – q)(b – x)

}

and

G(x) = max

{
F(qx + (1 – q)b) – F(px + (1 – p)a)

(p – q)(b – x)
,

F(qx + (1 – q)b) – F(px + (1 – p)a)
(p – q)(b – x)

}

exist. So, it is clear that the F and F are (p, q)b-differentiable at x ∈ [a, b].
To prove conversely, we suppose that F and F are (p, q)b-differentiable at x ∈ [a, b]. Then

we have two possibilities bDp,qF(x) ≤ bDp,qF(x) or bDp,qF(x) ≥ bDp,qF(x) for all x ∈ [a, b].
If bDp,qF(x) ≤ bDp,qF(x), then we have following relation:

[bDp,qF(x), bDp,qF(x)
]

=
[

F(qx + (1 – q)b) – F(px + (1 – p)a)
(p – q)(b – x)

,
F(qx + (1 – q)b) – F(px + (1 – p)a)

(p – q)(b – x)

]

=
F(qx + (1 – q)b) �g F(px + (1 – p)a)

(p – q)(b – x)

= bDp,qF(x).

Thus, F(x) is I(p, q)b-differentiable at x ∈ [a, b]. Now, if bDp,qF(x) ≥ bDp,qF(x), then

bDp,qF(x) =
[bDp,qF(x), bDp,qF(x)

]
,

and by applying the similar concepts, we can prove F(x) is I(p, q)b-differentiable at x ∈
[a, b]. �

Theorem 8 Let F = [F , F] → Ic be an I(p, q)b-differentiable function on [a, b]. Then the
following equalities hold for all x ∈ [a, b]:

1. bDp,qF(x) = [bDp,qF(x), bDp,qF(x)], if F is L-increasing;
2. bDp,qF(x) = [bDp,qF(x), bDp,qF(x)], if F is L-decreasing.
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Proof To prove the first equality, we suppose that F is I(p, q)b-differentiable and L-
decreasing on [a, b]. So, we have

F
(
qx + (1 – q)b

)
> F

(
px + (1 – p)a

)

for any x ∈ [a, b]. Since L(f ) is increasing, then we have

[
F
(
qx + (1 – q)b

)
– F

(
qx + (1 – q)b

)]

–
[
F
(
px + (1 – p)b

)
– F

(
px + (1 – p)b

)]
> 0,

F
(
qx + (1 – q)b

)
– F

(
px + (1 – p)b

)

> F
(
qx + (1 – q)b

)
– F

(
px + (1 – p)b

)
.

Therefore,

bDp,qF(x)

=
[F(qx + (1 – q)b), F(qx + (1 – q)b)] �g [F(px + (1 – p)b), F(px + (1 – p)b)]

(p – q)(b – x)

=
[

F(qx + (1 – q)b) – F(px + (1 – p)b)
(p – q)(b – x)

,
F(qx + (1 – q)b) – F(px + (1 – p)b)

(p – q)(b – x)

]

=
[bDp,qF(x), bDp,qF(x)

]
.

With the similar steps, the second equality can be done. �

Theorem 9 Let F = [F , F] : [a, b] → Ic be a I(p, q)b-differentiable function on [a, b]. Then,
for all C = [C, C] ∈ Ic and α ∈ R, the functions F + C and αF are I(p, q)b-differentiable
functions on [a, b]. Moreover,

bDp,q(F + C) = bDp,qF(x)

and

bDp,qαF(x) = αbDp,qF(x).

Proof The proof can be easily done using Definition 14, hence we leave the proof for the
readers. �

Theorem 10 Let F = [F , F] : [a, b] → Ic be an I(p, q)b-differentiable function on [a, b].
Then, for all C = [C, C] ∈ Ic, if L(F) – L(C) has a constant sign on [a, b], then F �g C is
an I(p, q)b-differentiable function and bDp,q(F �g C) = bDp,qF(x).

