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Abstract
This paper is concerned with the existence of positive radial solutions of the following
resonant elliptic system:

⎧
⎪⎨

⎪⎩

–�u = uv + f (|x|,u), 0 < R1 < |x| < R2, x ∈R
N ,

–�v = cg(u) – dv, 0 < R1 < |x| < R2, x ∈R
N ,

∂u
∂n = 0 = ∂v

∂n , |x| = R1, |x| = R2,

where RN (N ≥ 1) is the usual Euclidean space, n indicates the outward unit normal
vector, f ∈ C([R1,R2]× [0,∞),R), g ∈ C([0,∞), [0,∞)), and c and d are positive
constants. By employing the classical fixed point theory we establish several novel
existence theorems. Our main findings enrich and complement those available in the
literature.
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1 Introduction
Let N ≥ 1 be an integer, and let � = {x ∈R

N : R1 < |x| < R2, 0 < R1 < R2 < ∞} be an annulus
with boundary ∂�. In this paper, we establish the existence of positive radial solutions to
the elliptic system

⎧
⎪⎪⎨

⎪⎪⎩

–�u = uv + f (|x|, u), x ∈ �,

–�v = cg(u) – dv, x ∈ �,
∂u
∂n = 0 = ∂v

∂n , x ∈ ∂�,

(1.1)

where n denotes the outward unit normal vector on ∂�, and c and d are positive constants.
For convenience, we write q � 0 for some function q ∈ C[R1, R2] if it is strictly positive on
[R1, R2], and we denote by q̄ and q the maximum and minimum of q � 0, respectively.
Throughout the paper, we assume the following:
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(H1) f ∈ C([R1, R2] × [0,∞),R), and there is χ � 0 such that

p(t)f (t, u) ≥ –χ (t)u, (t, u) ∈ [R1, R2] × [0,∞),

where p(t) = tN–1, t ∈ [R1, R2].
(H2) g ∈ C([0,∞), [0,∞)).
Obviously, the nonlinear term f is allowed to change its sign. Since the Laplace opera-

tor –� is not invertible under the Neumann boundary conditions, elliptic system (1.1) is
resonant.

Elliptic system (1.1) is closely related to the stationary version of the mathematical model
of nuclear reactors

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – �u = uv – bu, x ∈ �0, t > 0,

vt – �v = cu – dv, x ∈ �0, t > 0,
∂u
∂n = 0 = ∂v

∂n , x ∈ ∂�0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ �0,

(1.2)

where �0 ⊂R
N is a bounded domain with smooth boundary ∂�0 and represents a closed

container, u and v are respectively the density of the neutron flux and temperature of the
nuclear reactors. b ∈ [0,∞) and c, d ∈ (0,∞) are constants, and u0 and v0 are continuous
functions on �0. System (1.2) improves the original model

⎧
⎨

⎩

ut – D�u = u(av – b), (x, t) ∈ � × (0, T),

vt = cu, (x, t) ∈ � × (0, T),
(1.3)

put forward in [1] by adding the diffusion and linear feedback of the temperature, where
the Neumann boundary condition

∂u
∂n

= 0 =
∂v
∂n

, x ∈ ∂�0, t > 0, (1.4)

means that the neutron flux cannot cross the boundary of the closed container, and the
boundary of the closed container is heat insulation.

Over the past few decades, existence and related properties of positive stationary solu-
tions of (1.3) (and its more general forms) have been studied by many authors; see Kasten-
berg and Chambré [1], Pao [2, 3], Gu and Wang [4], Arioli [5], López-Gómez [6], and the
references therein. Meanwhile, some authors have also focused on the existence of positive
solutions of the one-dimensional analogue of (1.3). See, for instance, Wang and An [7–9],
Li [10], Chen [11, 12], and references therein. However, as far as we know, most of papers
mentioned are devoted to system (1.3) subject to Dirichlet boundary condition, which
means that there is no neutron flux on the boundary of the container and the constant
temperature on it, whereas the results associated with (1.4) are relatively rare. In addition,
the existence results on positive solutions, obtained in [7–9, 11, 12], largely depend on
the positivity of the nonlinearities, and only the nonresonant case has been treated. Based
these reasons, our aim in the present paper is establishing the existence of positive radial
solutions for elliptic system (1.1) at resonance.
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To state our main results, we define

g0 = lim
u→0+

g(u)
u

, g∞ = lim
u→∞

g(u)
u

;

f0 = lim
u→0+

p(t)f (t, u)
u

, f∞ = lim
u→∞

p(t)f (t, u)
u

,

uniformly for t ∈ [R1, R2].