Proof The proof can be easily done using Definition 14, hence we leave the proof for the
readers. �
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4.2 I(p, q)b-integral
Definition 15 For a continuous interval-valued function F = [F , F] : [a, b] → Ic, the defi-
nite I(p, q)b-integral of F on [a, b] is stated as

∫ b

x
F(t) bdI

p,qt = (p – q)(b – x)
∞∑

n=0

qn

pn+1 F
(

qn

pn+1 x +
(

1 –
qn

pn+1

)
b
)

(4.12)

with 0 < q < p ≤ 1.

Remark 3 If we set p = 1 in (4.12), then we have the definition of Iqb-integral that we
reviewed in the last section.

The following theorem provides us a relation between I(p, q)b-integral and (p, q)b-
integral.

Theorem 11 Let F = [F , F] : [a, b] → Ic be a continuous function on [a, b], the function F is
I(p, q)b-integrable on [a, b] if and only if F and F are (p, q)b-integrable functions on [a, b].
Furthermore,

∫ b

a
F(x) bdI

p,qx =
[∫ b

a
F(x) bdp,qx,

∫ b

a
F(x) bdp,qx

]
. (4.13)

Example 1 Let F = [F , F] : [0, 1] → Ic, defined by F = [x2, x]. For 0 < q < p ≤ 1, we obtain
that

∫ b

a
F(x) bdI

p,qx =
[

1
[3]p,q

,
1

[2]p,q

]
.

Theorem 12 Let F , G : [a, b] → Ic be two continuous and I(p, q)b-integrable functions on
[a, b] such that F = [F , F] and G = [G, G]. Then, for α ∈ R, the following properties hold:

1.
∫ b

a [F(x) + G(x)] bdI
p,qx =

∫ b
a F(x)bdI

p,qx +
∫ b

a G(x) bdI
p,qx;

2.
∫ b

a αF(x) bdI
p,qx = α

∫ b
a F(x) bdI

p,qx;
3.

∫ b
a F(x) bdI

p,qx �g
∫ b

a G(x) bdI
p,qx ⊆ ∫ b

a F(x) �g G(x) bdI
p,qx.

Moreover, if L(F) – L(G) has a constant sign, then we have

∫ b

a
F(x) bdI

p,qx �g

∫ b

a
G(x) bdI

p,qx =
∫ b

a
F(x) �g G(x) bdI

p,qx.

Theorem 13 Let F = [F , F] : [a, b] → Ic be a continuous function on [a, b], if F is an I(p, q)b-
differentiable function on [a, b], then bDp,qF is I(p, q)b-integrable. Furthermore, if F is L-
increasing on [a, b], then the following equality holds for c ∈ [a, b]:

F(c) �g F(x) =
∫ c

x

bDp,qF(s) bdI
p,qs.

Proof The proof of Theorem 13 can be easily done by using Theorems 15 and 7. �
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5 Hermite–Hadamard inequalities for I(p, q)b-integral
In this section, we review the concept of interval-valued convex functions and prove in-
equalities of Hermite–Hadamard type for an interval-valued convex function by using the
newly defined I(p, q)-integral.

Definition 16 ([31]) A function F = [F , F] : [a, b] → I+
c is said to be interval-valued convex

if, for all x, y ∈ [a, b] and t ∈ (0, 1), we have

tF(x) + (1 – t)F(y) ⊆ F
(
tx + (1 – t)y

)
.

Theorem 14 A function F = [F , F] : [a, b] → I+
c is said to be interval-valued convex if and

only if F is a convex function [a, b] and F is a concave function on [a, b].

Theorem 15 Let F = [F , F] : [a, b] → I+
c be a differentiable interval-valued convex func-

tion, then the following inequalities hold for the I(p, q)b-integral:

F
(

pa + qb
[2]p,q

)
⊇ 1

p(b – a)

∫ b

pa+(1–p)b
F(x) bdI

p,qx ⊇ pF(a) + qF(b)
[2]p,q

. (5.1)

Proof Since F = [F , F] : [a, b] → I+
c is an interval-valued convex function, therefore F is a

convex function and F is a concave function. So, from F and inequality (4.6), we have

F
(

pa + qb
[2]p,q

)
≤ 1

p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx ≤ pF(a) + qF(b)

[2]p,q
, (5.2)

and from the concavity of F and (4.6), we have

pF(a) + qF(b)
[2]p,q

≤ 1
p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx ≤ F

(
pa + qb

[2]p,q

)
. (5.3)

From (5.2) and (5.3), we obtain

F
(

pa + qb
[2]p,q

)
≤ 1

p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx

≤ 1
p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx ≤ F

(
pa + qb

[2]p,q

)
,

and hence, we have

F
(

pa + qb
[2]p,q

)
⊇ 1

p(b – a)

∫ b

pa+(1–p)b
F(x) bdI

p,qx. (5.4)

Also, from (5.2) and (5.3), we obtain

1
p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx ≤ pF(a) + qF(b)

[2]p,q

≤ pF(a) + qF(b)
[2]p,q

≤ 1
p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx,
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and hence, we have

1
p(b – a)

∫ b

pa+(1–p)b
F(x) bdI

p,qx ⊇ pF(a) + qF(b)
[2]p,q

. (5.5)

By combining (5.4) and (5.5), we obtain the required inequality, which accomplishes the
proof. �

Theorem 16 Let F = [F , F] : [a, b] → I+
c be a differentiable interval-valued convex function

on [a, b], then the following inequalities hold for the I(p, q)b-integral:

F
(

qa + pb
[2]p,q

)
+

(p – q)(b – a)
[2]p,q

F ′
(

qa + pb
[2]p,q

)
⊇ 1

p(b – a)

∫ b

pa+(1–p)b
F(x) bdI

p,qx (5.6)

⊇ pF(a) + qF(b)
[2]p,q

.

Proof Since F = [F , F] : [a, b] → I+
c is an interval-valued convex function, therefore F is a

convex function and F is a concave function. Because of the convexity of F , from inequal-
ities (4.7), we obtain that

F
(

qa + pb
[2]p,q

)
+

(p – q)(b – a)
[2]p,q

F ′
(

qa + pb
[2]p,q

)
≤ 1

p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx (5.7)

≤ pF(a) + qF(b)
[2]p,q

.

Now, using the fact that F is a concave function, and from inequality (4.7), we obtain that

F
(

qa + pb
[2]p,q

)
+

(p – q)(b – a)
[2]p,q

F ′
(

qa + pb
[2]p,q

)
≥ 1

p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx (5.8)

≥ pF(a) + qF(b)
[2]p,q

.

The rest of the proof can be done by applying the same lines of the previous theorem and
considering inequalities (5.7) and (5.8). Thus, the proof is completed. �

Theorem 17 Let F = [F , F] : [a, b] → I+
c be a differentiable interval-valued convex function

on [a, b], then the following inequalities hold for the I(p, q)b-integral:

max{A1, A2} ⊇ 1
p(b – a)

∫ b

pa+(1–p)b
F(x) bdI

p,qx ⊇ pF(a) + qF(b)
[2]p,q

, (5.9)

where

A1 = F
(

pa + qb
[2]p,q

)

and

F
(

qa + pb
[2]p,q

)
+

(p – q)(b – a)
[2]p,q

F ′
(

qa + pb
[2]p,q

)
.
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Proof From inequalities (5.1) and (5.2), we have the required inequalities (5.9). Thus, the
proof is finished. �

6 Midpoint and trapezoidal type inequalities for I(p, q)b-integral
In this section, some new inequalities of midpoint and trapezoidal type for interval-valued
functions are obtained.