Theorem 1.1 Assume (H1) and (H2). If g0 = 0, f∞ = ∞, and

lim
u→0+

p(t)f (t, u)
u

= –χ (t), (1.5)

then (1.1) has at least one positive radial solution.

Theorem 1.2 Assume (H1) and
(H2)′ g ∈ C([0,∞), [0,∞)), and limu→+∞ p(t)g(u) = 0 uniformly for t ∈ [R1, R2].

If f0 = ∞ and

lim
u→+∞

p(t)f (t, u)
u

= –χ (t), (1.6)

then (1.1) admits at least one positive radial solution.

Remark 1.1 (H1) implies that the nonlinearity f may be sign-changing, and hence it is
more general than the corresponding conditions in the existing literature. For the first
time, we establish the existence results of elliptic system (1.1) in the resonant case; related
results for other problems with sigh-changing nonlinearities can be found in [13, 14] and
references therein. To look for radially symmetric positive solutions, we impose a radial
dependence of the coefficients involved in f , which is far from being the case in [15, 16]
and most of the references therein; the results of these references can be adapted to deal
with homogeneous Neumann boundary conditions, which we will do in some future work.

The rest of the paper is arranged as follows. In Sect. 2, we introduce some notations
and preliminaries. In Sect. 3, we prove the main and some related results and give some
remarks to demonstrate the feasibility of our main findings.

2 Preliminaries
As is well known, in finding a radial solution (u, v) = (u(r), v(r)), elliptic system (1.1) is
equivalent to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′(r) – N–1
r u′(r) = u(r)v(r) + f (r, u(r)), R1 < r < R2,

–v′′(r) – N–1
r v′(r) = cg(u(r)) – dv(r), R1 < r < R2,

u′(R1) = 0 = u′(R2),

v′(R1) = 0 = v′(R2),
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where r = |x|. Let t = r and p(t) = tN–1. Then we have p(t) > 0 on [R1, R2], and the above
system becomes

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(p(t)u′)′ + p(t)uv + p(t)f (t, u) = 0, R1 < t < R2,

(p(t)v′)′ – dp(t)v + cp(t)g(u) = 0, R1 < t < R2,

u′(R1) = 0 = u′(R2),

v′(R1) = 0 = v′(R2).

(2.1)

Hence, if we show that there is a positive solution to (2.1), then system (1.1) admits a
positive radial solution. Here the positivity of a solution (u, v) of (2.1) means that u, v � 0.

Let us denote by K(t, s) the Green’s function of

⎧
⎨

⎩

(p(t)v′)′ – dp(t)v = 0, R1 < t < R2,

v′(R1) = 0 = v′(R2).

Then it is easy to show that K(t, s) > 0 on [R1, R2] × [R1, R2] by an argument similar to the
proof of [17, Lemmas 2.1 and 2.2], and therefore the linear problem

⎧
⎨

⎩

(p(t)v′)′ – dp(t)v + cp(t)g(u) = 0, R1 < t < R2,

v′(R1) = 0 = v′(R2)

can be equivalently written as

v(t) = c ·
∫ R2

R1

K(t, s)p(s)g
(
u(s)

)
ds =: c · Tu(t). (2.2)

Clearly, (H2) yields that T : C[R1, R2] → C[R1, R2] is a completely continuous operator. By
(2.1) and (2.2) we get

⎧
⎨

⎩

(p(t)u′)′ + cp(t)uTu + p(t)f (t, u) = 0, R1 < t < R2,

u′(R1) = 0 = u′(R2),
(2.3)

which is a resonant problem. As this point, (2.3) can be transformed into the equivalent
integral-differential equation

⎧
⎨

⎩

(p(t)u′)′ – χ (t)u + cp(t)uTu + (p(t)f (t, u) + χ (t)u) = 0, R1 < t < R2,

u′(R1) = 0 = u′(R2),
(2.4)

where the function χ is given as in (H1). In the following, we concentrate on the existence
of positive solutions of (2.4). To this end, we denote by G(t, s) the Green’s function of the
problem