Theorem 18 Let F = [F , F] : [a, b] → I+
c be a I(p, q)b-differentiable function. If |bDp,qF| and

|bDp,qF| are convex functions on [a, b], then the following I(p, q) midpoint inequality holds
for interval-valued functions:

dH

(
1

p(b – a)

∫ b

pa+(1–p)b
F(x) bdI

p,qx, F
(

pa + qb
[2]p,q

))
(6.1)

≤ (b – a)
[(∣∣bDp,qF(a)

∣∣A1(p, q) +
∣∣bDp,qF(b)

∣∣A2(p, q)
)

+
(∣∣bDp,qF(a)

∣∣A3(p, q) +
∣∣bDp,qF(b)

∣∣A4(p, q)
)]

,

where A1(p, q)–A4(p, q) are defined in Theorem 5 and dH is a Pompeiu–Hausdorff distance
between the intervals.

Proof Using the definition of dH distance between intervals, one can easily obtain that

dH

(
1

p(b – a)

∫ b

pa+(1–p)b
F(x) bdI

p,qx, F
(

pa + qb
[2]p,q

))

= dH

([
1

p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx,

1
p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx

]
,

[
F
(

pa + qb
[2]p,q

)
, F

(
pa + qb

[2]p,q

)])

= max

{∣
∣∣∣

1
p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx – F

(
pa + qb

[2]p,q

)∣
∣∣∣,

∣∣
∣∣

1
p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx – F

(
pa + qb

[2]p,q

)∣∣
∣∣

}
.

Now, using the fact that |bDp,qF| is a convex function, and from inequality (4.8), we have

∣∣
∣∣

1
p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx – F

(
pa + qb

[2]p,q

)∣∣
∣∣ (6.2)

≤ (b – a)
[(∣∣bDp,qF(a)

∣∣A1(p, q) +
∣∣bDp,qF(b)

∣∣A2(p, q)
)

+
(∣∣bDp,qF(a)

∣∣A3(p, q) +
∣∣bDp,qF(b)

∣∣A4(p, q)
)]

.

Similarly, considering that |bDp,qF| is convex on [a, b] and using inequality (4.8), we have

∣
∣∣∣

1
p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx – F

(
pa + qb

[2]p,q

)∣
∣∣∣ (6.3)

≤ (b – a)
[(∣∣bDp,qF(a)

∣
∣A1(p, q) +

∣
∣bDp,qF(b)

∣
∣A2(p, q)

)

+
(∣∣bDp,qF(a)

∣∣A3(p, q) +
∣∣bDp,qF(b)

∣∣A4(p, q)
)]

.
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So, from inequalities (6.2) and (6.3), we have

dH

(
1

p(b – a)

∫ b

pa+(1–p)b
F(x) bdI

p,qx, F
(

pa + qb
[2]p,q

))

= max

{∣∣
∣∣

1
p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx – F

(
pa + qb

[2]p,q

)∣∣
∣∣,

∣
∣∣
∣

1
p(b – a)

∫ b

pa+(1–p)b
F(x) bdp,qx – F

(
pa + qb

[2]p,q

)∣
∣∣
∣

}

≤ max
{

(b – a)
[(∣∣bDp,qF(a)

∣
∣A1(p, q) +

∣
∣bDp,qF(b)

∣
∣A2(p, q)

)

+
(∣∣bDp,qF(a)

∣∣A3(p, q) +
∣∣bDp,qF(b)

∣∣A4(p, q)
)]

,

(b – a)
[(∣∣bDp,qF(a)

∣
∣A1(p, q) +

∣
∣bDp,qF(b)

∣
∣A2(p, q)

)

+
(∣∣bDp,qF(a)

∣∣A3(p, q) +
∣∣bDp,qF(b)

∣∣A4(p, q)
)]}

= (b – a)
[(∣∣bDp,qF(a)

∣∣A1(p, q) +
∣∣bDp,qF(b)

∣∣A2(p, q)
)

+
(∣∣bDp,qF(a)

∣
∣A3(p, q) +

∣
∣bDp,qF(b)

∣
∣A4(p, q)

)]

since

∣
∣bDp,qF(a)

∣
∣ = max

{∣∣bDp,qF(a)
∣
∣,

∣
∣bDp,qF(a)

∣
∣},

∣
∣bDp,qF(b)

∣
∣ = max

{∣∣bDp,qF(b)
∣
∣,

∣
∣bDp,qF(b)

∣
∣}.