⎧
⎨

⎩

(p(t)u′)′ – χ (t)u = 0, R1 < t < R2,

u′(R1) = 0 = u′(R2).
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Then by applying the same approach as in the proofs of [17, Lemmas 2.1 and 2.2] we can
show that G(t, s) > 0 on [R1, R2] × [R1, R2] and (2.4) can be rewritten as the equivalent
integral equation

u(t) = c
∫ R2

R1

G(t, s)p(s)u(s)T
(
u(s)

)
ds +

∫ R2

R1

G(t, s)
(
p(s)f

(
s, u(s)

)
+ χ (s)u(s)

)
ds

=: Au(t).

Let E be the Banach space

E =
{

u ∈ C[R1, R2] : u′(R1) = 0 = u′(R2)
}

equipped with the norm

‖u‖ = max
t∈[R1,R2]

∣
∣u(t)

∣
∣.

Denote by mG and MG the minimum and maximum of G(t, s) on [R1, R2] × [R1, R2], re-
spectively. Set σ = mG

MG
and

P =
{

u ∈ E : u(t) ≥ σ‖u‖, t ∈ [R1, R2]
}

.

Then 0 < σ < 1, and P is a positive cone in E.

Lemma 2.1 Assume (H1) and (H2). Then A(P) ⊆P , and A : P →P is completely contin-
uous.

Proof Using (H1) and (H2), for any u ∈P , we get

Au(t) = c
∫ R2

R1

G(t, s)p(s)u(s)T
(
u(s)

)
ds +

∫ R2

R1

G(t, s)
(
p(s)f

(
s, u(s)

)
+ χ (s)u(s)

)
ds

≤ MG ·
∫ R2

R1

{
cp(s)u(s)T

(
u(s)

)
+

(
p(s)f

(
s, u(s)

)
+ χ (s)u(s)

)}
ds, ∀t ∈ [R1, R2],

and therefore ‖Au‖ ≤ MG ·∫ R2
R1

{cp(s)u(s)T(u(s))+(p(s)f (s, u(s))+χ (s)u(s))}ds. On the other
hand,

Au(t) = c
∫ R2

R1

G(t, s)p(s)u(s)T
(
u(s)

)
ds +

∫ R2

R1

G(t, s)
(
p(s)f

(
s, u(s)

)
+ χ (s)u(s)

)
ds

≥ mG ·
∫ R2

R1

{
cp(s)u(s)T

(
u(s)

)
+

(
p(s)f

(
s, u(s)

)
+ χ (s)u(s)

)}
ds

= σ · MG

∫ R2

R1

{
cp(s)u(s)T

(
u(s)

)
+

(
p(s)f

(
s, u(s)

)
+ χ (s)u(s)

)}
ds.

Combining the above two inequalities, we obtain Au(t) ≥ σ‖Au‖. Hence A(P) ⊆ P . Fi-
nally, using (H1)–(H2), in a standard way, we can easily show that A : P →P is completely
continuous. �
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The main tool adopted in the paper is the following:

Lemma 2.2 ([18]) Let E be a Banach space, and let P ⊆ E be a cone. Let �1 and �2 be
open bounded subsets of E satisfying 0 ∈ �1 and �̄1 ⊆ �2, and let T : P ∩ (�̄2 \ �1) → P
be a completely continuous operator such that

(i) ‖Tu‖ ≤ ‖u‖, u ∈P ∩ ∂�1, and ‖Tu‖ ≥ ‖u‖, u ∈P ∩ ∂�2,
or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈P ∩ ∂�1, and ‖Tu‖ ≤ ‖u‖, u ∈P ∩ ∂�2.
Then T has a fixed point in P ∩ (�̄2 \ �1).

We conclude this section by giving some notations to be used later. Set

l = R2 – R1 (2.5)

and

m = min
(t,s)∈[R1,R2]×[R1,R2]

K(t, s),

M = max
(t,s)∈[R1,R2]×[R1,R2]

K(t, s),

where K(t, s) is as before. Define

p0 =
∫ R2

R1

p(t) dt. (2.6)

Then it is not difficult to see that p0 > 0.

3 Proof of main results

Proof of Theorem 1.1 For positive constants r < R, set

�1 =
{

u ∈ E : ‖u‖ < r
}

, �2 =
{

u ∈ E : ‖u‖ < R
}

.

Then �1 and �2 are open bounded subsets of E with 0 ∈ �1 and �̄1 ⊆ �2.
By (1.5) there exists r1 > 0 such that for any 0 < u ≤ r1,

p(t)f (t, u) ≤ εu – χ (t)u,

where ε > 0 is a constant small enough so that εlMG ≤ 1
2 , and MG is defined as in Sect. 2.

Thus for u ∈P with ‖u‖ ≤ r1,

p(t)f (t, u) + χ (t)u ≤ εu, t ∈ [R1, R2].

From g0 = 0 it follows there exists a positive constant

r2 � 1 (3.1)
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such that g(u) ≤ εu for any 0 < u ≤ r2, and therefore for u ∈ P satisfying ‖u‖ ≤ r2, simple
estimation shows that

c · Tu(t) = c ·
∫ R2

R1

K(t, s)p(s)g
(
u(s)

)
ds

≤ εcM‖u‖
∫ R2

R1

p(s) ds

≤ εcMp0‖u‖,

where ε is a sufficiently small positive constant such that εcMMGp2
0 ≤ 1

2 , and p0 is given
by (2.6). Let r = min{r1, r2}. Then for u ∈P with ‖u‖ = r, we get

Au(t) = c
∫ R2

R1

G(t, s)p(s)u(s)T
(
u(s)

)
ds +

∫ R2

R1

G(t, s)
(
p(s)f

(
s, u(s)

)
+ χ (s)u(s)

)
ds

≤ εcMMGp2
0‖u‖ + εlMG‖u‖

≤ ‖u‖,

which implies ‖Tu‖ ≤ ‖u‖ for u ∈P ∩ ∂�1.
On the other hand, f∞ = ∞ yields that there exists R̃ > 0 such that

p(t)f (t, u) ≥ ηu, u ≥ R̃,

where η > 0 is a constant large enough with σ lmG(η + χ ) ≥ 1. Fixing R > max{r, R̃
σ
} and

letting u ∈P with ‖u‖ = R, we have

u(t) ≥ σ‖u‖ = σR > R̃,

and therefore

p(t)f (t, u) + χ (t)u ≥ ηu + χ (t)u ≥ σ (η + χ )‖u‖, t ∈ [R1, R2].

Therefore we can deduce from (H2) that for u ∈P with ‖u‖ = R,

Au(t) = c
∫ R2

R1

G(t, s)p(s)u(s)T
(
u(s)

)
ds +

∫ R2

R1

G(t, s)
(
p(s)f

(
s, u(s)

)
+ χ (s)u(s)

)
ds

≥ σ lmG(η + χ )‖u‖
≥ ‖u‖,

which shows that ‖Tu‖ ≥ ‖u‖ for u ∈P ∩ ∂�2.
By Lemma 2.2(i) A possesses a fixed point in P ∩ (�̄2 \ �1), which is just a positive

solution of (2.4). Accordingly, it follows from (2.2) that the original elliptic system (1.1)
admits at least one positive radial solution. �

Proof of Theorem 1.2 To apply Lemma 2.2, we adopt the same strategy and notations as
before. First, we show that for r > 0 sufficiently small,

‖Au‖ ≥ ‖u‖, u ∈P ∩ ∂�1. (3.2)
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Indeed, by f0 = ∞ there exists r̃ > 0 such that

p(t)f (t, u) ≥ βu, 0 < u ≤ r̃,

where β > 0 is a constant large enough with σ lmG(β + χ ) ≥ 1. Thus, for 0 < r ≤ r̃, if u ∈P
and ‖u‖ = r, then

p(t)f (t, u) + χ (t)u ≥ βu + χ (t)u ≥ σ (β + χ )‖u‖, t ∈ [R1, R2],

which, together with (H2)′, implies

Au(t) = c
∫ R2

R1

G(t, s)p(s)u(s)T
(
u(s)

)
ds

+
∫ R2

R1

G(t, s)
(
p(s)f

(
s, u(s)

)
+ χ (s)u(s)

)
ds

≥ σ lmG(β + χ )‖u‖
≥ ‖u‖.