Therefore, the proof is completed. �

Corollary 1 If we set p = 1 in Theorem 18, then we have the following new q-midpoint
inequality for interval-valued functions:

dH

(
1

(b – a)

∫ b

a
F(x) bdI

qx, F
(

a + qb
[2]q

))

≤ (b – a)
[(∣∣bDqF(a)

∣
∣A1(1, q) +

∣
∣bDqF(b)

∣
∣A2(1, q)

)

+
(∣∣bDqF(a)

∣∣A3(1, q) +
∣∣bDqF(b)

∣∣A4(1, q)
)]

,

where |bDqF| and |bDqF| both are convex functions.

Corollary 2 If we set p = 1 and q → 1– in Theorem 18, then we have the following midpoint
inequality for interval-valued functions:

dH

(
1

b – a

∫ b

a
F(x) dIx, F

(
a + b

2

))

≤ (b – a)
[(∣∣F ′(a)

∣
∣A1(1, 1) +

∣
∣F ′(b)

∣
∣A2(1, 1)

)

+
(∣∣F ′(a)

∣∣A3(1, 1) +
∣∣F ′(b)

∣∣A4(1, 1)
)]

,

where |F ′(a)| and |F ′(a)| both are convex functions.
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Theorem 19 Let F = [F , F] : [a, b] → I+
c be an I(p, q)b-differentiable function. If |bDp,qF|

and |bDp,qF| are convex functions on [a, b], then the following I(p, q) trapezoidal inequality
holds for interval-valued functions:

dH

(
pF(a) + qF(b)

[2]p,q
,

1
p(b – a)

∫ b

pa+(1–p)b
F(x) bdI

p,qx
)

(6.4)

≤ q(b – a)
[2]p,q

[∣∣bDp,qF(a)
∣
∣A5(p, q) +

∣
∣bDp,qF(b)

∣
∣A6(p, q)

]
,

where A5 and A6 are defined in Theorem 6 and dH is the Pompeiu–Hausdorff distance
between the intervals.

Proof From the definition of dH distance between the intervals and inequality (4.9), and
using the strategies followed in the last theorem, one can easily obtain inequality (6.4). �

Corollary 3 If we set p = 1 in Theorem 19, then we have the following new q-trapezoidal
inequality for interval-valued functions:

dH

(
F(a) + qF(b)

[2]q
,

1
b – a

∫ b

a
F(x) bdI

qx
)

≤ q(b – a)
[2]q

[∣∣bDqF(a)
∣∣A5(1, q) +

∣∣bDqF(b)
∣∣A6(1, q)

]
,

where |bDqF| and |bDqF| both are convex functions.

Corollary 4 If we set p = 1 and q → 1– in Theorem 19, then we have the following new
trapezoidal inequality for interval-valued functions:

dH

(
F(a) + F(b)

2
,

1
b – a

∫ b

a
F(x) dIx

)

≤ (b – a)
2

[∣∣F ′(a)
∣∣A5(1, 1) +

∣∣F ′(b)
∣∣A6(1, 1)

]
,

where |F ′(a)| and |F ′(a)| both are convex functions.

7 Conclusion
In this study, we have introduced the notions of (p, q)-derivative and integral for interval-
valued functions and discussed their basic properties. We have proved some new
Hermite–Hadamard type inequalities for interval-valued convex functions by using newly
given concepts of (p, q)-derivative and integral. Moreover, we have proved midpoint and
trapezoidal estimates for newly established (p, q)-Hermite–Hadamard inequalities. It is an
interesting and new problem that the upcoming researchers can establish Simpson type
inequalities, Newton type inequalities, and Ostrowski type inequalities for interval-valued
functions by employing the techniques of this research in their future work.
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