Hence (3.2) holds.
Next, we prove that for R > 0 large enough,

‖Au‖ ≤ ‖u‖, u ∈P ∩ ∂�2. (3.3)

From (1.6) it follows that there exists R̃ > 0 such that

p(t)f (t, u) ≤ εu – χ (t)u

for u ≥ R̃, where ε > 0 satisfies εlMG ≤ 1
2 . Let R̃1 > max{r̃, R̃

σ
}. Then for u ∈ P with ‖u‖ ≥

R̃1, we get

u(t) ≥ σ‖u‖ ≥ σ R̃1 > R̃,

and thus

p(t)f (t, u) + χ (t)u ≤ μu ≤ μ‖u‖, t ∈ [R1, R2].

On the other hand, (H2)′ implies that there exists R̃2 > 0 such that p(t)g(u) ≤ ε for any
u ≥ R̃2. Therefore, for u ∈P with ‖u‖ ≥ R̃2, we have

c · Tu(t) = c ·
∫ R2

R1

K(t, s)p(s)g
(
u(s)

)
ds

≤ εcM
∫ R2

R1

ds

≤ εcMl,



Chen et al. Journal of Inequalities and Applications         (2021) 2021:74 Page 9 of 11

where ε > 0 is a constant satisfying εclMMGp0 ≤ 1
2 . Let R = max{R̃1, R̃2}. Then for u ∈ P

with ‖u‖ = R, we easily verify that

Au(t) = c
∫ R2

R1

G(t, s)p(s)u(s)T
(
u(s)

)
ds +

∫ R2

R1

G(t, s)
(
p(s)f

(
s, u(s)

)
+ χ (s)u(s)

)
ds

≤ εclMMGp0‖u‖ + εlMG‖u‖
≤ ‖u‖, (3.4)

which yields (3.3).
Consequently, Lemma 2.2(ii) ensures that A has a fixed point in P ∩ (�̄2 \�1), and thus

system (1.1) admits a positive radial solution. �

Remark 3.1 To illustrate the results of Theorem 1.1, we choose

χ (t) = p(t) = tN–1, t ∈ [R1, R2].

Let g(u) = uα , u ∈ [0,∞), and

f (t, u) =

⎧
⎪⎪⎨

⎪⎪⎩

–u, u ∈ [0, 1],

–(u – 2)2, u ∈ (1, 2],

(u – 2)2, u ∈ (2, +∞),

where α > 1 is a constant. Then it is not hard to verify that the assumptions in Theorem 1.1
are all satisfied. Therefore elliptic system (1.1) admits at least one positive radial solution.

Remark 3.2 To estimate (3.4), we assume (H2)′ in Theorem 1.2. Nevertheless, we believe
that system (1.1) may admit positive radial solutions under (H2) and some suitable condi-
tions on the nonlinearity g , which will be treated in the forthcoming paper. Clearly, The-
orems 1.1 and 1.2 apply to models that cannot be dealt with by the results in the existing
literature, and thus our main results are novel.

In the rest of the section, we consider the elliptic system

⎧
⎪⎪⎨

⎪⎪⎩

–�u = uv + f (|x|, u), x ∈ �,

–�v = cg(u) – dv, x ∈ �,
∂u
∂n = 0, ∂v

∂n + αv = 0, x ∈ ∂�,

(3.5)

where � is the annulus introduced in Sect. 1. Note that the boundary condition in (3.5)
means that the nuclear reactors exchange heat energy with the outside and neutron flux
cannot cross the boundary of the container, which is the case closer to the reality. In this
case the positive constant α is called the heat transfer coefficient. Obviously, system (3.5)
corresponds to the nuclear reactor model

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut – �u = uv – bu, x ∈ �0, t > 0,

vt – �v = cu – dv, x ∈ �0, t > 0,
∂u
∂n = 0, ∂v

∂n + αv = 0, x ∈ ∂�0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ �0.
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For radial solutions, elliptic system (3.5) is equivalent to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(p(t)u′)′ + p(t)uv + p(t)f (t, u) = 0, R1 < t < R2,

(p(t)v′)′ – dp(t)v + cp(t)g(u) = 0, R1 < t < R2,

u′(R1) = 0 = u′(R2),

v′(R1) + αv(R1) = 0, v′(R2) + αv(R2) = 0.

Applying Lemma 2.2, by an argument similar to that of Sects. 2 and 3 we can show that
the results of Theorems 1.1 and 1.2 are still valid for elliptic system (3.5).
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